

Lecture 4

Divide and Conquer II: Counting inversions, counting intersections, max subarray, maxima set

CS 161 Design and Analysis of Algorithms
Ioannis Panageas

Divide and conquer method (recap)

Steps of method:

- Divide input into parts (smaller problems)
- Conquer (solve) each part <u>recursively</u>
- Combine results to obtain solution of original

$$T(n) =$$
divide time
+ $T(n_1) + T(n_2) + ... + T(n_k)$
+ combine time

Given numbers A_1, \dots, A_n in an array A, compute the number of inversions.

```
(i,j) is an inversion: A_i > A_j and i < j.
```

Example [18, 29, 12, 15, 32, 10] has 9 inversions:

• Solution: Use Divide and conquer. Tricky part the combine step. Run a modification of Mergesort that has a counter that counts inversions during merge steps.

• Question: Assume that $B_1, ..., B_k$ and $C_1, ..., C_l$ are both sorted. Can you compute the number of inversions of the concatenated sequence $B_1, ..., B_k, C_1, ..., C_l$?

• Question: Assume that $B_1, ..., B_k$ and $C_1, ..., C_l$ are both sorted. Can you compute the number of inversions of the sequence $B_1, ..., B_k, C_1, ..., C_l$?

If
$$B_i > C_j \ge B_{i-1}$$
 there are

including C_j

$$B_1, \dots, B_i, \dots, B_k$$
 $C_1, \dots, C_j, \dots, C_l$
 j^{\uparrow}

• Question: Assume that $B_1, ..., B_k$ and $C_1, ..., C_l$ are both sorted. Can you compute the number of inversions of the sequence $B_1, ..., B_k, C_1, ..., C_l$?

If
$$B_i > C_j \ge B_{i-1}$$
 there are $k-i+1$ including C_j

$$B_1, \dots, B_i, \dots, B_k$$
 $C_1, \dots, C_j, \dots, C_l$
 j^{\uparrow}

If
$$B_i > C_j \ge B_{i-1}$$
 there are $k-i+1$ including C_j

$$B_1, \dots, B_i, \dots, B_k$$
 $C_1, \dots, C_j, \dots, C_l$ j^{\uparrow}

B: 1349220 C: 2357810

Concatenated: 13492202357810

8 participates in 2 inversions. k = 5, i = 4

Problem: Given two sorted arrays B, C, merge them to a sorted array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While
$$k < \operatorname{len}(B) + \operatorname{len}(C)$$
 do

If $B[i] <= C[j]$ then
$$A[k] \leftarrow B[i]$$

$$i = i + 1, k = k + 1$$
else
$$A[k] \leftarrow C[j]$$

$$\operatorname{counter} = \operatorname{counter} + \operatorname{len}(B) - i + 1$$

$$B: 1349220$$
 $C: 2357810$
 $A: counter = 0$

Problem: Given two sorted arrays B, C, merge them to a sorted array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While
$$k < \operatorname{len}(B) + \operatorname{len}(C)$$
 do

If $B[i] <= C[j]$ then
$$A[k] \leftarrow B[i]$$

$$i = i + 1, k = k + 1$$
else
$$A[k] \leftarrow C[j]$$

$$\operatorname{counter} = \operatorname{counter} + \operatorname{len}(B) - i + 1$$

Problem: Given two sorted arrays B, C, merge them to a sorted array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While
$$k < \operatorname{len}(B) + \operatorname{len}(C)$$
 do

If $B[i] <= C[j]$ then
$$A[k] \leftarrow B[i]$$

$$i = i + 1, k = k + 1$$
else
$$A[k] \leftarrow C[j]$$

$$\operatorname{counter} = \operatorname{counter} + \operatorname{len}(B) - i + 1$$

Problem: Given two sorted arrays B, C, merge them to a sorted array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While
$$k < \operatorname{len}(B) + \operatorname{len}(C)$$
 do

If $B[i] <= C[j]$ then
$$A[k] \leftarrow B[i]$$

$$i = i + 1, k = k + 1$$
else
$$A[k] \leftarrow C[j]$$

$$\operatorname{counter} = \operatorname{counter} + \operatorname{len}(B) - i + 1$$

$$B: 1349220$$
 $C: 2357810$
 i^{\uparrow}
 $A: 123$
 $counter = 4$

Problem: Given two sorted arrays B, C, merge them to a sorted array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While
$$k < \text{len(B)} + \text{len(C)}$$
 do

If $B[i] <= C[j]$ then
$$A[k] \leftarrow B[i]$$

$$i = i + 1, k = k + 1$$

else

$$A[k] \leftarrow C[j]$$

$$j = j + 1, k = k + 1$$

$$B: 1349220$$
 $C: 2357810$
 i^{\uparrow}
 $A: 1233$
 $counter = 7$

Problem: Given two sorted arrays B, C, merge them to a sorted array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While
$$k < \text{len(B)} + \text{len(C)}$$
 do
If $B[i] <= C[j]$ then

$$A[k] \leftarrow B[i]$$

$$i = i + 1, k = k + 1$$

else

$$A[k] \leftarrow C[j]$$

$$j = j + 1, k = k + 1$$

$$B: 1349220$$
 $C: 2357810$
 i
 $A: 12334$
 $counter = 7$

Problem: Given two sorted arrays B, C, merge them to a sorted array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While
$$k < \text{len(B)} + \text{len(C)}$$
 do

If $B[i] <= C[j]$ then
$$A[k] \leftarrow B[i]$$

$$i = i + 1, k = k + 1$$
else
$$A[k] \leftarrow C[j]$$

B: 1349220 C: 2357810 A: 123345 C: 2357810

counter = counter + len(B) -
$$i + 1$$

 $j = j + 1, k = k + 1$

Problem: Given two sorted arrays B, C, merge them to a sorted array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While
$$k < \operatorname{len}(B) + \operatorname{len}(C)$$
 do

If $B[i] <= C[j]$ then
$$A[k] \leftarrow B[i]$$

$$i = i + 1, k = k + 1$$
else
$$A[k] \leftarrow C[j]$$

B: 1349220 C: 2357810 i A: 1233457 counter = 11

counter = counter + len(B) -
$$i + 1$$

 $j = j + 1, k = k + 1$

Problem: Given two sorted arrays B, C, merge them to a sorted array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While
$$k < \text{len(B)} + \text{len(C)}$$
 do

If $B[i] <= C[j]$ then
$$A[k] \leftarrow B[i]$$

$$i = i + 1, k = k + 1$$

else

$$A[k] \leftarrow C[j]$$

$$j = j + 1, k = k + 1$$

$$B: 1349220$$
 $C: 2357810$
 i
 $A: 12334578$
 $counter = 13$

Problem: Given two sorted arrays B, C, merge them to a sorted array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While
$$k < \operatorname{len}(B) + \operatorname{len}(C)$$
 do

If $B[i] <= C[j]$ then
$$A[k] \leftarrow B[i]$$

$$i = i + 1, k = k + 1$$
else
$$A[k] \leftarrow C[j]$$

$$j = j + 1, k = k + 1$$

Problem: Given two sorted arrays B, C, merge them to a sorted array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While
$$k < \text{len(B)} + \text{len(C)}$$
 do

If $B[i] <= C[j]$ then
$$A[k] \leftarrow B[i]$$

$$i = i + 1, k = k + 1$$
else
$$A[k] \leftarrow C[j]$$

$$j = j + 1, k = k + 1$$

Problem: Given two sorted arrays B, C, merge them to a sorted array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While
$$k < \text{len(B)} + \text{len(C)}$$
 do

If $B[i] <= C[j]$ then
$$A[k] \leftarrow B[i]$$

$$i = i + 1, k = k + 1$$
else
$$A[k] \leftarrow C[j]$$

counter = counter + len(B) -
$$i + 1$$

 $j = j + 1, k = k + 1$

Pseudocode:

```
ModifiedMergesort(A[1:n])

If n == 1 then

return A, 0

B, \mathbf{countL} = \text{ModifiedMergesort} (A[1:\frac{n}{2}])

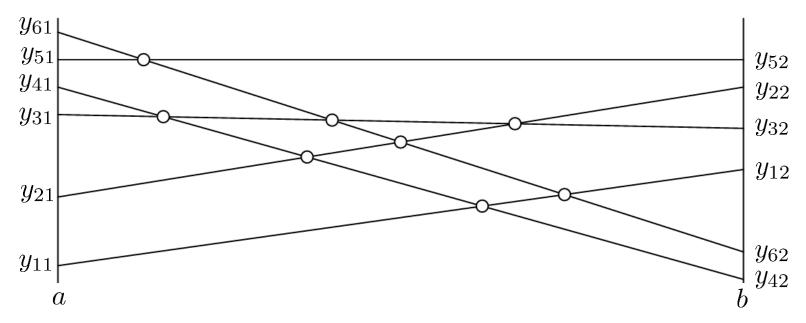
C, \mathbf{countR} = \text{ModifiedMergesort} (A[\frac{n}{2}+1:n])

A, \text{counterM} \leftarrow \text{ModifiedMerge}(B, C)

return A, \text{countL} + \text{countR} + \text{counterM}
```

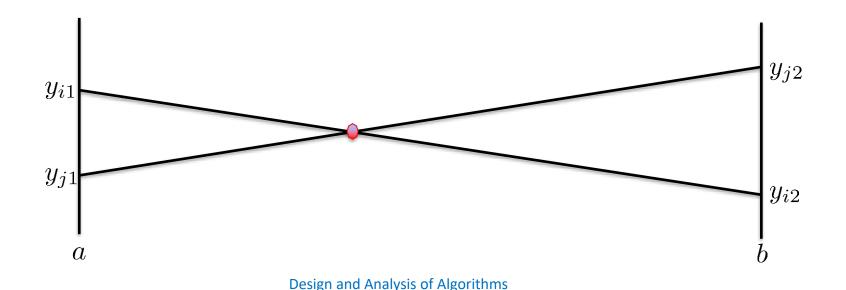
Problem: Given n distinct lines in the plane, none of which are vertical and two vertical lines x = a and x = b, find the number of intersections. We assume that each line i is described by its endpoints (a, y_{i1}) and (b, y_{i2}) .

Example: 6 lines (8 intersections)



Problem: Given n distinct lines in the plane, none of which are vertical and two vertical lines x = a and x = b, find the number of intersections. We assume that each line i is described by its endpoints (a, y_{i1}) and (b, y_{i2}) .

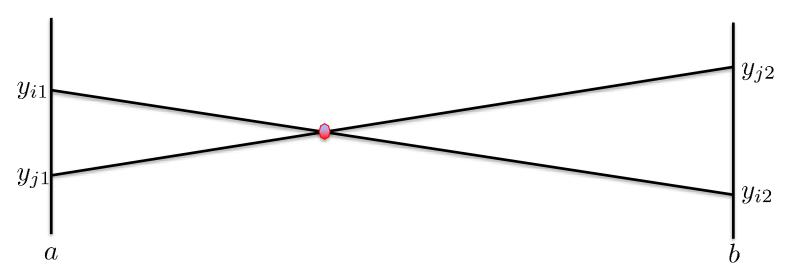
Question: When two lines *i*, *j* intersect?



Problem: Given n distinct lines in the plane, none of which are vertical and two vertical lines x = a and x = b, find the number of intersections. We assume that each line i is described by its endpoints (a, y_{i1}) and (b, y_{i2}) .

Question: When two lines *i*, *j* intersect?

If $y_{i1} > y_{j1}$ then $y_{i2} < y_{j2}$ or If $y_{i1} < y_{j1}$ then $y_{i2} > y_{j2}$



For all pairs i, j with i < j, count number of intersections Pseudocode:

```
counter \leftarrow 0

For i = 1 to n do

For j = i + 1 to n do

If (y_{i1} > y_{j1} \text{ and } y_{i2} < y_{j2}) or (y_{i1} < y_{j1} \text{ and } y_{i2} > y_{j2}) then counter \leftarrow counter + 1

return counter
```

For all pairs i, j with i < j, count number of intersections Pseudocode:

For
$$i = 1$$
 to n do

For $j = i + 1$ to n do

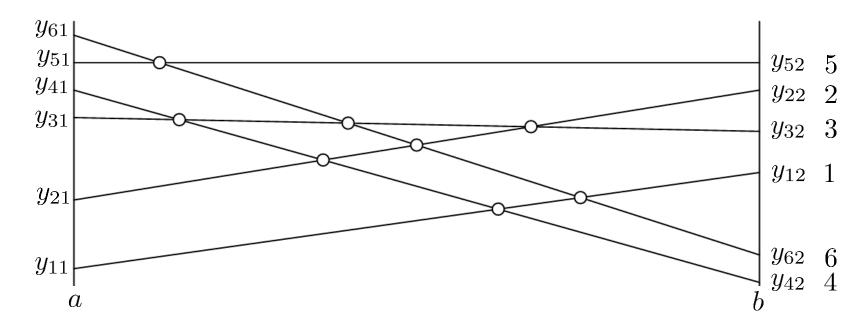
If $(y_{i1} > y_{j1} \text{ and } y_{i2} < y_{j2})$ or $(y_{i1} < y_{j1} \text{ and } y_{i2} > y_{j2})$ then counter \leftarrow counter $+ 1$

return counter

Can we do better?

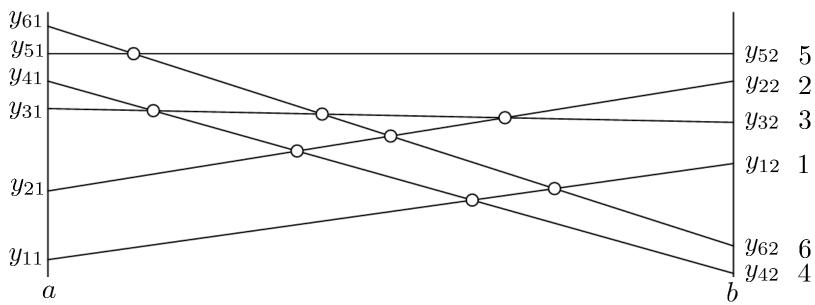
Idea: Let's sort the lines with respect to y on a. Check the inverse permutation of the indices of the lines on b.

Example: 4, 6, 1, 3, 2, 5



Idea: Let's sort the lines with respect to y on a. Check the inverse permutation of the indices of the lines on b.

Example: 4, 6, 1, 3, 2, 5

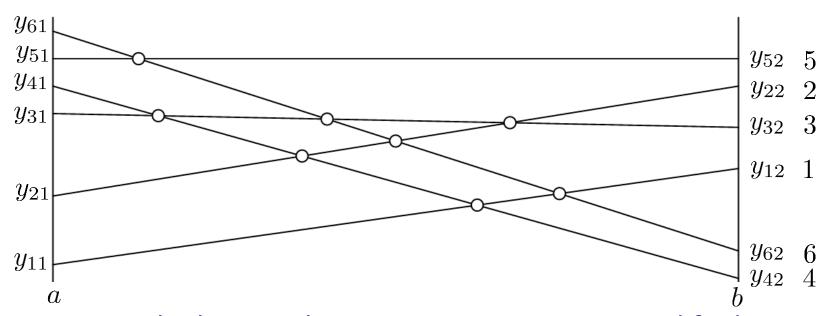


Key observation: Number of inversions is equal to number of intersections. In example (4, 1), (4,3), (4,2), (6,1), (6,3), (6,2), (6,5), (3,2)

Design and Analysis of Algorithms

Idea: Let's sort the lines with respect to y on a. Check the inverse permutation of the indices of the lines on b.

Example: 4, 6, 1, 3, 2, 5



Solution: Sort the lines with respect to y on a. Run modified mergesort to find number of inversions. Running time $\Theta(n \log n)$.

Problem (Leetcode, question in interviews): Given an array A of n numbers (positive and negative), find the subarray with the maximum sum.

Example: A = [-2, -5, 6, -2, -3, 1, 5, -6]

Problem (Leetcode, question in interviews): Given an array A of n numbers (positive and negative), find the subarray with the maximum sum.

Example:
$$A = [-2, -5, 6, -2, -3, 1, 5, -6]$$

Solution of example:

$$[-2, -5, 6, -2, -3, 1, 5, -6]$$
 with sum 7.

For all i, j with $i \leq j$, compute $A_i + A_{i+1} + \cdots + A_j$. Keep the maximum from all sums. Total number of computations is...

For all i, j with $i \leq j$, compute $A_i + A_{i+1} + \cdots + A_j$. Keep the maximum from all sums. Total number of computations is...

Pseudocode:

$$\begin{aligned} \max &\leftarrow 0 \\ \mathbf{For} \ i = 1 \ \text{to} \ n \ \mathbf{do} \\ \mathbf{For} \ j = i \ \text{to} \ n \ \mathbf{do} \\ \mathrm{sum} &\leftarrow 0 \\ \mathbf{For} \ k = i \ \text{to} \ j \ \mathbf{do} \\ \mathrm{sum} &= \mathrm{sum} + A[k] \\ \mathbf{If} \ \mathrm{sum} &> \mathrm{max} \ \mathbf{then} \\ \mathrm{max} &\leftarrow \mathrm{sum} \\ \mathbf{return} \ \mathrm{max} \end{aligned}$$

Design and Analysis of Algorithms

For all i, j with i < j, compute $A_i + A_{i+1} + \cdots + A_j$. Keep the maximum from all sums. Total number of computations is

$$\sum_{i=1}^{n} \sum_{j=i}^{n} (j-i+1)$$
 which is $\Theta(n^3)$

Pseudocode:

$$\max \leftarrow 0$$
For $i = 1$ to n do
For $j = i$ to n do
 $\operatorname{sum} \leftarrow 0$
For $k = i$ to j do
 $\operatorname{sum} = \operatorname{sum} + A[k]$
If $\operatorname{sum} > \operatorname{max}$ then
 $\operatorname{max} \leftarrow \operatorname{sum}$
return max

Can we do better?

Idea 1: Do first preprocessing. Compute partial sums

$$S_i = A_1 + \dots + A_i$$
 for every i . Running time $\Theta(n)$.

Observe that $A_i + A_{i+1} + \dots + A_i = S_i - S_{i-1}$

Idea 1: Do first preprocessing. Compute partial sums

$$S_i = A_1 + \cdots + A_i$$
 for every i. Running time $\Theta(n)$.

Observe that
$$A_i + A_{i+1} + \cdots + A_j = S_j - S_{i-1}$$

Then for all i, j with $i \leq j$, compute the maximum among $S_j - S_{i-1}$.

Idea 1: Do first preprocessing. Compute partial sums

$$S_i = A_1 + \cdots + A_i$$
 for every i. Running time $\Theta(n)$.

Observe that
$$A_i + A_{i+1} + \cdots + A_j = S_j - S_{i-1}$$

Then for all i, j with $i \leq j$, compute the maximum among $S_j - S_{i-1}$.

$$\begin{array}{l} \max \leftarrow 0 \\ S[0] \leftarrow 0 \\ \textbf{For } i = 1 \text{ to } n \textbf{ do} \\ S[i] \leftarrow S[i-1] + A[i] \\ \textbf{For } i = 1 \text{ to } n \textbf{ do} \\ \textbf{For } j = i \text{ to } n \textbf{ do} \\ \textbf{If } S[j] - S[i-1] > \max \textbf{ then} \\ \max \leftarrow S[j] - S[i-1] \\ \textbf{return } \max \end{array}$$

Design and Analysis of Algorithms

Idea 1: Do first preprocessing. Compute partial sums

$$S_i = A_1 + \cdots + A_i$$
 for every i. Running time $\Theta(n)$.

Observe that
$$A_i + A_{i+1} + \cdots + A_j = S_j - S_{i-1}$$

Then for all i, j with i < j, compute the maximum among $S_j - S_{i-1}$.

$$\max \leftarrow 0$$

$$S[0] \leftarrow 0$$

$$\mathbf{For} \ i = 1 \text{ to } n \text{ do}$$

$$S[i] \leftarrow S[i-1] + A[i]$$

Running time $\Theta(n^2)$

For
$$i=1$$
 to n do

For $j=i$ to n do

If $S[j]-S[i-1]>\max$ then

 $\max \leftarrow S[j]-S[i-1]$

Can we do better?

Idea 2: Divide and conquer

$$[-2, -5, 6, -2, -3, 1, 5, -6]$$

Find max in left half (e.g., green), find max in right half (e.g., black) and combine/merge. HOW?

Observe left part has maximum 6 and right part also 6. The solution is 7 though.

Idea 2: Divide and conquer

$$[-2, -5, 6, -2, -3, 1, 5, -6]$$

Find max in left half (e.g., green), find max in right half (e.g., black) and combine/merge. HOW?

Observe left part has maximum 6 and right part also 6. The solution is 7 though.

Key idea: The solution is either on **left** part, or **right** part or **crosses** the midpoint (has at least one number in both parts).

Idea 2: Divide and conquer

$$[-2, -5, 6, -2, -3, 1, 5, -6]$$

Question: How to get the maximum subarray that crosses the midpoint?

Idea 2: Divide and conquer

$$[-2, -5, 6, -2, -3, 1, 5, -6]$$

Question: How to get the maximum subarray that crosses the midpoint?

- a) Find the maximum starting from mid and going left.
- b) Find the maximum starting from mid+1 and going right.

Add them up. This can happen in $\Theta(n)$ time using partial sums S. In example above a) is 4 and b) is 3 for a total of 7.

Pseudocode:

$$S[0] \leftarrow 0$$
 For $i=1$ to n do $S[i] \leftarrow S[i-1] + A[i]$

Maxsum $(A[1:n])$

If $n == 1$ return $\max(A[1], 0)$ $\max L \leftarrow \max(A[1:n/2])$ $\max R \leftarrow \max(A[n/2+1:n])$ $\max 1 \leftarrow 0$ $\max 1 \leftarrow 0$ For $i = n/2$ downto 1 do

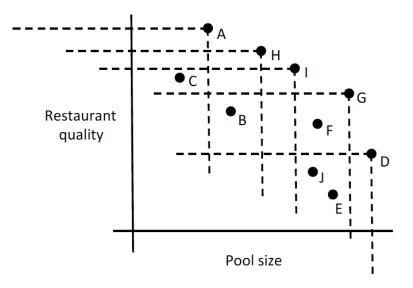
If $\max 1 < S[n/2] - S[i-1]$ then $\max 1 \leftarrow S[n/2] - S[i-1]$ For $i = n/2 + 1$ to n do

If $\max 2 < S[i] - S[n/2]$ then $\max 2 \leftarrow S[i] - S[n/2]$ return $\max 1 \leftarrow S[n/2]$ $\max 1 \leftarrow S[n/2$

Pseudocode:

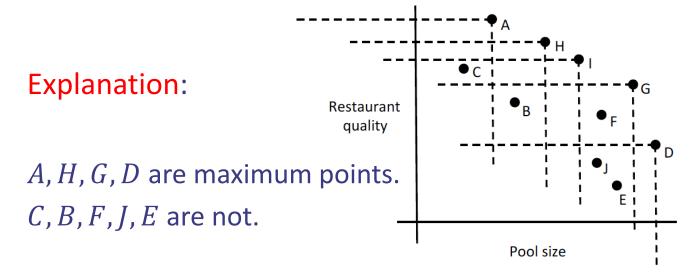
Problem: We are given n points $(x_1, y_1), ..., (x_n, y_n)$ on the plane. A point (x_i, y_i) is called a maximum point if there is no other point (x_j, y_j) that $x_i \le x_j$ and $y_i \le y_j$.

Example: x captures pool size and y restaurant quality. 10 hotels



Problem: We are given n points $(x_1, y_1), ..., (x_n, y_n)$ on the plane. A point (x_i, y_i) is called a maximum point if there is no other point (x_j, y_j) that $x_i \le x_j$ and $y_i \le y_j$.

Example: x captures pool size and y restaurant quality. 10 hotels

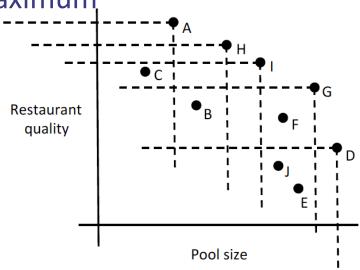


Problem: We are given n points $(x_1, y_1), ..., (x_n, y_n)$ on the plane. A point (x_i, y_i) is called a maximum point if there is no other point (x_i, y_i) that $x_i \le x_i$ and $y_i \le y_i$.

Obvious approach:

For every point (x_i, y_i) , check if it is maximum To check if it is maximum, you check

the condition with all other points.



Problem: We are given n points $(x_1, y_1), ..., (x_n, y_n)$ on the plane. A point (x_i, y_i) is called a maximum point if there is no other point (x_j, y_j) that $x_i \le x_j$ and $y_i \le y_j$.

Pseudocode:

counter $\leftarrow 0$

Running time $\Theta(n^2)$

For i = 1 to n do

 $flag \leftarrow 1$

For j = i + 1 to n do

If $(x_j > x_i \text{ and } y_j > y_i)$ then flag $\leftarrow 0$

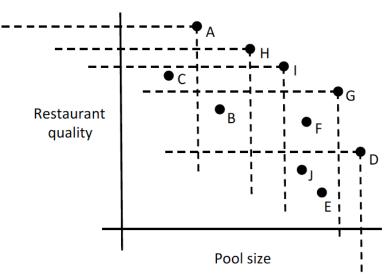
 $counter \leftarrow counter + flag$

Can we do better?

return counter

Problem: We are given n points $(x_1, y_1), ..., (x_n, y_n)$ on the plane. A point (x_i, y_i) is called a maximum point if there is no other point (x_j, y_j) that $x_i \le x_j$ and $y_i \le y_j$.

Idea: Divide and conquer. Divide step and Combine step is challenging.

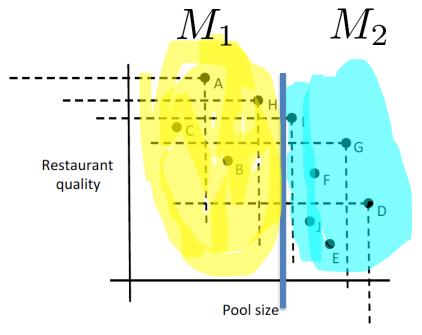


Divide step: It should split the points in two parts of equal size. How?

Divide step: It should split the points in two parts of equal size.

How? Choose the middle (median) point with respect to x

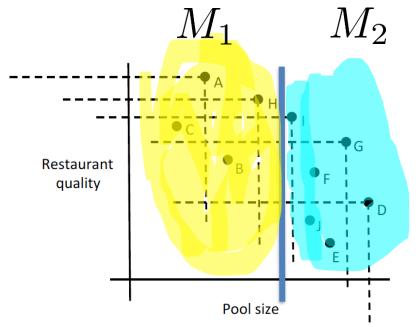
coordinates.



Divide step: It should split the points in two parts of equal size.

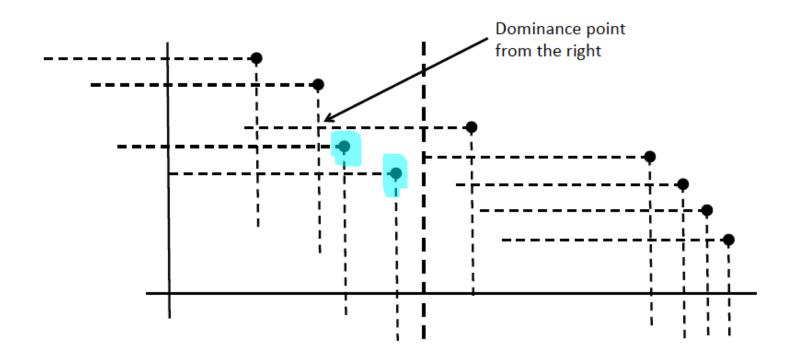
How? Choose the middle (median) point with respect to x

coordinates.

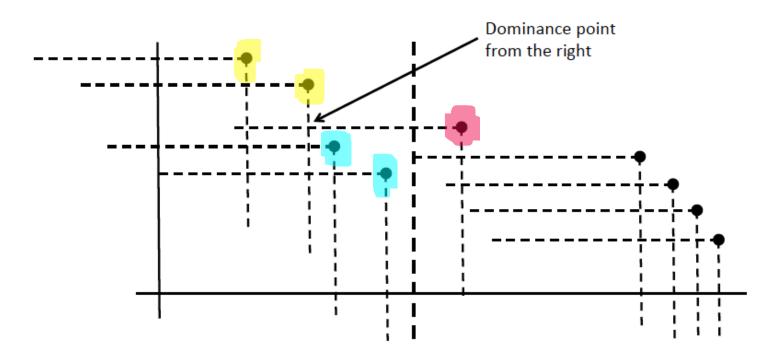


Combine step: Return $M_1 \cup M_2$?

Combine step: Return $M_1 \cup M_2$? Wrong: blue points below of M_1 are not part of the solution



Combine step idea: M_2 points should part of the solution. From M_1 , the points that are maximum should not be dominated by smallest with respect to x coordinates in M_2



Pseudocode:

```
\begin{aligned} & \textbf{if } n = 1 \textbf{ then} \\ & \textbf{return } S \\ & \textbf{Let } p \textbf{ be the median point in } S, \textbf{ by } x \textbf{ -coordinates} \\ & \textbf{Let } L \textbf{ be the set of points less than } p \textbf{ in } S \textbf{ by } x \textbf{ -coordinates} \\ & \textbf{Let } G \textbf{ be the set of points greater than or equal to } p \textbf{ in } S \textbf{ by } x \textbf{ -coordinates} \\ & M_1 \leftarrow \textbf{MaximaSet}(L) \\ & M_2 \leftarrow \textbf{MaximaSet}(G) \\ & \textbf{Let } q \textbf{ be the smallest point in } M_2 \\ & \textbf{ for each point, } r, \textbf{ in } M_1 \textbf{ do by } x \textbf{ -coordinates} \\ & \textbf{ if } x(r) \leq x(q) \textbf{ and } y(r) \leq y(q) \textbf{ then} \\ & \textbf{ Remove } r \textbf{ from } M_1 \\ & \textbf{ return } M_1 \cup M_2 \end{aligned}
```

Pseudocode:

```
MaximaSet(S,n):
           if n = 1 then
                return S
           Let p be the median point in S, by x -coordinates
           Let L be the set of points less than p in S by x -coordinates
           Let G be the set of points greater than or equal to p in S by x -coordinates
           M_1 \leftarrow \mathsf{MaximaSet}(L)
           M_2 \leftarrow \mathsf{MaximaSet}(G)
           Let q be the smallest point in M_2
           for each point, r, in M_1 do by x -coordinates
                if x(r) \le x(q) and y(r) \le y(q) then
                     Remove r from M_1
           return M_1 \cup M_2
Running time is T(n) = 2T(n/2) + T_{\text{media}}(n) + T_{\text{min}}(n) + \Theta(n)
                                = 2T(n/2) + T_{\text{media}}(n) + \Theta(n)
```

Design and Analysis of Algorithms

Pseudocode:

M

Next week we will see how to find the median in $\Theta(n)$ time! This fact will yield $\Theta(n\log n)$ for Maxima Set.

rdinates in S by x -coordinates

```
M_2 \leftarrow \mathsf{MaximaSet}(G)

Let q be the smallest point in M_2

for each point, r, in M_1 do by x -coordinates

if x(r) \leq x(q) and y(r) \leq y(q) then

Remove r from M_1

return M_1 \cup M_2
```

Running time is
$$T(n) = 2T(n/2) + T_{\text{media}}(n) + T_{\text{min}}(n) + \Theta(n)$$

= $2T(n/2) + T_{\text{media}}(n) + \Theta(n)$

Design and Analysis of Algorithms