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Lecture 3

Divide and Conquer I: Introduction, 
Merge-sort and Master Theorem



Recursion

• Definition: 
– Solving a task where the solution depends on 

solutions to smaller instances of the same 
problem, by using functions/algorithms that call 
themselves.
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Base case

Recursion
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Mergesort - A fast sorting recursive 
Algorithm

Design and Analysis of Algorithms

• Key idea: 

Divide input into two parts of equal size

Sort each part recursively

Merge the two sorted parts to obtain the solution.

Have seen algorithms like insertion sort that have 
running time (worst case) Θ(𝑛2).
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Mergesort - A fast sorting recursive 
Algorithm

Design and Analysis of Algorithms

• Key idea: 
Divide input into two parts of equal size
Sort each part recursively
Merge the two sorted parts to obtain the solution.

Example: Sort the following 11 numbers 

9 3 4 220 1 3 10 5 8 7 2

9 3 4 220 1 3 10 5 8 7 2 Divide

Recursion

Merge

1 3 4 9 220  2 3 5 7 8 10 

1 2 3 3 4 5 7 8 9 10 220  



Mergesort - A fast sorting recursive 
Algorithm
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• Tricky part: Merge 

Problem: Given two sorted arrays 𝐴, 𝐵, merge them to a sorted 
array 𝐶. 

Solution: Index 𝑖 for 𝐴, index 𝑗 for 𝐵, index 𝑘 for 𝐶.  
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Mergesort - A fast sorting recursive 
Algorithm

Design and Analysis of Algorithms

• Tricky part: Merge 

Problem: Given two sorted arrays 𝐴, 𝐵, merge them to a sorted 
array 𝐶. 

Solution: Index 𝑖 for 𝐴, index 𝑗 for 𝐵, index 𝑘 for 𝐶.  

1 3 4 9 220  2 3 5 7 8 10 

Running time: 𝚯(𝒏)
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• Pseudocode: 
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Mergesort (Example) 

Example: Sort 7 2 9 4 3 8 6 1

7  2  9  4  →  2  4  7  9 3  8  6  1  →  1  3  8  6

7  2  →  2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1  →  1  2  3  4  6  7  8  9
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Merge 
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Mergesort (Example)

Similarly

7  2  9  4 →  2  4  7  9 3  8  6  1  →  1  3  8  6

7  2 → 2  7 9  4 →  4  9 3  8  →  3  8 6  1  →  1  6

7 → 7 2 → 2 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1  →  1  2  3  4  6  7  8  9

9 → 9 4 → 4
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Master theorem

• The Master Theorem can find the order of 𝑇(𝑛)

which is defined recursively.
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Master theorem

• The Master Theorem can find the order of 𝑇(𝑛)

which is defined recursively.

• Key idea: The answer depends on the comparison 

between 𝑓(𝑛) and 𝑛log𝑏 𝑎 . So, there are 3 cases!
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Master theorem

Design and Analysis of Algorithms

Case 1: 𝑛log𝑏 𝑎 dominates 𝑓(𝑛)



Master theorem
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Case 2: 𝑛log𝑏 𝑎 have same order as 𝑓(𝑛) (up to log𝑘 𝑛)



Master theorem

Design and Analysis of Algorithms

Case 3: 𝑛log𝑏 𝑎 is dominated by 𝑓(𝑛) (+ another condition)
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nnTnT += )2/(4)(

Solution: 

   We have 𝑎 = 4, 𝑏 = 2, hence log𝑏 𝑎 = 2.

Since 𝑛2 ≫  𝑛, we are in case 1. Answer is Θ(𝑛2)
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Mergesort running time

Solution: 

   We have 𝑎 = 2, 𝑏 = 2, hence log𝑏 𝑎 = 1.

Since 𝑛 is Θ(𝑛), we are in case 2 with 𝑘 = 0. 
Answer is Θ(𝑛 log 𝑛)
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nnnTnT log)2/(2)( +=

Solution: 

   We have 𝑎 = 2, 𝑏 = 2, hence log𝑏 𝑎 = 1.

Since 𝑛 is Θ(𝑛), we are in case 2 with 𝑘 = 1. 
Answer is Θ(𝑛 log2 𝑛)
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3)3/(9)( nnTnT +=

Solution: 

   We have 𝑎 = 9, 𝑏 = 3, hence log𝑏 𝑎 = 2.

Since 𝑛2 ≪ 𝑛3, we are in case 3. Need to check that

𝟗
𝒏

𝟑

𝟑
<  𝒏𝟑 which is equivalent to 

𝒏𝟑

𝟑
<  𝒏𝟑 (holds)

Answer is Θ(𝑛3)



Master Theorem (Examples)
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Binary search running time



Master Theorem (Examples)

Design and Analysis of Algorithms

Binary search running time

Solution: 

   We have 𝑎 = 1, 𝑏 = 2, hence log𝑏 𝑎 = 0.

Since 𝑛0=1 is Θ(1), we are in case 2 with 𝑘 = 0. 
Answer is Θ(log 𝑛)



Divide and conquer method

• Steps of method: 

– Divide input into parts (smaller problems)

– Conquer (solve) each part recursively

– Combine results to obtain solution of original

T (n) = divide time

           + T (n1)+T (n2 )+ ...+T (nk )

           + combine time

Design and Analysis of Algorithms



  Case study I: Counting inversions

Given numbers 𝐴1, … , 𝐴𝑛 in an array 𝐴, compute 
the number of inversions.

  (𝑖, 𝑗) is an inversion: 𝐴𝑖 > 𝐴𝑗 and 𝑖 <  𝑗.
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  Case study I: Counting inversions

Given numbers 𝐴1, … , 𝐴𝑛 in an array 𝐴, compute 
the number of inversions.

  (𝑖, 𝑗) is an inversion: 𝐴𝑖 > 𝐴𝑗 and 𝑖 <  𝑗.

Example [18, 29, 12, 15, 32, 10] has 9 inversions:

(18,12), (18,15), (18,10), (29,12), (29,15), (29,10), 
(12,10), (15,10), (32,10)
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  Case study I: Counting inversions

Given numbers 𝐴1, … , 𝐴𝑛 in an array 𝐴, compute 
the number of inversions.

  (𝑖, 𝑗) is an inversion: 𝐴𝑖 > 𝐴𝑗 and 𝑖 <  𝑗.

● Minimum number of inversions is zero (when 
sorted in increasing order)

● Maximum number of inversions is 𝑛
2

 (when 

sorted in decreasing order)
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Design and Analysis of Algorithms

● For all 𝑖, 𝑗 with 𝑖 < 𝑗, compare 𝐴𝑖 with 𝐴𝑗  and increase counter if 𝐴𝑖 > 𝐴𝑗. 

Total number of comparisons  
𝑛(𝑛−1)

2
. Running time Θ 𝑛2 .

● Use Divide and conquer. Tricky part the combine step.

  Case study I: Counting inversions
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● For all 𝑖, 𝑗 with 𝑖 < 𝑗, compare 𝐴𝑖 with 𝐴𝑗  and increase counter if 𝐴𝑖 > 𝐴𝑗. 

Total number of comparisons  
𝑛(𝑛−1)

2
. Running time Θ 𝑛2 .

● Use Divide and conquer. Tricky part the combine step.

● Question: Assume that 𝐵1, … , 𝐵𝑘 and 𝐶1, … , 𝐶𝑙 are both sorted. Can 

you compute the number of inversions of the sequence 

𝐵1, … , 𝐵𝑘 , 𝐶1, … , 𝐶𝑙?

  Case study I: Counting inversions
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● Question: Assume that 𝐵1, … , 𝐵𝑘and 𝐶1, … , 𝐶𝑙 are both sorted. Can 

you compute the number of inversions of the sequence 

𝐵1, … , 𝐵𝑘 , 𝐶1, … , 𝐶𝑙?

    If 𝐵𝑖  > 𝐶𝑗 ≥ 𝐵𝑖−1 there are 

     𝑘 − 𝑖 + 1 including 𝐶𝑗  

       
𝐵1, … , 𝐵𝑖 , … , 𝐵𝑘 𝐶1, … , 𝐶𝑗 , … , 𝐶𝑙
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Design and Analysis of Algorithms

Problem: Given two sorted arrays 𝐵, 𝐶, merge them to a sorted 
array and count number of inversions simultaneously. 

Solution: Index 𝑖 for 𝐵, index 𝑗 for 𝐶, index 𝑘 for 𝐴, counter.  

1 3 4 9 220  2 3 5 7 8 10 

  Case study I: Counting inversions
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Solution: Index 𝑖 for 𝐵, index 𝑗 for 𝐶, index 𝑘 for 𝐴, counter.  

1 3 4 9 220  2 3 5 7 8 10 

  Case study I: Counting inversions



Design and Analysis of Algorithms

● For all 𝑖, 𝑗 with 𝑖 < 𝑗, compare 𝐴𝑖 with 𝐴𝑗  and increase counter if 𝐴𝑖 > 𝐴𝑗. 

Total number of comparisons  
𝑛(𝑛−1)

2
. Running time Θ 𝑛2 .

● Use Divide and conquer. Tricky part the combine step.

● Solution: Run a modification of Mergesort that has a counter that 

counts inversions during merge steps. 

  Case study I: Counting inversions



  Case study I: Counting inversions 
• Pseudocode: 

Design and Analysis of Algorithms
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