IxT
|t
U Lecture 4

Divide and Conquer II: Counting
Inversions, counting intersections,
max subarray, maxima set

CS 161 Design and Analysis of Algorithms

loannis Panageas

Divide and conquer method (recap)

Steps of method:
— Divide input into parts (smaller problems)
— Conquer (solve) each part recursively

results to obtain solution of original

T'(n) = divide time
+T(n)+T(ny)+...+T(n,)
+ combine time

Design and Analysis of Algorithms

Case study |: Counting inversions

Given numbers A4, ..., 4,, in an array A, compute
the number of inversions.

(i,j) isaninversion: 4; > Ajand i < .
Example [18, 29, 12, 15, 32, 10] has 9 inversions:

(18,12), (18,15), (18,10), (29,12), (29,15), (29,10),
(12,10), (15,10), (32,10)

Design and Analysis of Algorithms

Case study |: Counting inversions

e Solution: Use Divide and conquer. Tricky part the combine step.
Run a modification of Mergesort that has a counter that counts
inversions during merge steps.

e (Question: Assume that B4, ..., By and (3, ..., C; are both sorted. Can
you compute the number of inversions of the concatenated sequence
B4, ...,Bg, Cq, ..., C;?

Design and Analysis of Algorithms

Case study |: Counting inversions

e Question: Assume that By, ..., Byand (4, ..., C; are both sorted. Can
you compute the number of inversions of the sequence
By, ...,By, Cyq, ..., C;?

If B; > (; = B;_, there are

including (;

Design and Analysis of Algorithms

Case study |: Counting inversions

e Question: Assume that By, ..., Byand (4, ..., C; are both sorted. Can
you compute the number of inversions of the sequence
By, ...,By, Cyq, ..., C;?

If B; > (; = B;_, there are
k—1i+1 including C;

Design and Analysis of Algorithms

Case study |: Counting inversions

If B; > (; = B;_, there are
k—1i+1 including C;

B:1349220 (C:2357810

Concatenated: 134 92202357810
A A

8 participates in 2 inversions. k = 5,i = 4

Design and Analysis of Algorithms

Case study |: Counting inversions

Problem: Given two sorted arrays B, C, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.
While k < len(B) + len(C) do

If Bli] <= C[j] then
Alk] < Bli]
=1+ 1,k=k+1

else

Alk] < Clj]

B:1349220 C:2357810

A
(

A
J

A :

counter = (

counter = counter + len(B) — i + 1

j=i+ 1L k=k+1

Design and Analysis of Algorithms

Case study |: Counting inversions

Problem: Given two sorted arrays B, C, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.
While k < len(B) + len(C) do

If Bli] <= C[j] then
Alk] < Bli]
=1+ 1,k=k+1

else

Alk] < Clj]

B:1349220 C:2357810

A
(

A
J

A:l

counter = (

counter = counter + len(B) — i + 1

j=i+ 1L k=k+1

Design and Analysis of Algorithms

Case study |: Counting inversions

Problem: Given two sorted arrays B, C, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.
While k < len(B) + len(C) do

If Bli] <= C[j] then
Alk] < Bli]
=1+ 1,k=k+1

else

Alk] < Clj]

B:1349220 C:2357810

A
(

4
J

A:12
counter = 4

counter = counter + len(B) — i + 1

j=i+ 1L k=k+1

Design and Analysis of Algorithms

Case study |: Counting inversions

Problem: Given two sorted arrays B, C, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.
While k < len(B) + len(C) do

If Bli] <= C[j] then
Alk] < Bli]
=1+ 1,k=k+1

else

Alk] < Clj]

B:1349220 C:2357810

A
(

4
J

A:123
counter = 4

counter = counter + len(B) — i + 1

j=i+ 1L k=k+1

Design and Analysis of Algorithms

Case study |: Counting inversions

Problem: Given two sorted arrays B, C, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.
While k < len(B) + len(C) do

If Bli] <= C[j] then
Alk] < Bli]
=1+ 1,k=k+1

else

Alk] < Clj]

B:1349220 C:2357810

A
(

4
J

A:1233
counter = 7

counter = counter + len(B) — i + 1

j=i+ 1L k=k+1

Design and Analysis of Algorithms

Case study |: Counting inversions

Problem: Given two sorted arrays B, C, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.
While k < len(B) + len(C) do

If Bli] <= C[j] then
Alk] < Bli]
=1+ 1,k=k+1

else

Alk] < Clj]

B :1349 220 C':2357810
A A
) J
A:12334
counter = 7

counter = counter + len(B) — i + 1

j=i+ 1L k=k+1

Design and Analysis of Algorithms

Case study |: Counting inversions

Problem: Given two sorted arrays B, C, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.
While k < len(B) + len(C) do

If Bli] <= C[j] then
Alk] < Bli]
=1+ 1,k=k+1

else

Alk] < Clj]

B :1349 220 C:2357810
A A
) J
A:123345
counter = 9

counter = counter + len(B) — i + 1

j=i+ 1L k=k+1

Design and Analysis of Algorithms

Case study |: Counting inversions

Problem: Given two sorted arrays B, C, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.
While k < len(B) + len(C) do

If Bli] <= C[j] then
Alk] < Bli]
=1+ 1,k=k+1

else

Alk] < Clj]

B :1349 220 C':2357810
A A
) J
A:1233457
counter = 11

counter = counter + len(B) — i + 1

j=i+ 1L k=k+1

Design and Analysis of Algorithms

Case study |: Counting inversions

Problem: Given two sorted arrays B, C, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.
While k < len(B) + len(C) do

A
J

If B[i] <= C[j] then [= o
Alk] + BIi) .1342220 2357810
i=i+1Lk=k+1 ;

else A:12334578
Alk] < Clj] counter = 13

counter = counter + len(B) — i + 1
j=i4t1lk=k+1

Design and Analysis of Algorithms

Case study |: Counting inversions

Problem: Given two sorted arrays B, C, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.
While k < len(B) + len(C) do

A
J

If B|i] <= C|[j] then 5. .
A[k] « BJi] -1349230 :2357810
=i+ 1,k=k+1 i

else A:123345789
Alk] < Clj] counter = 13

counter = counter + len(B) — i + 1
j=i4t1lk=k+1

Design and Analysis of Algorithms

Case study |: Counting inversions

Problem: Given two sorted arrays B, C, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While k < len(B) + len(C) do

If BJi] <= C[j] then

=1+ 1,k=k+1) J
else A:12334578910
A[k] < CJj] counter = 14

counter = counter + len(B) — i + 1

j=i+ 1L k=k+1

Design and Analysis of Algorithms

Case study |: Counting inversions

Problem: Given two sorted arrays B, C, merge them to a sorted

array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While k < len(B) + len(C) do

If B[i] <= C[j] then [-
AlK Bli 1349220 C:2357810
=1+ 1,k=k+1 (J

else A:12334578910220
A[k] < CJj] counter = 14

counter = counter + len(B) — i + 1
j=i4t1lk=k+1

Design and Analysis of Algorithms

Case study I: Counting inversions

Pseudocode:

ModifiedMergesort(A[1 : n])
If n ==1 then i /(>
return A, 0 Ot

B,countL. = ModifiedMergesort (A[1l: %) T (%)
C,countR = ModifiedMergesort (A[5 +1:n]) [C"‘/Z\

A, counterM <« ModifiedMerge(B, C') @(/\)

return A, countL 4+ countR + counterM

\ﬁ»@f« o) &-QT(/Q

(Q 26 9 n o8 V}§ 2) Cose L
Design d(/:\l}y of Algorithms (Qjﬂ

Case study Il: Counting intersections

Problem: Given n distinct lines in the plane, none of which are vertical and
two vertical linesx = a and x = b, find the number of intersections. We
assume that each line i is described by its endpoints (a, y;1) and (b, y;»).

Example: 6 lines (8 intersections)

Y61

Ys1 T~ Y52
Y41 \ Y22
y31 \ // y32
Y12
Y21
Y62
Y11 Ui
a

Design and Analysis of Algorithms

Case study Il: Counting intersections

Problem: Given n distinct lines in the plane, none of which are vertical and
two vertical linesx = a and x = b, find the number of intersections. We

assume that each line i is described by its endpoints (a, y;1) and (b, y;»).

Question: When two lines i, j intersect?

Yi2
Yil ’

i1
Vs Yi2

Design and Analysis of Algorithms

Case study Il: Counting intersections

Problem: Given n distinct lines in the plane, none of which are vertical and
two vertical linesx = a and x = b, find the number of intersections. We
assume that each line i is described by its endpoints (a, y;1) and (b, y;»).

Question: When two lines i, j intersect?
If yi1 > yj1 theny;; < yjpporify;; <yj1theny;; >y

Yi2
Yil /

i1
Ys Yi2

Design and Analysis of Algorithms

Case study Il: Counting intersections

For all pairs i, j with i < j, count number of intersections 14 74 3 4ot

Pseudocode: ~ ml)

=1 h- | /_
counter + 0 LQ(L -1 (=) ‘YO()
For i =1 to n do ,"
For =7+ 1tondo (=t
If (yi1 > yj1 and yi2 < yj2) or (yi1 < yj1 and y;2 > y,2) then

counter < counter + 1
return counter

Design and Analysis of Algorithms

Case study Il: Counting intersections

For all pairs i, j with i < j, count number of intersections
Pseudocode:

counter < (
For i =1 ton do Running time ©(n?)
For j =7+ 1 ton do
If (yﬂ > Y1 and Yia < ng) or (yﬂ < Yj1 and Yio > ng) then

counter < counter + 1

return counter
Can we do better?

Design and Analysis of Algorithms

Case study Il: Counting intersections

|dea: Let’s sort the lines with respect to y on a. Check the inverse
permutation of the indices of the lines on b.

Example: 4,6,1,3,2,5

Y61

Ys1 T~

Ya1
Y31

Y21

Y11

—

a

Design and Analysis of Algorithms

Ys2
Y22

Y32

Y12

Y62
Ya2

=W N Ot

= O

|dea: Let’s sort the lines with respect to y on a. Check the inverse
permutation of the indices of the lines on b.

Example: 4,6,1,3,2,5

Key observation: Number of inversions is equal to number of

Case study Il: Counting intersections

Y61

Ys1 T~

Ya1
Y31

Y21

Y11

—

a

Ys2
Y22

Y32

Y12

Y62
Ya2

=W N Ot

= O

intersections. In example (4, 1), (4,3), (4,2), (6,1), (6,3), (6,2), (6,5),

(3,2)

Design and Analysis of Algorithms

Case study Il: Counting intersections

|dea: Let’s sort the lines with respect to y on a. Check the inverse
permutation of the indices of the lines on b.

Example: 4,6,1,3,2,5

Y61

Ys1 T~

Ya1
Y31

Y21

Y11

Solution: Sort the lines with respect to y on a. Run modified

—

a

Ys2
Y22

Y32

Y12

Y62
Ya2

=W N Ot

= O

mergesort to find number of inversions. Running time ®(n logn).

Design and Analysis of Algorithms

Case study lll: Maximum subarray

Problem (Leetcode, question in interviews): Given an array A of n
numbers (positive and negative), find the subarray with the
maximum sum.

Example: A = [-2,-5,6,—2,—3,1,5,—6]

Design and Analysis of Algorithms

Case study lll: Maximum subarray

Problem (Leetcode, question in interviews): Given an array A of n
numbers (positive and negative), find the subarray with the
maximum sum.

Example: A = [-2,-5,6,—2,—3,1,5,—6]

Solution of example:

|—2,-5,6,—2,—3,1,5, —6] with sum 7.

Design and Analysis of Algorithms

Case study lll: Maximum subarray

Forall i,j withi < j, compute 4; + A; 1 + - + A;. Keep the
maximum from all sums. Total number of computations is...

Design and Analysis of Algorithms

Case study lll: Maximum subarray

Forall i,j withi < j, compute 4; + A; 1 + - + A;. Keep the
maximum from all sums. Total number of computations is...

Pseudocode:
max < 0
For : =1 ton do
For j =1 ton do
sum < 0
For £k =1 to 5 do
sum = sum + A[k|

If sum > max then

max <— sum
return max

Design and Analysis of Algorithms

Case study lll: Maximum subarray

Forall i,j withi < j, compute 4; + A;; + - + 4;. Keep the
maximum from all sums. Total number of computations is

D ie1 23— (j — i+ 1) which is O(n?)

Pseudocode:
max < 0
For : =1 ton do
For j =1 ton do
sum < 0
For £k =1 to 5 do
sum = sum + A[k|

If sum > max then

max < sum Can we do better?

return max

Design and Analysis of Algorithms

Case study lll: Maximum subarray

Idea 1: Do first preprocessing. Compute partial sums
S; = Ay + -+ A; for every i. Running time O (n).
Observe thatA; + A;y1 + -+ 4; =5 — 5;1

4T
< Hle— TALY At T A

_(,/)/4' J(%l

gj - g;;\ <

Design and Analysis of Algorithms

Case study lll: Maximum subarray

Idea 1: Do first preprocessing. Compute partial sums
S; = Ay + -+ A; for every i. Running time O (n).
Observe thatA; + A;y1 + -+ 4; =5 — 5;1

Then for all i, j with i < j, compute the maximum among §; — §;_;.

Design and Analysis of Algorithms

Case study lll: Maximum subarray

Idea 1: Do first preprocessing. Compute partial sums
S; = Ay + -+ A; for every i. Running time O(n).
Observe thatA; + A;y1 + -+ 4; =5 — 5;1

Then for all i, j with i < j, compute the maximum among S; — §;_;.

max <— 0

S[0] + 0 [-2,-5,6,—2,-3,1,5,—6]

For i =1 ton do s=[0,-2,-7,-1, -3, -6, -5, 0, -6]
RISl -5+6-2-3+1=5[6] - S[1] = -3

For : =1 ton do
For j =17 ton do
If S[j] — S[i — 1] > max then

max < S|j] — S|i — 1]
return max

Design and Analysis of Algorithms

Case study lll: Maximum subarray

Idea 1: Do first preprocessing. Compute partial sums
S; = Ay + -+ A; for every i. Running time O (n).
Observe thatA; + A;y1 + -+ 4; =5 — 5;1

Then for all i, j with i < j, compute the maximum among §; — §;_;.

max < 0
ol o do
S[i] « S[i — 1] + AJi]
For =1 ton do
For j =1 ton do
If S[j] — S[i — 1] > max then

max < S|j| — S|t — 1]
return max

Design and Analysis of Algorithms

Can we do better?

Case study lll: Maximum subarray

Idea 2: Divide and conquer
|—2,—-5,6,—-2,—-3,1,5,—6]|

Find max in left half (e.g., green), find max in right half (e.g., black)
and combine/merge. HOW?

Observe left part has maximum 6 and right part also 6. The solution
is 7 though.

Design and Analysis of Algorithms

Case study lll: Maximum subarray

Idea 2: Divide and conquer

|—2,—5,6,—-2,—-3,1,5,—6]
Find max in left half (e.g., green), find max in right half (e.g., black)
and combine/merge. HOW?

Observe left part has maximum 6 and right part also 6. The solution
is 7 though.

Key idea: The solution is either on left part, or right part or crosses
the midpoint (has at least one number in both parts).

Design and Analysis of Algorithms

Case study lll: Maximum subarray

Idea 2: Divide and conquer
|—2,—-5,6,—-2,—-3,1,5,—6]|

Question: How to get the maximum subarray that crosses the
midpoint?

Design and Analysis of Algorithms

Case study lll: Maximum subarray

Idea 2: Divide and conquer
|—2,—-5,6,—-2,—-3,1,5,—6]|

Question: How to get the maximum subarray that crosses the
midpoint?

a) Find the maximum starting from mid and going left.

b) Find the maximum starting from mid+1 and going right.

Add them up. This can happen in ®(n) time using partial sums S.
In example above a) is 4 and b) is 3 for a total of 7.

Design and Analysis of Algorithms

T(v\\ SA (\A/L* B(n) (n
Case study Ill: Maximum subarray

Pseudocode: /
. ¥ 51"/\4~~—+AL
-— I X
S[0] <0 Fori=1tondo reonce 551143

Sli] < Sl — 1]+ Alzs] | Coo poitisl” Soma_
Maxsum(A[1 : n])
O() If n==1return max(A[l],0)

T(%\ maxL +Maxsum(A[l : n/2]) X D{V\AL + Con‘;“d
T() maxR «—Maxsum(A[n/2 +1: n])

o m !
e X SUbet
8 () For i = n/2 downto 1 do H:f o

If max1 < S[n/2] — S[i — 1] then max1 < S[n/2] — S[i — 1] ' :
6(”)5)F0r i=n/2+1tondo M"é?o‘d\
6 If max2 < S[i] — S[n/2] then max2 « S[i] — S[n/2] /’\CJ”\L("[C%w

(\)return maximum of maxL, maxR and max1l + max2

Design and Analysis of Algorithms

Case study lll: Maximum subarray

Pseudocode:
S[0] <0 Fori=1tondo
S[i] < S[i — 1] + A[i]

Mascsum(A[1 : n])

If n == 1 return max(A[1],0)
maxL < Maxsum(A[l : n/2])
maxR +Maxsum(A[n/2 + 1 : n])
max]1 < (

max2 < 0

For i = n/2 downto 1 do

If max1 < S[n/2] — S[i — 1] then max1 « S[n/2| — S[i — 1]
Fori=n/2+1ton do

If max2 < S[i] — S[n/2] then max2 « S[i] — S[n/2]
return maximum of maxL, maxR and max1l + max2

Design and Analysis of Algorithms

Case study |V: Maxima Set

Problem: We are given n points (x4,y1), ..., (X5, V) on the plane. A
point (x;, y;) is called a maximum point if there is no other point
(x;,y;) thatx; < x; andy; < y;.

Example: x captures pool size and y restaurant quality. 10 hotels

"""""""" 2
1
SeenTpTIIIIITTAM
.C| 1 ll
S et Sl 1c
Restaurant I .B I : ° :
quality ! Lo F o
R R R o T8
IR LI
! I ®, |
1 Er |
1 I
T T
1
Pool size :

Design and Analysis of Algorithms

Case study |V: Maxima Set

Problem: We are given n points (x4,y1), ..., (X5, V) on the plane. A
point (x;, y;) is called a maximum point if there is no other point
(x;,y;) thatx; < x; andy; < y;.

Example: x captures pool size and y restaurant quality. 10 hotels

"""""""" 2
""""""':"'T_H_’
: B S
Explanation: SRRREELEEELL EELR X
Restaurant I .B I : ° :
quality ! Lo F o
I
. . @ 1
A, H, G, Drare maximum points. AR
| Er1 |
C,B,F,], E are not. —
|
Pool size :

Design and Analysis of Algorithms

Case study |V: Maxima Set

Problem: We are given n points (x4,y1), ..., (X5, V) on the plane. A
point (x;, y;) is called a maximum point if there is no other point
(x;,y;) thatx; < x; and y; < y;.

Obvious approach:

For every point (x;, y;), check if it is maximum

ef o e e a
To check if it is maximum, you check N Y .
the condition with all other points. ERREEEEEEEEL EEEE To
Restaurant 981 ° :
quality : : : F :
""" e Sl e 4
i S TR :D
1 : .: 1
! Er 1
1 I
T
Pool size :

Design and Analysis of Algorithms

Case study |V: Maxima Set

Problem: We are given n points (x4,y1), ..., (X5, V) on the plane. A
point (x;, y;) is called a maximum point if there is no other point
(x;,y;) thatx; < x; and y; < y;.

Pseudocode:
counter < 0 Running time ©(n?)
For =1 ton do

flag < 1
For j=71+1tondo

If (z; > z; and y; > y;) then flag < 0

counter < counter + flag Can we do better?

return counter

Design and Analysis of Algorithms

Case study |V: Maxima Set

Problem: We are given n points (x4,y1), ..., (X5, V) on the plane. A
point (x;, y;) is called a maximum point if there is no other point
(x;,y;) thatx; < x; and y; < y;.

Idea: Divide and conquer. Divide step and Combine step is
challenging.

"""""""" s
1
R At i 4.8
e — =
.Cl 1 |I
smmmt-—-d--To-- 4G
Restaurant I .B 1 : ° :
quality ! Lo F o
R GEE EE R
e
! I @, 1
1 Er 1
1 1
T T
I
Pool size :

Design and Analysis of Algorithms

Case study |V: Maxima Set

Divide step: It should split the points in two parts of equal size.
How?

Design and Analysis of Algorithms

Case study |V: Maxima Set

Divide step: It should split the points in two parts of equal size.
How? Choose the middle (median) point with respect to x

coordinates.
M, Mo
"""""""""" 2
------ - —:- D H
_—— S Y
RRLRNNN |
Restaurant b ' :
quality ‘ : *F
— ____:_.’D
! : ® 1!
! .: 1
Er 1
Pool size E

Design and Analysis of Algorithms

Case study |V: Maxima Set

Divide step: It should split the points in two parts of equal size.
How? Choose the middle (median) point with respect to x

coordinates.
M, Mo
"""""""""" 2
------ - -—:- -9 H
_—— Y
e I...:.___.’G
Restaurant b ' : :
quality ‘ | |
- 140 L) S
! e !
! : .: 1
1 Er 1
Pool size E

Combine step: Return M; U M,?

Design and Analysis of Algorithms

Case study |V: Maxima Set

Combine step: Return M; U M,? Wrong: blue points below of M; are
not part of the solution

Dominance point

______________ - | from the right
]
-----..------I---T I
: | |

_____ r______T__?
T
I

e TR

—pm——————————

_

I

I

I
4

S [Y
——u-—-—i—-
S S g

——b--o

Design and Analysis of Algorithms

Case study |V: Maxima Set

Combine step idea: M, points should part of the solution. From

M,, the points that are maximum should not be dominated by
smallest with respect to x coordinates in M,

Dominance point

______________ P | from the right
I
el il Ll 4
I I
1 |

I
I
e o e T--T
T
I

SREt EEPE a-----9

_

I

I

I
4

SN [Pt
——u-—-—l—-
S . g

——b--

Design and Analysis of Algorithms

Case study |V: Maxima Set

Pseudocode:

MaximaSet(S,n):

if » = 1 then

return S
Let p be the median point in S, by = -coordinates
Let L be the set of points less than p in S by « -coordinates
Let G be the set of points greater than or equal to p in S by x -coordinates
M; < MaximaSet(L)
My < MaximaSet(G)
Let g be the smallest point in My
for each point, r, in My do by z -coordinates

if z(r) < x(q) and y(r) < y(q) then

Remove r from M,

return M U Mo

Design and Analysis of Algorithms

Case study |V: Maxima Set

Pseudocode:

MaximaSet(S,n):

if » = 1 then

return S
Let p be the median point in .S, by x -coordinates
Let L be the set of points less than p in S by « -coordinates
Let G be the set of points greater than or equal to p in S by x -coordinates
M; < MaximaSet(L)
My < MaximaSet(G)
Let ¢ be the smallest point in Mo
for each point, r, in My do by z -coordinates

if z(r) < z(q) and y(r) < y(q) then

Remove r from M,

return M U Mo

Running time is T'(n) = 2T (n/2) + Tmedia(n) + Tmin(n) + O(n)
= 2T(n/2) + Tiedia(n) + O(n)

Design and Analysis of Algorithms

Case study |V: Maxima Set

Pseudocode:

M
Next week we will see how to find

the median in O(n) time!
This fact will yield ®(nlog n) for
Maxima Set.

rdinates
in S by x -coordinates

Mo +— Maximaset(G)
Let ¢ be the smallest point in Mo
for each point, r, in My do by z -coordinates
if z(r) < x(q) and y(r) < y(q) then
Remove r from M,
return M U Mo

Running time is T'(n) = 2T (n/2) + Tmedia(n) + Tmin(n) + O(n)
= QT(TL/Q) -+ Tmedia(n) + @(TL)

Design and Analysis of Algorithms

	Slide 1: Lecture 4 Divide and Conquer II: Counting inversions, counting intersections, max subarray, maxima set
	Slide 2: Divide and conquer method (recap)
	Slide 3: Case study I: Counting inversions
	Slide 4: Case study I: Counting inversions
	Slide 5: Case study I: Counting inversions
	Slide 6: Case study I: Counting inversions
	Slide 7: Case study I: Counting inversions
	Slide 8: Case study I: Counting inversions
	Slide 9: Case study I: Counting inversions
	Slide 10: Case study I: Counting inversions
	Slide 11: Case study I: Counting inversions
	Slide 12: Case study I: Counting inversions
	Slide 13: Case study I: Counting inversions
	Slide 14: Case study I: Counting inversions
	Slide 15: Case study I: Counting inversions
	Slide 16: Case study I: Counting inversions
	Slide 17: Case study I: Counting inversions
	Slide 18: Case study I: Counting inversions
	Slide 19: Case study I: Counting inversions
	Slide 20: Case study I: Counting inversions
	Slide 21: Case study II: Counting intersections
	Slide 22: Case study II: Counting intersections
	Slide 23: Case study II: Counting intersections
	Slide 24: Case study II: Counting intersections
	Slide 25: Case study II: Counting intersections
	Slide 26: Case study II: Counting intersections
	Slide 27: Case study II: Counting intersections
	Slide 28: Case study II: Counting intersections
	Slide 29: Case study III: Maximum subarray
	Slide 30: Case study III: Maximum subarray
	Slide 31: Case study III: Maximum subarray
	Slide 32: Case study III: Maximum subarray
	Slide 33: Case study III: Maximum subarray
	Slide 34: Case study III: Maximum subarray
	Slide 35: Case study III: Maximum subarray
	Slide 36: Case study III: Maximum subarray
	Slide 37: Case study III: Maximum subarray
	Slide 38: Case study III: Maximum subarray
	Slide 39: Case study III: Maximum subarray
	Slide 40: Case study III: Maximum subarray
	Slide 41: Case study III: Maximum subarray
	Slide 42: Case study III: Maximum subarray
	Slide 43: Case study III: Maximum subarray
	Slide 44: Case study IV: Maxima Set
	Slide 45: Case study IV: Maxima Set
	Slide 46: Case study IV: Maxima Set
	Slide 47: Case study IV: Maxima Set
	Slide 48: Case study IV: Maxima Set
	Slide 49: Case study IV: Maxima Set
	Slide 50: Case study IV: Maxima Set
	Slide 51: Case study IV: Maxima Set
	Slide 52: Case study IV: Maxima Set
	Slide 53: Case study IV: Maxima Set
	Slide 54: Case study IV: Maxima Set
	Slide 55: Case study IV: Maxima Set
	Slide 56: Case study IV: Maxima Set

