
CS 161 Design and Analysis of Algorithms

Ioannis Panageas

Lecture 3

Divide and Conquer I: Introduction,
Merge-sort and Master Theorem

Recursion

• Definition:
– Solving a task where the solution depends on

solutions to smaller instances of the same
problem, by using functions/algorithms that call
themselves.

Design and Analysis of Algorithms

Recursion

• Definition:
– Solving a task where the solution depends on

solutions to smaller instances of the same
problem, by using functions/algorithms that call
themselves.

Design and Analysis of Algorithms

• Example:

Recursion

• Definition:
– Solving a task where the solution depends on

solutions to smaller instances of the same
problem, by using functions/algorithms that call
themselves.

Design and Analysis of Algorithms

• Example:

Base case

Recursion

Recursion

• Definition:
– Solving a task where the solution depends on

solutions to smaller instances of the same
problem, by using functions/algorithms that call
themselves.

Design and Analysis of Algorithms

• Example:

Base case

Recursion

Running time:

Recursion

Design and Analysis of Algorithms

Recursion

Design and Analysis of Algorithms

Recursion

Design and Analysis of Algorithms

Recursion

Design and Analysis of Algorithms

Recursion

Design and Analysis of Algorithms

Mergesort - A fast sorting recursive
Algorithm

Design and Analysis of Algorithms

• Key idea:

Divide input into two parts of equal size

Sort each part recursively

Merge the two sorted parts to obtain the solution.

Have seen algorithms like insertion sort that have
running time (worst case) Θ(𝑛2).

Mergesort - A fast sorting recursive
Algorithm

Design and Analysis of Algorithms

• Key idea:
Divide input into two parts of equal size
Sort each part recursively
Merge the two sorted parts to obtain the solution.

Example: Sort the following 11 numbers

9 3 4 220 1 3 10 5 8 7 2

Divide

Recursion

Merge

Mergesort - A fast sorting recursive
Algorithm

Design and Analysis of Algorithms

• Key idea:
Divide input into two parts of equal size
Sort each part recursively
Merge the two sorted parts to obtain the solution.

Example: Sort the following 11 numbers

9 3 4 220 1 3 10 5 8 7 2

9 3 4 220 1 3 10 5 8 7 2 Divide

Recursion

Merge

Mergesort - A fast sorting recursive
Algorithm

Design and Analysis of Algorithms

• Key idea:
Divide input into two parts of equal size
Sort each part recursively
Merge the two sorted parts to obtain the solution.

Example: Sort the following 11 numbers

9 3 4 220 1 3 10 5 8 7 2

9 3 4 220 1 3 10 5 8 7 2 Divide

Recursion

Merge

1 3 4 9 220 2 3 5 7 8 10

Mergesort - A fast sorting recursive
Algorithm

Design and Analysis of Algorithms

• Key idea:
Divide input into two parts of equal size
Sort each part recursively
Merge the two sorted parts to obtain the solution.

Example: Sort the following 11 numbers

9 3 4 220 1 3 10 5 8 7 2

9 3 4 220 1 3 10 5 8 7 2 Divide

Recursion

Merge

1 3 4 9 220 2 3 5 7 8 10

1 2 3 3 4 5 7 8 9 10 220

Mergesort - A fast sorting recursive
Algorithm

Design and Analysis of Algorithms

• Tricky part: Merge

Problem: Given two sorted arrays 𝐴, 𝐵, merge them to a sorted
array 𝐶.

Solution: Index 𝑖 for 𝐴, index 𝑗 for 𝐵, index 𝑘 for 𝐶.

Mergesort - A fast sorting recursive
Algorithm

Design and Analysis of Algorithms

• Tricky part: Merge

Problem: Given two sorted arrays 𝐴, 𝐵, merge them to a sorted
array 𝐶.

Solution: Index 𝑖 for 𝐴, index 𝑗 for 𝐵, index 𝑘 for 𝐶.

1 3 4 9 220 2 3 5 7 8 10

Mergesort - A fast sorting recursive
Algorithm

Design and Analysis of Algorithms

• Tricky part: Merge

Problem: Given two sorted arrays 𝐴, 𝐵, merge them to a sorted
array 𝐶.

Solution: Index 𝑖 for 𝐴, index 𝑗 for 𝐵, index 𝑘 for 𝐶.

1 3 4 9 220 2 3 5 7 8 10

Mergesort - A fast sorting recursive
Algorithm

Design and Analysis of Algorithms

• Tricky part: Merge

Problem: Given two sorted arrays 𝐴, 𝐵, merge them to a sorted
array 𝐶.

Solution: Index 𝑖 for 𝐴, index 𝑗 for 𝐵, index 𝑘 for 𝐶.

1 3 4 9 220 2 3 5 7 8 10

Mergesort - A fast sorting recursive
Algorithm

Design and Analysis of Algorithms

• Tricky part: Merge

Problem: Given two sorted arrays 𝐴, 𝐵, merge them to a sorted
array 𝐶.

Solution: Index 𝑖 for 𝐴, index 𝑗 for 𝐵, index 𝑘 for 𝐶.

1 3 4 9 220 2 3 5 7 8 10

Mergesort - A fast sorting recursive
Algorithm

Design and Analysis of Algorithms

• Tricky part: Merge

Problem: Given two sorted arrays 𝐴, 𝐵, merge them to a sorted
array 𝐶.

Solution: Index 𝑖 for 𝐴, index 𝑗 for 𝐵, index 𝑘 for 𝐶.

1 3 4 9 220 2 3 5 7 8 10

Mergesort - A fast sorting recursive
Algorithm

Design and Analysis of Algorithms

• Tricky part: Merge

Problem: Given two sorted arrays 𝐴, 𝐵, merge them to a sorted
array 𝐶.

Solution: Index 𝑖 for 𝐴, index 𝑗 for 𝐵, index 𝑘 for 𝐶.

1 3 4 9 220 2 3 5 7 8 10

Mergesort - A fast sorting recursive
Algorithm

Design and Analysis of Algorithms

• Tricky part: Merge

Problem: Given two sorted arrays 𝐴, 𝐵, merge them to a sorted
array 𝐶.

Solution: Index 𝑖 for 𝐴, index 𝑗 for 𝐵, index 𝑘 for 𝐶.

1 3 4 9 220 2 3 5 7 8 10

Mergesort - A fast sorting recursive
Algorithm

Design and Analysis of Algorithms

• Tricky part: Merge

Problem: Given two sorted arrays 𝐴, 𝐵, merge them to a sorted
array 𝐶.

Solution: Index 𝑖 for 𝐴, index 𝑗 for 𝐵, index 𝑘 for 𝐶.

1 3 4 9 220 2 3 5 7 8 10

Mergesort - A fast sorting recursive
Algorithm

Design and Analysis of Algorithms

• Tricky part: Merge

Problem: Given two sorted arrays 𝐴, 𝐵, merge them to a sorted
array 𝐶.

Solution: Index 𝑖 for 𝐴, index 𝑗 for 𝐵, index 𝑘 for 𝐶.

1 3 4 9 220 2 3 5 7 8 10

Mergesort - A fast sorting recursive
Algorithm

Design and Analysis of Algorithms

• Tricky part: Merge

Problem: Given two sorted arrays 𝐴, 𝐵, merge them to a sorted
array 𝐶.

Solution: Index 𝑖 for 𝐴, index 𝑗 for 𝐵, index 𝑘 for 𝐶.

1 3 4 9 220 2 3 5 7 8 10

Mergesort - A fast sorting recursive
Algorithm

Design and Analysis of Algorithms

• Tricky part: Merge

Problem: Given two sorted arrays 𝐴, 𝐵, merge them to a sorted
array 𝐶.

Solution: Index 𝑖 for 𝐴, index 𝑗 for 𝐵, index 𝑘 for 𝐶.

1 3 4 9 220 2 3 5 7 8 10

Mergesort - A fast sorting recursive
Algorithm

Design and Analysis of Algorithms

• Tricky part: Merge

Problem: Given two sorted arrays 𝐴, 𝐵, merge them to a sorted
array 𝐶.

Solution: Index 𝑖 for 𝐴, index 𝑗 for 𝐵, index 𝑘 for 𝐶.

1 3 4 9 220 2 3 5 7 8 10

Mergesort - A fast sorting recursive
Algorithm

Design and Analysis of Algorithms

• Tricky part: Merge

Problem: Given two sorted arrays 𝐴, 𝐵, merge them to a sorted
array 𝐶.

Solution: Index 𝑖 for 𝐴, index 𝑗 for 𝐵, index 𝑘 for 𝐶.

1 3 4 9 220 2 3 5 7 8 10

Running time: 𝚯(𝒏)

Mergesort
• Pseudocode:

Design and Analysis of Algorithms

Mergesort (Example)

Example: Sort 7 2 9 4 3 8 6 1

7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Design and Analysis of Algorithms

Mergesort (Example)

Recursive call, left part

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Design and Analysis of Algorithms

Mergesort (Example)

Recursive call, left part

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Design and Analysis of Algorithms

Mergesort (Example)

Recursive call, base case

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Design and Analysis of Algorithms

Mergesort (Example)

Recursive call, base case

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Design and Analysis of Algorithms

Mergesort (Example)

Merge

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Design and Analysis of Algorithms

Mergesort (Example)

Similarly

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

9 → 9 4 → 4

Design and Analysis of Algorithms

Mergesort (Example)

Merge

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Design and Analysis of Algorithms

Mergesort (Example)

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 6 8

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Design and Analysis of Algorithms

Mergesort (Example)

Merge

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 6 8

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Design and Analysis of Algorithms

Mergesort
• Pseudocode:

Design and Analysis of Algorithms

• Running time:

Mergesort
• Pseudocode:

Design and Analysis of Algorithms

• Running time:

How to analyze?

Master theorem

• The Master Theorem can find the order of 𝑇(𝑛)

which is defined recursively.

Design and Analysis of Algorithms

Master theorem

• The Master Theorem can find the order of 𝑇(𝑛)

which is defined recursively.

• Key idea: The answer depends on the comparison

between 𝑓(𝑛) and 𝑛log𝑏 𝑎 . So, there are 3 cases!

Design and Analysis of Algorithms

Master theorem

Design and Analysis of Algorithms

Case 1: 𝑛log𝑏 𝑎 dominates 𝑓(𝑛)

Master theorem

Design and Analysis of Algorithms

Case 2: 𝑛log𝑏 𝑎 have same order as 𝑓(𝑛) (up to log𝑘 𝑛)

Master theorem

Design and Analysis of Algorithms

Case 3: 𝑛log𝑏 𝑎 is dominated by 𝑓(𝑛) (+ another condition)

Master Theorem (Examples)

Design and Analysis of Algorithms

nnTnT +=)2/(4)(

Master Theorem (Examples)

Design and Analysis of Algorithms

nnTnT +=)2/(4)(

Solution:

 We have 𝑎 = 4, 𝑏 = 2, hence log𝑏 𝑎 = 2.

Since 𝑛2 ≫ 𝑛, we are in case 1. Answer is Θ(𝑛2)

Master Theorem (Examples)

Design and Analysis of Algorithms

Mergesort running time

Master Theorem (Examples)

Design and Analysis of Algorithms

Mergesort running time

Solution:

 We have 𝑎 = 2, 𝑏 = 2, hence log𝑏 𝑎 = 1.

Since 𝑛 is Θ(𝑛), we are in case 2 with 𝑘 = 0.
Answer is Θ(𝑛 log 𝑛)

Master Theorem (Examples)

Design and Analysis of Algorithms

nnnTnT log)2/(2)(+=

Master Theorem (Examples)

Design and Analysis of Algorithms

nnnTnT log)2/(2)(+=

Solution:

 We have 𝑎 = 2, 𝑏 = 2, hence log𝑏 𝑎 = 1.

Since 𝑛 is Θ(𝑛), we are in case 2 with 𝑘 = 1.
Answer is Θ(𝑛 log2 𝑛)

Master Theorem (Examples)

Design and Analysis of Algorithms

3)3/(9)(nnTnT +=

Master Theorem (Examples)

Design and Analysis of Algorithms

3)3/(9)(nnTnT +=

Solution:

 We have 𝑎 = 9, 𝑏 = 3, hence log𝑏 𝑎 = 2.

Since 𝑛2 ≪ 𝑛3, we are in case 3. Need to check that

𝟗
𝒏

𝟑

𝟑
< 𝒏𝟑 which is equivalent to

𝒏𝟑

𝟑
< 𝒏𝟑 (holds)

Answer is Θ(𝑛3)

Master Theorem (Examples)

Design and Analysis of Algorithms

Binary search running time

Master Theorem (Examples)

Design and Analysis of Algorithms

Binary search running time

Solution:

 We have 𝑎 = 1, 𝑏 = 2, hence log𝑏 𝑎 = 0.

Since 𝑛0=1 is Θ(1), we are in case 2 with 𝑘 = 0.
Answer is Θ(log 𝑛)

Divide and conquer method

• Steps of method:

– Divide input into parts (smaller problems)

– Conquer (solve) each part recursively

– Combine results to obtain solution of original

T (n) = divide time

 + T (n1)+T (n2)+ ...+T (nk)

 + combine time

Design and Analysis of Algorithms

 Case study I: Counting inversions

Given numbers 𝐴1, … , 𝐴𝑛 in an array 𝐴, compute
the number of inversions.

 (𝑖, 𝑗) is an inversion: 𝐴𝑖 > 𝐴𝑗 and 𝑖 < 𝑗.

Design and Analysis of Algorithms

 Case study I: Counting inversions

Given numbers 𝐴1, … , 𝐴𝑛 in an array 𝐴, compute
the number of inversions.

 (𝑖, 𝑗) is an inversion: 𝐴𝑖 > 𝐴𝑗 and 𝑖 < 𝑗.

Example [18, 29, 12, 15, 32, 10] has 9 inversions:

(18,12), (18,15), (18,10), (29,12), (29,15), (29,10),
(12,10), (15,10), (32,10)

Design and Analysis of Algorithms

 Case study I: Counting inversions

Given numbers 𝐴1, … , 𝐴𝑛 in an array 𝐴, compute
the number of inversions.

 (𝑖, 𝑗) is an inversion: 𝐴𝑖 > 𝐴𝑗 and 𝑖 < 𝑗.

● Minimum number of inversions is zero (when
sorted in increasing order)

● Maximum number of inversions is 𝑛
2

 (when

sorted in decreasing order)

Design and Analysis of Algorithms

Design and Analysis of Algorithms

● For all 𝑖, 𝑗 with 𝑖 < 𝑗, compare 𝐴𝑖 with 𝐴𝑗 and increase counter if 𝐴𝑖 > 𝐴𝑗.

Total number of comparisons
𝑛(𝑛−1)

2
. Running time Θ 𝑛2 .

● Use Divide and conquer. Tricky part the combine step.

 Case study I: Counting inversions

Design and Analysis of Algorithms

● For all 𝑖, 𝑗 with 𝑖 < 𝑗, compare 𝐴𝑖 with 𝐴𝑗 and increase counter if 𝐴𝑖 > 𝐴𝑗.

Total number of comparisons
𝑛(𝑛−1)

2
. Running time Θ 𝑛2 .

● Use Divide and conquer. Tricky part the combine step.

● Question: Assume that 𝐵1, … , 𝐵𝑘 and 𝐶1, … , 𝐶𝑙 are both sorted. Can

you compute the number of inversions of the sequence

𝐵1, … , 𝐵𝑘 , 𝐶1, … , 𝐶𝑙?

 Case study I: Counting inversions

Design and Analysis of Algorithms

● Question: Assume that 𝐵1, … , 𝐵𝑘and 𝐶1, … , 𝐶𝑙 are both sorted. Can

you compute the number of inversions of the sequence

𝐵1, … , 𝐵𝑘 , 𝐶1, … , 𝐶𝑙?

 If 𝐵𝑖 > 𝐶𝑗 ≥ 𝐵𝑖−1 there are

 𝑘 − 𝑖 + 1 including 𝐶𝑗

𝐵1, … , 𝐵𝑖 , … , 𝐵𝑘 𝐶1, … , 𝐶𝑗 , … , 𝐶𝑙

 Case study I: Counting inversions

Design and Analysis of Algorithms

● Question: Assume that 𝐵1, … , 𝐵𝑘and 𝐶1, … , 𝐶𝑙 are both sorted. Can

you compute the number of inversions of the sequence

𝐵1, … , 𝐵𝑘 , 𝐶1, … , 𝐶𝑙?

 If 𝐵𝑖 > 𝐶𝑗 ≥ 𝐵𝑖−1 there are

 𝑘 − 𝑖 + 1 including 𝐶𝑗

𝐵1, … , 𝐵𝑖 , … , 𝐵𝑘 𝐶1, … , 𝐶𝑗 , … , 𝐶𝑙

 Case study I: Counting inversions

Design and Analysis of Algorithms

Problem: Given two sorted arrays 𝐵, 𝐶, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index 𝑖 for 𝐵, index 𝑗 for 𝐶, index 𝑘 for 𝐴, counter.

1 3 4 9 220 2 3 5 7 8 10

 Case study I: Counting inversions

Design and Analysis of Algorithms

Problem: Given two sorted arrays 𝐵, 𝐶, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index 𝑖 for 𝐵, index 𝑗 for 𝐶, index 𝑘 for 𝐴, counter.

1 3 4 9 220 2 3 5 7 8 10

 Case study I: Counting inversions

Design and Analysis of Algorithms

Problem: Given two sorted arrays 𝐵, 𝐶, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index 𝑖 for 𝐵, index 𝑗 for 𝐶, index 𝑘 for 𝐴, counter.

1 3 4 9 220 2 3 5 7 8 10

 Case study I: Counting inversions

Design and Analysis of Algorithms

Problem: Given two sorted arrays 𝐵, 𝐶, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index 𝑖 for 𝐵, index 𝑗 for 𝐶, index 𝑘 for 𝐴, counter.

1 3 4 9 220 2 3 5 7 8 10

 Case study I: Counting inversions

Design and Analysis of Algorithms

Problem: Given two sorted arrays 𝐵, 𝐶, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index 𝑖 for 𝐵, index 𝑗 for 𝐶, index 𝑘 for 𝐴, counter.

1 3 4 9 220 2 3 5 7 8 10

 Case study I: Counting inversions

Design and Analysis of Algorithms

Problem: Given two sorted arrays 𝐵, 𝐶, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index 𝑖 for 𝐵, index 𝑗 for 𝐶, index 𝑘 for 𝐴, counter.

1 3 4 9 220 2 3 5 7 8 10

 Case study I: Counting inversions

Design and Analysis of Algorithms

Problem: Given two sorted arrays 𝐵, 𝐶, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index 𝑖 for 𝐵, index 𝑗 for 𝐶, index 𝑘 for 𝐴, counter.

1 3 4 9 220 2 3 5 7 8 10

 Case study I: Counting inversions

Design and Analysis of Algorithms

Problem: Given two sorted arrays 𝐵, 𝐶, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index 𝑖 for 𝐵, index 𝑗 for 𝐶, index 𝑘 for 𝐴, counter.

1 3 4 9 220 2 3 5 7 8 10

 Case study I: Counting inversions

Design and Analysis of Algorithms

Problem: Given two sorted arrays 𝐵, 𝐶, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index 𝑖 for 𝐵, index 𝑗 for 𝐶, index 𝑘 for 𝐴, counter.

1 3 4 9 220 2 3 5 7 8 10

 Case study I: Counting inversions

Design and Analysis of Algorithms

Problem: Given two sorted arrays 𝐵, 𝐶, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index 𝑖 for 𝐵, index 𝑗 for 𝐶, index 𝑘 for 𝐴, counter.

1 3 4 9 220 2 3 5 7 8 10

 Case study I: Counting inversions

Design and Analysis of Algorithms

Problem: Given two sorted arrays 𝐵, 𝐶, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index 𝑖 for 𝐵, index 𝑗 for 𝐶, index 𝑘 for 𝐴, counter.

1 3 4 9 220 2 3 5 7 8 10

 Case study I: Counting inversions

Design and Analysis of Algorithms

Problem: Given two sorted arrays 𝐵, 𝐶, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index 𝑖 for 𝐵, index 𝑗 for 𝐶, index 𝑘 for 𝐴, counter.

1 3 4 9 220 2 3 5 7 8 10

 Case study I: Counting inversions

Design and Analysis of Algorithms

● For all 𝑖, 𝑗 with 𝑖 < 𝑗, compare 𝐴𝑖 with 𝐴𝑗 and increase counter if 𝐴𝑖 > 𝐴𝑗.

Total number of comparisons
𝑛(𝑛−1)

2
. Running time Θ 𝑛2 .

● Use Divide and conquer. Tricky part the combine step.

● Solution: Run a modification of Mergesort that has a counter that

counts inversions during merge steps.

 Case study I: Counting inversions

 Case study I: Counting inversions
• Pseudocode:

Design and Analysis of Algorithms

	Slide 1: Lecture 3 Divide and Conquer I: Introduction, Merge-sort and Master Theorem
	Slide 2: Recursion
	Slide 3: Recursion
	Slide 4: Recursion
	Slide 5: Recursion
	Slide 6: Recursion
	Slide 7: Recursion
	Slide 8: Recursion
	Slide 9: Recursion
	Slide 10: Recursion
	Slide 11: Mergesort - A fast sorting recursive Algorithm
	Slide 12: Mergesort - A fast sorting recursive Algorithm
	Slide 13: Mergesort - A fast sorting recursive Algorithm
	Slide 14: Mergesort - A fast sorting recursive Algorithm
	Slide 15: Mergesort - A fast sorting recursive Algorithm
	Slide 16: Mergesort - A fast sorting recursive Algorithm
	Slide 17: Mergesort - A fast sorting recursive Algorithm
	Slide 18: Mergesort - A fast sorting recursive Algorithm
	Slide 19: Mergesort - A fast sorting recursive Algorithm
	Slide 20: Mergesort - A fast sorting recursive Algorithm
	Slide 21: Mergesort - A fast sorting recursive Algorithm
	Slide 22: Mergesort - A fast sorting recursive Algorithm
	Slide 23: Mergesort - A fast sorting recursive Algorithm
	Slide 24: Mergesort - A fast sorting recursive Algorithm
	Slide 25: Mergesort - A fast sorting recursive Algorithm
	Slide 26: Mergesort - A fast sorting recursive Algorithm
	Slide 27: Mergesort - A fast sorting recursive Algorithm
	Slide 28: Mergesort - A fast sorting recursive Algorithm
	Slide 29: Mergesort - A fast sorting recursive Algorithm
	Slide 30: Mergesort
	Slide 31: Mergesort (Example)
	Slide 32: Mergesort (Example)
	Slide 33: Mergesort (Example)
	Slide 34: Mergesort (Example)
	Slide 35: Mergesort (Example)
	Slide 36: Mergesort (Example)
	Slide 37: Mergesort (Example)
	Slide 38: Mergesort (Example)
	Slide 39: Mergesort (Example)
	Slide 40: Mergesort (Example)
	Slide 41: Mergesort
	Slide 42: Mergesort
	Slide 43: Master theorem
	Slide 44: Master theorem
	Slide 45: Master theorem
	Slide 46: Master theorem
	Slide 47: Master theorem
	Slide 48: Master Theorem (Examples)
	Slide 49: Master Theorem (Examples)
	Slide 50: Master Theorem (Examples)
	Slide 51: Master Theorem (Examples)
	Slide 52: Master Theorem (Examples)
	Slide 53: Master Theorem (Examples)
	Slide 54: Master Theorem (Examples)
	Slide 55: Master Theorem (Examples)
	Slide 56: Master Theorem (Examples)
	Slide 57: Master Theorem (Examples)
	Slide 58: Divide and conquer method
	Slide 59: Case study I: Counting inversions
	Slide 60: Case study I: Counting inversions
	Slide 61: Case study I: Counting inversions
	Slide 62
	Slide 63: Case study I: Counting inversions
	Slide 64: Case study I: Counting inversions
	Slide 65: Case study I: Counting inversions
	Slide 66: Case study I: Counting inversions
	Slide 67: Case study I: Counting inversions
	Slide 68: Case study I: Counting inversions
	Slide 69: Case study I: Counting inversions
	Slide 70: Case study I: Counting inversions
	Slide 71: Case study I: Counting inversions
	Slide 72: Case study I: Counting inversions
	Slide 73: Case study I: Counting inversions
	Slide 74: Case study I: Counting inversions
	Slide 75: Case study I: Counting inversions
	Slide 76: Case study I: Counting inversions
	Slide 77: Case study I: Counting inversions
	Slide 78: Case study I: Counting inversions
	Slide 79: Case study I: Counting inversions

