TxT
i
U Lecture 3

Divide and Conquer I: Introduction,
Merge-sort and Master Theorem

CS 161 Design and Analysis of Algorithms

loannis Panageas

Recursion

e Definition:

— Solving a task where the solution depends on
solutions to smaller instances of the same
problem, by using functions/algorithms that call
themselves.

Design and Analysis of Algorithms

Recursion

e Definition:

— Solving a task where the solution depends on
solutions to smaller instances of the same
problem, by using functions/algorithms that call
themselves.

 Example:
Factorial(n)

If n == 0 then return 1

return n - Factorial(n — 1)

Design and Analysis of Algorithms

Recursion

e Definition:

— Solving a task where the solution depends on
solutions to smaller instances of the same
problem, by using functions/algorithms that call
themselves.

 Example:
Factorial(n)

If n ==0 then return 1
return n - Factorial(n — 1) [Lot Ly

Design and Analysis of Algorithms

Recursion

e Definition:
— Solving a task where the solution depends on
solutions to smaller instances of the same

problem, by using functions/algorithms that call
themselves.

Running time: I'(n) =T(n — 1) + ©(1)

 Example:
Factorial(n)

If n ==0 then return 1
return n - Factorial(n — 1) [Lot Ly

Design and Analysis of Algorithms

Recursion

Exercise: Let T'(n) =T(n— 1)+ 1,with T'(1) = 1.
Find T'(n).

Design and Analysis of Algorithms

Recursion

Exercise: Let T'(n) =T(n— 1)+ 1,with T'(1) = 1.
Find T'(n).
Solution:
Since T'(n — 1) = T'(n — 2) + 1, by substitution we have
T(n)=T(n—2)+2.

Design and Analysis of Algorithms

Recursion

Exercise: Let T'(n) =T(n— 1)+ 1,with T'(1) = 1.
Find T'(n).

Solution:

Since T'(n — 1) =T (n — 2) + 1, by substitution we have
T(n)=T(Mn—2)+2.

(

(

Since T'(n — 2) = T'(n — 3) + 1, by substitution we have
T(n)=T(n—-3)+3.

Design and Analysis of Algorithms

Recursion

Exercise: Let T'(n) =T(n— 1)+ 1,with T'(1) = 1.
Find T'(n).

Solution:

Since T'(n — 1) =T (n — 2) + 1, by substitution we have

(
T(n)=T(n—2)+2.
Since T'(n — 2) = T'(n — 3) + 1, by substitution we have
T(n) =T(n—3)+ 3.

Since T(i)=T(n—1i— 1)+ 1, by substitution we have

T(n)=T(n—1)+

Design and Analy5|s of Algorithms

Recursion

Exercise: Let T'(n) =T(n— 1)+ 1,with T'(1) = 1.
Find T'(n).
Solution:
Since T'(n —i) = T(n —i — 1) 4+ 1, by substitution we have
T(n)="T(n—1)+ 1.

By setting © = n — 1 we have
T(n)=T(1)+n—1=mn which is O(n).

Design and Analysis of Algorithms

Mergesort - A fast sorting recursive
Algorithm

Have seen algorithms like insertion sort that have
running time (worst case) O(n?).

e Key idea:
Divide input into two parts of equal size
Sort each part recursively

Merge the two sorted parts to obtain the solution.

Design and Analysis of Algorithms

Mergesort - A fast sorting recursive
Algorithm

 Key idea:
Divide input into two parts of equal size
Sort each part recursively
Merge the two sorted parts to obtain the solution.

Example: Sort the following 11 numbers

93422013105872

Design and Analysis of Algorithms

Mergesort - A fast sorting recursive

Algorithm

 Key idea:
Divide input into two parts of equal size
Sort each part recursively

Merge the two sorted parts to obtain the solution.

Example: Sort the following 11 numbers

93422013105872

0342201 3105872 I

Design and Analysis of Algorithms

Mergesort - A fast sorting recursive
Algorithm

 Key idea:
Divide input into two parts of equal size
Sort each part recursively
Merge the two sorted parts to obtain the solution.

Example: Sort the following 11 numbers

93422013105872

0342201 3105872 I
1349220 2357810 TSI

Design and Analysis of Algorithms

Mergesort - A fast sorting recursive
Algorithm

 Key idea:
Divide input into two parts of equal size
Sort each part recursively
Merge the two sorted parts to obtain the solution.

Example: Sort the following 11 numbers

93422013105872

0342201 3105872 I
1349220 2357810 TSI

\ /
12334578 910220

Design and Analysis of Algorithms

Mergesort - A fast sorting recursive
Algorithm

* Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted
array C.

Solution: Index i for 4, index j for B, index k for C.

While k£ < len(A) + len(B) do
If Ali] <= B|j] then
Clk] < Ali]
=i+l k=Fk+1
else
Clk] < Blj]
j=73+Lk=k+1

Design and Analysis of Algorithms

Mergesort - A fast sorting recursive
Algorithm

* Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted
array C.

Solution: Index i for 4, index j for B, index k for C.

While k£ < len(A) + len(B) do
If Ali] <= B|j] then

Clk] « Ali] | |

i=i+1lLk=k+1 A'%3492Z) f’§357810
else b J

Ck| + Blj] C :

j=j+1Lk=k+1

Design and Analysis of Algorithms

Mergesort - A fast sorting recursive
Algorithm

* Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted
array C.

Solution: Index i for 4, index j for B, index k for C.

While k£ < len(A) + len(B) do
If Ali] <= B|j] then

Clk] < Ali] . .

i— il k=kt 1 A.1.§49220 B.%35781O
else ¢ J

Clk] < Blj] ¢l

j=j+1Lk=k+1

Design and Analysis of Algorithms

Mergesort - A fast sorting recursive
Algorithm

* Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted
array C.

Solution: Index i for 4, index j for B, index k for C.

While k£ < len(A) + len(B) do
If Ali] <= B|j] then

Clk] < Ali] . .

i— il k=kt 1 A.1.§49220 B.2§5781O
else ¢ J

Clk] < Blj] C:12

j=j+1Lk=k+1

Design and Analysis of Algorithms

Mergesort - A fast sorting recursive
Algorithm

* Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted
array C.

Solution: Index i for 4, index j for B, index k for C.

While k£ < len(A) + len(B) do
If Ali] <= B|j] then

Clk] < Ali] | .

P A A.13ﬁ9220 B.2§5781O
else ¢ J

ClK + Blj C:123

j=j+1Lk=k+1

Design and Analysis of Algorithms

Mergesort - A fast sorting recursive
Algorithm

* Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted
array C.

Solution: Index i for 4, index j for B, index k for C.

While k£ < len(A) + len(B) do
If Ali] <= B|j] then

Clk] « Ali] . .

i— itk =kl A.13ﬁ9220 B.23§781O
else ¢ J

C[k] + B[j] C':1233

j=j+1Lk=k+1

Design and Analysis of Algorithms

Mergesort - A fast sorting recursive
Algorithm

* Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted
array C.

Solution: Index i for 4, index j for B, index k for C.

While k£ < len(A) + len(B) do
If Ali] <= B|j] then

Clk] « Ali] . .

i— il k=k41 A.1342220 B.23§781O
else ¢ J

C[k] + B[j] (C':12334

j=j+1Lk=k+1

Design and Analysis of Algorithms

Mergesort - A fast sorting recursive
Algorithm

* Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted
array C.

Solution: Index i for 4, index j for B, index k for C.

While k£ < len(A) + len(B) do
If Ali] <= B|j] then

Clk] « Ali] . .

i— il k=k41 A.1342220 B.235181O
else ¢ J

C[k] + B[j] C':123345

j=j+1Lk=k+1

Design and Analysis of Algorithms

Mergesort - A fast sorting recursive
Algorithm

* Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted
array C.

Solution: Index i for 4, index j for B, index k for C.

While k£ < len(A) + len(B) do
If Ali] <= B|j] then

Clk] « Ali] . .

i— il k=k41 A.1342220 B.2357§10
else ¢ J

C[k] + B[j] C':1233457

j=j+1Lk=k+1

Design and Analysis of Algorithms

Mergesort - A fast sorting recursive
Algorithm

* Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted
array C.

Solution: Index i for 4, index j for B, index k for C.

While k£ < len(A) + len(B) do
If Ali] <= B|j] then

Clk] « Al . .

i— il k=k41 A.1342220 B.23578140
else ¢ J

C[k] + B[j] C':12334578

j=j+1Lk=k+1

Design and Analysis of Algorithms

Mergesort - A fast sorting recursive
Algorithm

* Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted
array C.

Solution: Index i for 4, index j for B, index k for C.

While k£ < len(A) + len(B) do
If Ali] <= B|j] then

Clk] « Al . .

i— it L k—Fk4tl A.13492%O B.23578140
else ¢ J

C[k] + B[j] C':123345789

j=j+1Lk=k+1

Design and Analysis of Algorithms

Mergesort - A fast sorting recursive
Algorithm

* Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted
array C.

Solution: Index i for 4, index j for B, index k for C.

While k£ < len(A) + len(B) do
If Ali] <= B|j] then

Clk] « Alz] . |

i—itlk—k+1 |:134920 B:2357810
else ¢ J

Clk] « B[j] C:12334578910

j=j+1Lk=k+1

Design and Analysis of Algorithms

Mergesort - A fast sorting recursive
Algorithm

* Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted
array C.

Solution: Index i for 4, index j for B, index k for C.

While k£ < len(A) + len(B) do
If Ali] <= B|j] then

Clk] < Ali] . |

i—itlk=k+1 |7 1349220 B:2357810
else ¢ J

C[k] + BIj] C:12334578910 220

j=j+1Lk=k+1

Design and Analysis of Algorithms

Mergesort - A fast sorting recursive
Algorithm

* Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted
array C.

Solution: Index i for 4, index j for B, index k for C.

While k < len(A) + len(B) do

If Ali] <= B|j] then

Clk] < Ali] | |

i—itlk=k+1 |7 1349220 B:2357810
else ¢ J

C[k] « Blj] C:123345789 10220

j=j+1Lk=k+1

Design and Analysis of Algorithms

Mergesort

e Pseudocode:

Mergesort(A[1 : n])
If n==1 then
return A
Mergesort (A[l: %))
Mergesort (A[5 + 1 :n))
C < Merge(A[l: 5], Al5 +1:n])
return C

Design and Analysis of Algorithms

Mergesort (Example)

Example: Sort 72943861

-

Design and Analysis of Algor

Mergesort (Example)

Recursive call, left part

-

Design and Analysis of Algor

i i

Mergesort (Example)

Recursive call, left part

eyl

Design and Analysis of Algor

i i

Mergesort (Example)

Recursive call, base case

Design and Analysis of Algorithms

Mergesort (Example)

Recursive call, base case

e (B z -l

Design and Analysis of Algorithms

-

Mergesort (Example)

Merge

2N :!
/1> 2—>2 -

Design and Analysis of Algorithms

-

Mergesort (Example)

Similarly

72 N

95—>9 4 >4

-

/]>718 22

Design and Analysis of Algorithms

Mergesort (Example)

Merge

~ N

-

7—>7 22 959 4 — 4

Design and Analysis of Algorithms

Mergesort (Example)

~ N

] —7 252 959 4514 353 8—>8 6—>6 151

Design and Analysis of Algorithms

Mergesort (Example)

Merge

] —7 252 959 4514 353 8—>8 6—>6 151

Design and Analysis of Algorithms

Mergesort

 Pseudocode:
Mergesort(A[1 : n])
If n ==1 then

return A
Mergesort

Mergesort NA|5 +
C + Merge
return C

* Running time:
Tn)=Tn/2)+T(n/2)+06(n)+ 6(1)
= 2T (n/2) + O(n)

Design and Analysis of Algorithms

Mergesort

 Pseudocode:
Mergesort(A[1 : n])
If n ==1 then

return A
Mergesort (A[1 : 5])

Mergesort N[5 + 1 : n))
C < Merge(¥l : 5|,Al5 +1:n))
return C

* Running time:
T(n)=T(n/2)+T(n/2)+6(n)+ 6(1)

= 2T(n/2) + O(n)

Design and Analysis of Algorithms

Master theorem
In) — { (1) =6(1)
aT(n/b) + f(n)

* The Master Theorem can find the order of T'(n)
which is defined recursively.

Design and Analysis of Algorithms

Master theorem
In) — { (1) =6(1)
aT(n/b) + f(n)

* The Master Theorem can find the order of T (n)
which is defined recursively.

* Keyidea: The answer depends on the comparison
between f(n) and n'°8> ¢ . So, there are 3 cases!

Design and Analysis of Algorithms

Master theorem

[T=en)
UOEE I

1. If f(n) is O(n!°827¢), then T'(n) is ©(n'°s»)
2. If f(n) is ©(n'°% *log® n), then T(n) is O(n'°% ¢ log" ! n)

3. If f(n) is Q(n'°8 ¢7€) then T(n) is O(f(n)),
need to check af(n/b) < f(n).

Case 1: nl°8» @ dominates f(n)

Design and Analysis of Algorithms

Master theorem

[T=en)
UOEE I

1. If f(n) is O(n'°%2=€), then T'(n) is ©(n!°8>)
2. If f(n) is O(n'°% % log” n), then T(n) is O(n'% @ log" 1 n)

3. If f(n) is Q(n'°8 ¢T€) then T(n) is O(f(n)),
need to check af(n/b) < f(n).

Case 2: n'°8b @ have same order as f(n) (up to log® n)

Design and Analysis of Algorithms

Master theorem

[T=en)
UOEE I

WC(V\\ .,___-g:(.a\(oo /ﬁé

oz n® logn £ %

1. If f(n)is O(n'°827¢) then T'(n) is O(n'°s %)

2. If f(n) is ©(n'°% *log® n), then T(n) is O(n'°% ¢ log" ! n)

3. If f(n) is Q(n'°8 %), then T'(n) is O(f(n)),
need to check af(n/b) < f(n).

Case 3: n'°8» @ js dominated by f(n) (+ another condition)

Design and Analysis of Algorithms

Master Theorem (Examples)

T(n)=4T(n/2)+n

Design and Analysis of Algorithms

Master Theorem (Examples)

T(n)=4T(n/2)+n
Solution:

We have b = 2, hence log, a = 2.

Since n? » n, we are in case 1. Answer is O(n?)

Design and Analysis of Algorithms

Master Theorem (Examples)

T(n)=2T(n/2)+ O(n)

Mergesort running time

Design and Analysis of Algorithms

Master Theorem (Examples)

T(n)=2T(n/2)+ O(n)
Mergesort running time
Solution:

We have b = 2, hencelog, a = 1.

Since n is ®(n), we are in case 2 with k = 0.
Answer is O(n logn)

Design and Analysis of Algorithms

Master Theorem (Examples)

T(n)=2T(n/2)+nlogn

Design and Analysis of Algorithms

Master Theorem (Examples)

T(n)=2T(n/2)+nlogn
Solution:

We have b = 2, hencelog, a = 1.

Since nis ®(n), we are in case 2 with k = 1.
Answer is O(nlog? n)

Design and Analysis of Algorithms

Master Theorem (Examples)
T(nN)=9T(n/3)+n*

Design and Analysis of Algorithms

Master Theorem (Examples)

T(nN)=9T(n/3)+n*
Solution:

We have b = 3, hence log, a = 2.

Since n? « n3, we are in case 3. Need to check that

3 3
9 (g) < n3 which is equivalent to n? < n? (holds)

Answer is O(n3)

Design and Analysis of Algorithms

Master Theorem (Examples)

T(n)=T(n/2)+ 6(1)

Binary search running time

Design and Analysis of Algorithms

Master Theorem (Examples)

T(n)=T(n/2)+ 6(1)
Binary search running time
Solution:

We have b = 2, hencelog, a = 0.

Since n°=1is ©(1), we are in case 2 with k = 0.
Answer is O(logn)

Design and Analysis of Algorithms

Divide and conquer method

e Steps of method:
— Divide input into parts (smaller problems)
— Conquer (solve) each part recursively

results to obtain solution of original

T'(n) = divide time
+T(n)+T(ny)+...+T(n,)
+ combine time

Design and Analysis of Algorithms

Case study |: Counting inversions

Given numbers A4, ..., 4,, in an array A, compute
the number of inversions.

(i,j) isaninversion: 4; > Ajand i < .

Design and Analysis of Algorithms

Case study |: Counting inversions

Given numbers A4, ..., 4,, in an array A, compute
the number of inversions.

(i,j) isaninversion: 4; > Ajand i < .
Example [18, 29, 12, 15, 32, 10] has 9 inversions:

(18,12), (18,15), (18,10), (29,12), (29,15), (29,10),
(12,10), (15,10), (32,10)

Design and Analysis of Algorithms

Case study |: Counting inversions

Given numbers A4, ..., A4,, in an array A, compute
the number of inversions.

(i,j) isaninversion: 4; > Ajand i < .

e Minimum number of inversions is zero (when
sorted in increasing order)

e Maximum number of inversions is () (when
sorted in decreasing order)

Design and Analysis of Algorithms

Case study |: Counting inversions

e Foralli,jwithi < j, compare A; with 4; and increase counter if A; > A;.

n(n—1)

Total number of comparisons . Running time G)(nz).

e Use Divide and conquer. Tricky part the combine step.

Design and Analysis of Algorithms

Case study |: Counting inversions

e Foralli,jwithi < j, compare A; with 4; and increase counter if A; > A;.

n(n—1)

Total number of comparisons . Running time G)(nz).

e Use Divide and conquer. Tricky part the combine step.

e Question: Assume that By, ..., By and (4, ..., C; are both sorted. Can
you compute the number of inversions of the sequence
B4, ...,Bg, Cq, ..., C;?

Design and Analysis of Algorithms

Case study |: Counting inversions

e Question: Assume that By, ..., Byand (4, ..., C; are both sorted. Can
you compute the number of inversions of the sequence
By, ...,By, Cyq, ..., C;?

If B; > (; = B;_, there are

including (;

By, .., B;, ..., By Ciy oy Gy ooy €y
A j'r
ng}C‘/(‘Ll-— , (’j—[

Cy 2 M a =t]

Design and Analysis of Algorithms

Case study |: Counting inversions

e Question: Assume that By, ..., Byand (4, ..., C; are both sorted. Can
you compute the number of inversions of the sequence
By, ...,By, Cyq, ..., C;?

If B; > (; = B;_, there are
k—1i+1 including C;

Design and Analysis of Algorithms

Case study |: Counting inversions

Problem: Given two sorted arrays B, C, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.
While k < len(B) + len(C) do

If Bli] <= C[j] then
Alk] < Bli]
=1+ 1,k=k+1

else

Alk] < Clj]

B:1349220 C:2357810

A
(

A
J

A :

counter = (

counter = counter + len(B) — i + 1

j=i+ 1L k=k+1

Design and Analysis of Algorithms

Case study |: Counting inversions

Problem: Given two sorted arrays B, C, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.
While k < len(B) + len(C) do

If Bli] <= C[j] then
Alk] < Bli]
=1+ 1,k=k+1

else

Alk] < Clj]

B:1349220 C:2357810

A
(

A
J

A:l

counter = (

counter = counter + len(B) — i + 1

j=i+ 1L k=k+1

Design and Analysis of Algorithms

Case study |: Counting inversions

Problem: Given two sorted arrays B, C, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.
While k < len(B) + len(C) do

If Bli] <= C[j] then
Alk] < Bli]
=1+ 1,k=k+1

else

Alk] < Clj]

B:1349220 C:2357810

A
(

4
J

A:12
counter = 4

counter = counter + len(B) — i + 1

j=i+ 1L k=k+1

Design and Analysis of Algorithms

Case study |: Counting inversions

Problem: Given two sorted arrays B, C, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.
While k < len(B) + len(C) do

If Bli] <= C[j] then
Alk] < Bli]
=1+ 1,k=k+1

else

Alk] < Clj]

B:1349220 C:2357810

A
(

4
J

A:123
counter = 4

counter = counter + len(B) — i + 1

j=i+ 1L k=k+1

Design and Analysis of Algorithms

Case study |: Counting inversions

Problem: Given two sorted arrays B, C, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.
While k < len(B) + len(C) do

If Bli] <= C[j] then
Alk] < Bli]
=1+ 1,k=k+1

else

Alk] < Clj]

B:1349220 C:2357810

A
(

4
J

A:1233
counter = 7

counter = counter + len(B) — i + 1

j=i+ 1L k=k+1

Design and Analysis of Algorithms

Case study |: Counting inversions

Problem: Given two sorted arrays B, C, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.
While k < len(B) + len(C) do

If Bli] <= C[j] then
Alk] < Bli]
=1+ 1,k=k+1

else

Alk] < Clj]

B :1349 220 C':2357810
A A
) J
A:12334
counter = 7

counter = counter + len(B) — i + 1

j=i+ 1L k=k+1

Design and Analysis of Algorithms

Case study |: Counting inversions

Problem: Given two sorted arrays B, C, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.
While k < len(B) + len(C) do

If Bli] <= C[j] then
Alk] < Bli]
=1+ 1,k=k+1

else

Alk] < Clj]

B :1349 220 C:2357810
A A
) J
A:123345
counter = 9

counter = counter + len(B) — i + 1

j=i+ 1L k=k+1

Design and Analysis of Algorithms

Case study |: Counting inversions

Problem: Given two sorted arrays B, C, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.
While k < len(B) + len(C) do

If Bli] <= C[j] then
Alk] < Bli]
=1+ 1,k=k+1

else

Alk] < Clj]

B :1349 220 C':2357810
A A
) J
A:1233457
counter = 11

counter = counter + len(B) — i + 1

j=i+ 1L k=k+1

Design and Analysis of Algorithms

Case study |: Counting inversions

Problem: Given two sorted arrays B, C, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.
While k < len(B) + len(C) do

A
J

If B[i] <= C[j] then [= o
Alk] + BIi) .1342220 2357810
i=i+1Lk=k+1 ;

else A:12334578
Alk] < Clj] counter = 13

counter = counter + len(B) — i + 1
j=i4t1lk=k+1

Design and Analysis of Algorithms

Case study |: Counting inversions

Problem: Given two sorted arrays B, C, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.
While k < len(B) + len(C) do

A
J

If B|i] <= C|[j] then 5. .
A[k] « BJi] -1349230 :2357810
=i+ 1,k=k+1 i

else A:123345789
Alk] < Clj] counter = 13

counter = counter + len(B) — i + 1
j=i4t1lk=k+1

Design and Analysis of Algorithms

Case study |: Counting inversions

Problem: Given two sorted arrays B, C, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While k < len(B) + len(C) do

If BJi] <= C[j] then

=1+ 1,k=k+1) J
else A:12334578910
A[k] < CJj] counter = 14

counter = counter + len(B) — i + 1

j=i+ 1L k=k+1

Design and Analysis of Algorithms

Case study |: Counting inversions

Problem: Given two sorted arrays B, C, merge them to a sorted

array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While k < len(B) + len(C) do

If B[i] <= C[j] then [-
AlK Bli 1349220 C:2357810
=1+ 1,k=k+1 (J

else A:12334578910220
A[k] < CJj] counter = 14

counter = counter + len(B) — i + 1
j=i4t1lk=k+1

Design and Analysis of Algorithms

Case study |: Counting inversions

Forall i,j with i < j, compare A; with 4; and increase counter if A; > A;.

n(n—1)

Total number of comparisons . Running time G)(nz).

Use Divide and conquer. Tricky part the combine step.

Solution: Run a modification of Mergesort that has a counter that
counts inversions during merge steps.

Design and Analysis of Algorithms

Case study I: Counting inversions

e Pseudocode:

Mergesort(A[1 : n])
If n==1 then
return A, 0

B,countL. = Mergesort (A[l: 3])
C,countR = Mergesort (A% +1:n])
A <+ Merge(B, C)

Get counter from merging

return A, countL 4+ countR + counter

Design and Analysis of Algorithms

	Slide 1: Lecture 3 Divide and Conquer I: Introduction, Merge-sort and Master Theorem
	Slide 2: Recursion
	Slide 3: Recursion
	Slide 4: Recursion
	Slide 5: Recursion
	Slide 6: Recursion
	Slide 7: Recursion
	Slide 8: Recursion
	Slide 9: Recursion
	Slide 10: Recursion
	Slide 11: Mergesort - A fast sorting recursive Algorithm
	Slide 12: Mergesort - A fast sorting recursive Algorithm
	Slide 13: Mergesort - A fast sorting recursive Algorithm
	Slide 14: Mergesort - A fast sorting recursive Algorithm
	Slide 15: Mergesort - A fast sorting recursive Algorithm
	Slide 16: Mergesort - A fast sorting recursive Algorithm
	Slide 17: Mergesort - A fast sorting recursive Algorithm
	Slide 18: Mergesort - A fast sorting recursive Algorithm
	Slide 19: Mergesort - A fast sorting recursive Algorithm
	Slide 20: Mergesort - A fast sorting recursive Algorithm
	Slide 21: Mergesort - A fast sorting recursive Algorithm
	Slide 22: Mergesort - A fast sorting recursive Algorithm
	Slide 23: Mergesort - A fast sorting recursive Algorithm
	Slide 24: Mergesort - A fast sorting recursive Algorithm
	Slide 25: Mergesort - A fast sorting recursive Algorithm
	Slide 26: Mergesort - A fast sorting recursive Algorithm
	Slide 27: Mergesort - A fast sorting recursive Algorithm
	Slide 28: Mergesort - A fast sorting recursive Algorithm
	Slide 29: Mergesort - A fast sorting recursive Algorithm
	Slide 30: Mergesort
	Slide 31: Mergesort (Example)
	Slide 32: Mergesort (Example)
	Slide 33: Mergesort (Example)
	Slide 34: Mergesort (Example)
	Slide 35: Mergesort (Example)
	Slide 36: Mergesort (Example)
	Slide 37: Mergesort (Example)
	Slide 38: Mergesort (Example)
	Slide 39: Mergesort (Example)
	Slide 40: Mergesort (Example)
	Slide 41: Mergesort
	Slide 42: Mergesort
	Slide 43: Master theorem
	Slide 44: Master theorem
	Slide 45: Master theorem
	Slide 46: Master theorem
	Slide 47: Master theorem
	Slide 48: Master Theorem (Examples)
	Slide 49: Master Theorem (Examples)
	Slide 50: Master Theorem (Examples)
	Slide 51: Master Theorem (Examples)
	Slide 52: Master Theorem (Examples)
	Slide 53: Master Theorem (Examples)
	Slide 54: Master Theorem (Examples)
	Slide 55: Master Theorem (Examples)
	Slide 56: Master Theorem (Examples)
	Slide 57: Master Theorem (Examples)
	Slide 58: Divide and conquer method
	Slide 59: Case study I: Counting inversions
	Slide 60: Case study I: Counting inversions
	Slide 61: Case study I: Counting inversions
	Slide 62
	Slide 63: Case study I: Counting inversions
	Slide 64: Case study I: Counting inversions
	Slide 65: Case study I: Counting inversions
	Slide 66: Case study I: Counting inversions
	Slide 67: Case study I: Counting inversions
	Slide 68: Case study I: Counting inversions
	Slide 69: Case study I: Counting inversions
	Slide 70: Case study I: Counting inversions
	Slide 71: Case study I: Counting inversions
	Slide 72: Case study I: Counting inversions
	Slide 73: Case study I: Counting inversions
	Slide 74: Case study I: Counting inversions
	Slide 75: Case study I: Counting inversions
	Slide 76: Case study I: Counting inversions
	Slide 77: Case study I: Counting inversions
	Slide 78: Case study I: Counting inversions
	Slide 79: Case study I: Counting inversions

