

Lecture 3

Divide and Conquer I: Introduction, Merge-sort and Master Theorem

CS 161 Design and Analysis of Algorithms
Ioannis Panageas

• Definition:

 Solving a task where the solution depends on solutions to smaller instances of the same problem, by using functions/algorithms that call themselves.

- Definition:
 - Solving a task where the solution depends on solutions to smaller instances of the same problem, by using functions/algorithms that call themselves.
- Example:

```
Factorial(n)

If n == 0 then return 1

return n \cdot \text{Factorial}(n-1)
```

- Definition:
 - Solving a task where the solution depends on solutions to smaller instances of the same problem, by using functions/algorithms that call themselves.
- Example:

Factorial(n)

If n == 0 then return 1 return $n \cdot \text{Factorial}(n-1)$

Base case

Recursion

- Definition:
 - Solving a task where the solution depends on solutions to smaller instances of the same problem, by using functions/algorithms that call themselves.

Running time: $T(n) = T(n-1) + \Theta(1)$

Example:

Factorial(n)

If n == 0 then return 1

Base case

return $n \cdot \text{Factorial}(n-1)$

Recursion

Exercise: Let T(n) = T(n-1) + 1, with T(1) = 1. Find T(n).

Exercise: Let
$$T(n) = T(n-1) + 1$$
, with $T(1) = 1$.
Find $T(n)$.

Solution:

Since
$$T(n-1) = T(n-2) + 1$$
, by substitution we have $T(n) = T(n-2) + 2$.

Exercise: Let T(n) = T(n-1) + 1, with T(1) = 1. Find T(n).

Solution:

Since T(n-1) = T(n-2) + 1, by substitution we have T(n) = T(n-2) + 2.

Since
$$T(n-2) = T(n-3) + 1$$
, by substitution we have $T(n) = T(n-3) + 3$.

Exercise: Let
$$T(n) = T(n-1) + 1$$
, with $T(1) = 1$.
Find $T(n)$.

Solution:

Since
$$T(n-1) = T(n-2) + 1$$
, by substitution we have $T(n) = T(n-2) + 2$.

Since
$$T(n-2) = T(n-3) + 1$$
, by substitution we have $T(n) = T(n-3) + 3$.

•

Since
$$T(n-i) = T(n-i-1) + 1$$
, by substitution we have $T(n) = T(n-i) + i$.

Design and Analysis of Algorithms

Exercise: Let
$$T(n) = T(n-1) + 1$$
, with $T(1) = 1$.
Find $T(n)$.

Solution:

Since
$$T(n-i) = T(n-i-1) + 1$$
, by substitution we have $T(n) = T(n-i) + i$.

By setting
$$i = n - 1$$
 we have $T(n) = T(1) + n - 1 = n$ which is $\Theta(n)$.

Have seen algorithms like insertion sort that have running time (worst case) $\Theta(n^2)$.

Key idea:

Divide input into two parts of equal size

Sort each part <u>recursively</u>

Merge the two sorted parts to obtain the solution.

Key idea:

Divide input into two parts of equal size

Sort each part recursively

Merge the two sorted parts to obtain the solution.

Example: Sort the following 11 numbers

9 3 4 220 1 3 10 5 8 7 2

Divide

Recursion

Key idea:

Divide input into two parts of equal size

Sort each part recursively

Merge the two sorted parts to obtain the solution.

Example: Sort the following 11 numbers

9 3 4 220 1 3 10 5 8 7 2

9 3 4 220 1

3 10 5 8 7 2

Divide

Recursion

Key idea:

Divide input into two parts of equal size

Sort each part recursively

Merge the two sorted parts to obtain the solution.

Example: Sort the following 11 numbers

9 3 4 220 1 3 10 5 8 7 2

9 3 4 220 1

3 10 5 8 7 2

Divide

1349220

2357810

Recursion

Key idea:

Divide input into two parts of equal size

Sort each part recursively

Merge the two sorted parts to obtain the solution.

Example: Sort the following 11 numbers

9 3 4 220 1 3 10 5 8 7 2

9 3 4 220 1

3 10 5 8 7 2

Divide

1349220

2357810

Recursion

12334578910220

Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted array C.

While
$$k < \operatorname{len}(A) + \operatorname{len}(B)$$
 do

If $A[i] <= B[j]$ then
$$C[k] \leftarrow A[i]$$

$$i = i + 1, k = k + 1$$
else
$$C[k] \leftarrow B[j]$$

$$j = j + 1, k = k + 1$$

Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted array C.

While
$$k < \text{len(A)} + \text{len(B)} \ \mathbf{do}$$

If
$$A[i] <= B[j]$$
 then $C[k] \leftarrow A[i]$ $i = i + 1, k = k + 1$ else

$$C[k] \leftarrow B[j]$$

$$j = j + 1, k = k + 1$$

$$A: 1349220$$
 $B: 2357810$ $C:$

Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted array C.

While
$$k < \text{len(A)} + \text{len(B)} do$$

If
$$A[i] <= B[j]$$
 then $C[k] \leftarrow A[i]$ $i = i + 1, k = k + 1$ else

$$C[k] \leftarrow B[j]$$

$$j = j + 1, k = k + 1$$

$$A: 1349220$$
 $B: 2357810$ $C: 1$

Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted array C.

While
$$k < \text{len(A)} + \text{len(B)} \ \mathbf{do}$$

If
$$A[i] <= B[j]$$
 then $C[k] \leftarrow A[i]$ $i = i + 1, k = k + 1$ else

$$C[k] \leftarrow B[j]$$

$$j = j + 1, k = k + 1$$

$$A: 1349220$$
 $B: 2357810$ $C: 12$

Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted array C.

While
$$k < \text{len(A)} + \text{len(B)} \ \mathbf{do}$$

If
$$A[i] <= B[j]$$
 then $C[k] \leftarrow A[i]$ $i = i + 1, k = k + 1$ else

$$C[k] \leftarrow B[j]$$
$$j = j + 1, k = k + 1$$

$$A: 1349220$$
 $B: 2357810$ $C: 123$

Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted array C.

While
$$k < \text{len(A)} + \text{len(B)} \text{ do}$$

If
$$A[i] <= B[j]$$
 then $C[k] \leftarrow A[i]$ $i = i + 1, k = k + 1$ else

$$C[k] \leftarrow B[j]$$
$$j = j + 1, k = k + 1$$

$$A: 1349220$$
 $B: 2357810$ $C: 1233$

Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted array C.

While
$$k < \text{len(A)} + \text{len(B)} \ \mathbf{do}$$

If
$$A[i] <= B[j]$$
 then $C[k] \leftarrow A[i]$ $i = i + 1, k = k + 1$ else

$$C[k] \leftarrow B[j]$$
$$j = j + 1, k = k + 1$$

$$A: 1349220$$
 $B: 2357810$ $C: 12334$

Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted array C.

While
$$k < \text{len(A)} + \text{len(B)} \text{ do}$$

If
$$A[i] <= B[j]$$
 then $C[k] \leftarrow A[i]$ $i = i + 1, k = k + 1$ else

$$C[k] \leftarrow B[j]$$
$$j = j + 1, k = k + 1$$

$$A: 1349220$$
 $B: 2357810$ $C: 123345$

Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted array C.

While
$$k < \text{len(A)} + \text{len(B)} \ \mathbf{do}$$

If
$$A[i] <= B[j]$$
 then $C[k] \leftarrow A[i]$ $i = i + 1, k = k + 1$ else

$$C[k] \leftarrow B[j]$$
$$j = j + 1, k = k + 1$$

$$A: 1349220$$
 $B: 2357810$
 $C: 1233457$

Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted array C.

While
$$k < \text{len(A)} + \text{len(B)} \ \mathbf{do}$$

If
$$A[i] <= B[j]$$
 then $C[k] \leftarrow A[i]$ $i = i + 1, k = k + 1$ else

$$C[k] \leftarrow B[j]$$
$$j = j + 1, k = k + 1$$

$$A: 1\ 3\ 4\ 9\ 220$$
 $B: 2\ 3\ 5\ 7\ 8\ 10$ f

Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted array C.

While
$$k < \text{len(A)} + \text{len(B)} \ \mathbf{do}$$

If
$$A[i] <= B[j]$$
 then $C[k] \leftarrow A[i]$ $i = i + 1, k = k + 1$ else

$$C[k] \leftarrow B[j]$$

$$j = j + 1, k = k + 1$$

$$A: 1349220$$
 $B: 2357810$ f

Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted array C.

While
$$k < \text{len(A)} + \text{len(B)} \ \mathbf{do}$$

If
$$A[i] <= B[j]$$
 then $C[k] \leftarrow A[i]$ $i = i + 1, k = k + 1$ else

$$C[k] \leftarrow B[j]$$

$$j = j + 1, k = k + 1$$

$$A: 1\ 3\ 4\ 9\ 220$$
 $B: 2\ 3\ 5\ 7\ 8\ 10$ f $C: 1\ 2\ 3\ 3\ 4\ 5\ 7\ 8\ 9\ 10$

Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted array C.

Solution: Index i for A, index j for B, index k for C.

While
$$k < \text{len(A)} + \text{len(B)} \ \mathbf{do}$$

If
$$A[i] <= B[j]$$
 then $C[k] \leftarrow A[i]$ $i = i + 1, k = k + 1$ else

$$C[k] \leftarrow B[j]$$

$$j = j + 1, k = k + 1$$

$$A: 1349220$$
 $B: 2357810$

 $C: 1\ 2\ 3\ 3\ 4\ 5\ 7\ 8\ 9\ 10\ 220$

Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted array C.

Solution: Index i for A, index j for B, index k for C.

While $k < \text{len(A)} + \text{len(B)} \ \mathbf{do}$

If $A[i] \le B[j]$ then $C[k] \leftarrow A[i]$ i = i + 1, k = k + 1

else

$$C[k] \leftarrow B[j]$$
$$j = j + 1, k = k + 1$$

Running time: $\Theta(n)$

$$A: 1349220$$
 $B: 2357810$

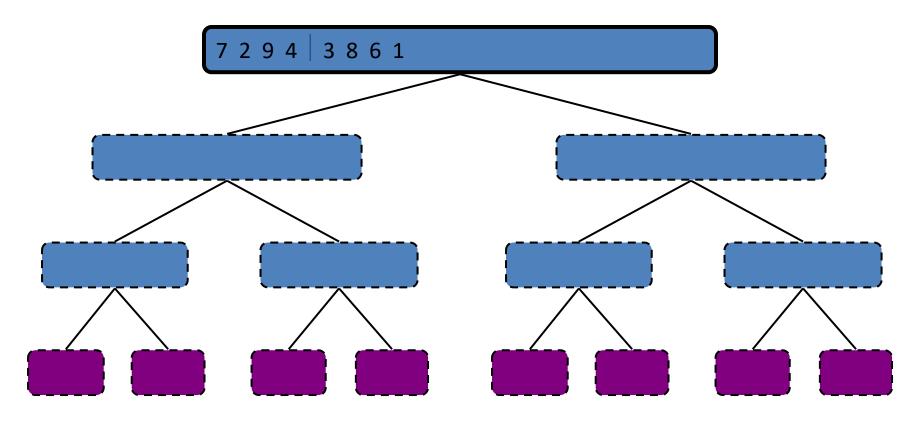
 $C: 1\ 2\ 3\ 3\ 4\ 5\ 7\ 8\ 9\ 10\ 220$

Mergesort

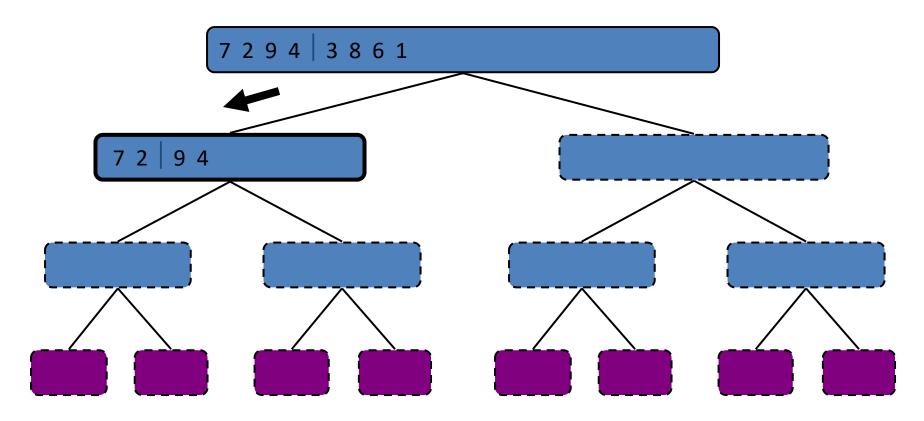
Pseudocode:

```
\begin{aligned} & \text{Mergesort}(A[1:n]) \\ & \textbf{If } n == 1 \textbf{ then} \\ & \textbf{return } A \\ & \text{Mergesort } (A[1:\frac{n}{2}]) \\ & \text{Mergesort } (A[\frac{n}{2}+1:n]) \\ & C \leftarrow \text{Merge}(A[1:\frac{n}{2}],A[\frac{n}{2}+1:n]) \\ & \textbf{return } C \end{aligned}
```

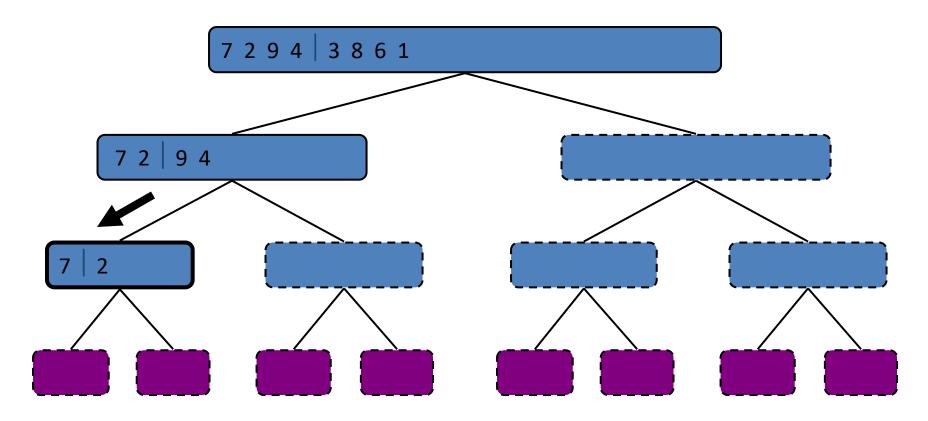
Example: Sort **7 2 9 4 3 8 6 1**



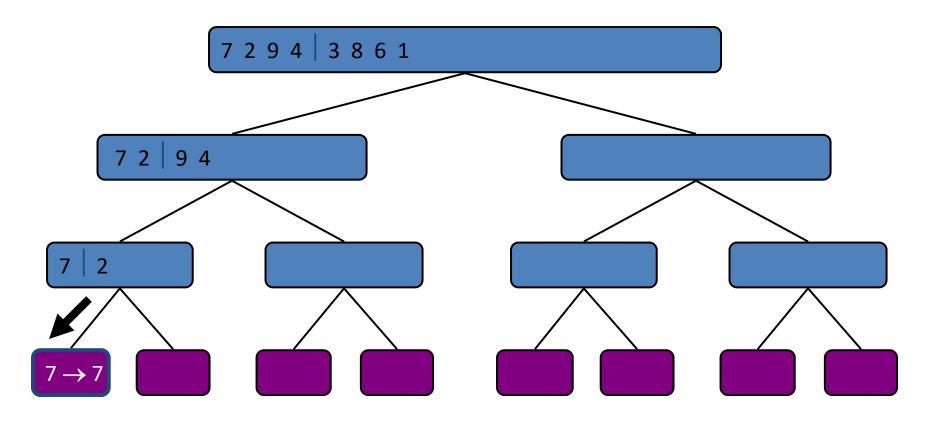
Recursive call, left part



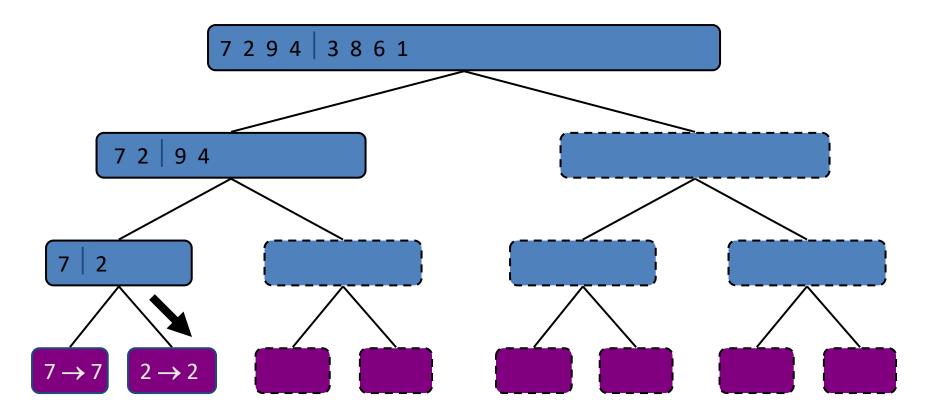
Recursive call, left part

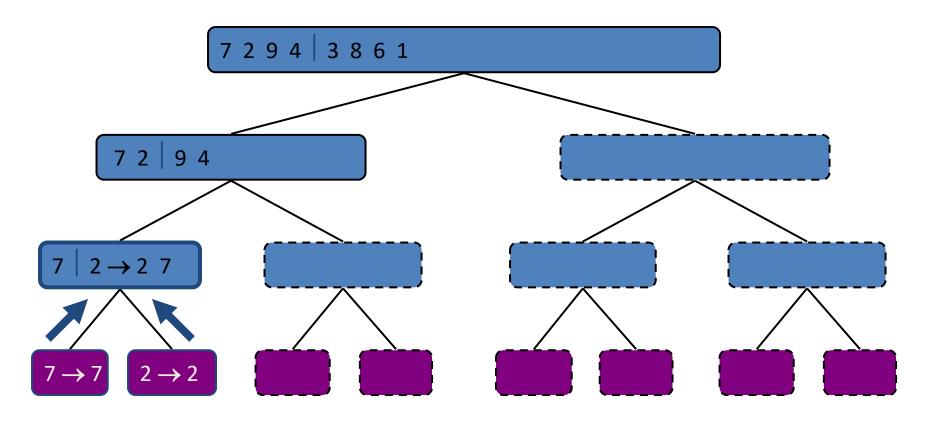


Recursive call, base case

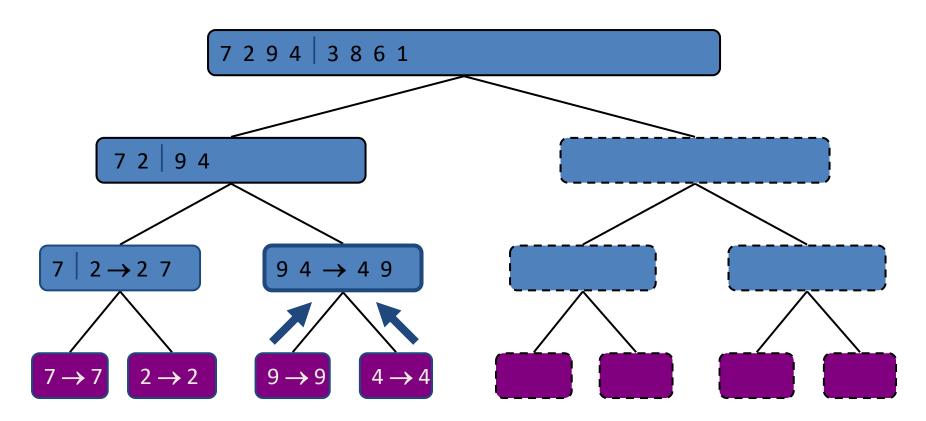


Recursive call, base case

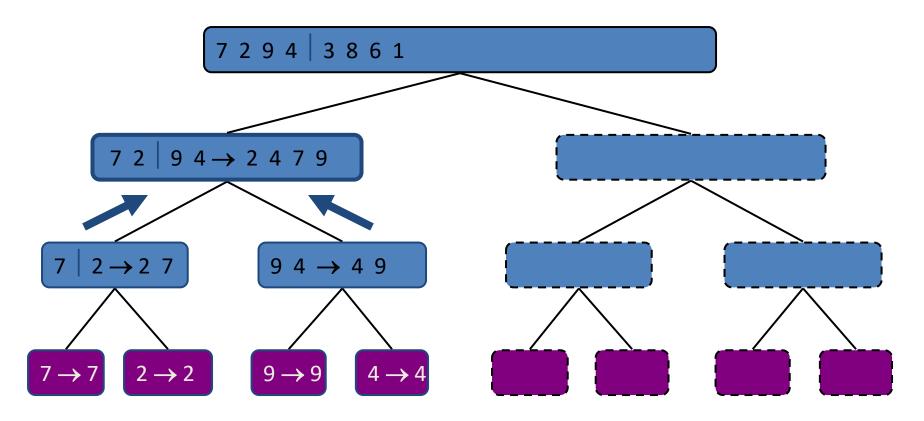


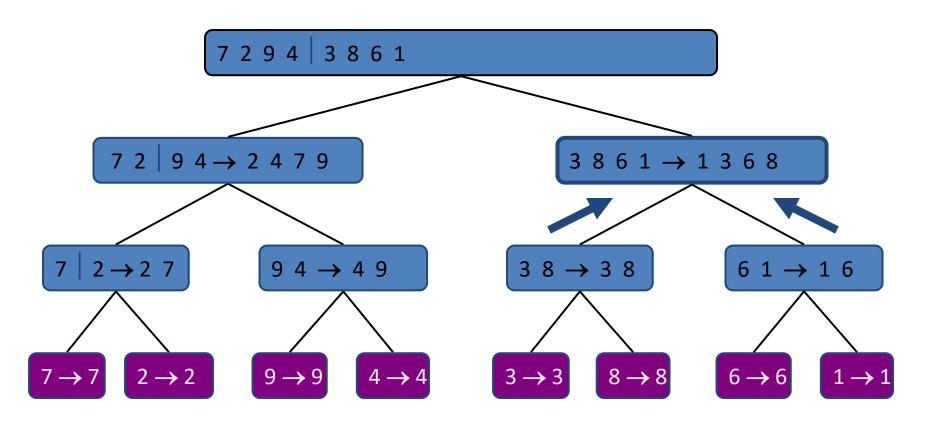


Similarly

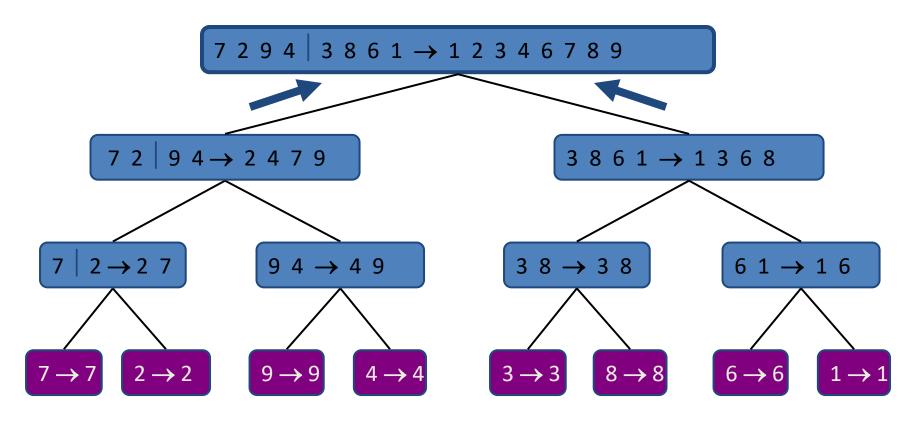


Merge





Merge



Mergesort

Pseudocode:

```
Mergesort(A[1:n])
     If n == 1 then
         return A
     Mergesort_{\bullet}(A[1:\frac{n}{2}])
     Mergesort (A[\frac{n}{2}+1:n])
     C \leftarrow \text{Merge}(A[1:\frac{n}{2}], A[\frac{n}{2}+1:n])
     return C
Running time:
          T(n) = T(n/2) + T(n/2) + \Theta(n) + \Theta(1)
                =2T(n/2)+\Theta(n)
```

Mergesort

• Pseudocode:

```
Mergesort(A[1:n])
     If n == 1 then
         return A
     Mergesort_{\bullet}(A[1:\frac{n}{2}])
     Mergesort (A[\frac{n}{2}+1:n])
     C \leftarrow \text{Merge}(A[1:\frac{n}{2}], A[\frac{n}{2}+1:n])
     return C
Running time:
          T(n) = T(n/2) + T(n/2) + \Theta(n) + \Theta(1)
                =2T(n/2)+\Theta(n)
                                                 How to analyze?
```

$$T(n) = \begin{cases} T(1) = \Theta(1) \\ aT(n/b) + f(n) \end{cases}$$

• The Master Theorem can find the order of T(n) which is defined recursively.

$$T(n) = \begin{cases} T(1) = \Theta(1) \\ aT(n/b) + f(n) \end{cases}$$

• The Master Theorem can find the order of T(n) which is defined recursively.

• Key idea: The answer depends on the comparison between f(n) and $n^{\log_b a}$. So, there are 3 cases!

$$T(n) = \begin{cases} T(1) = \Theta(1) \\ aT(n/b) + f(n) \end{cases}$$

- 1. If f(n) is $O(n^{\log_b a \epsilon})$, then T(n) is $\Theta(n^{\log_b a})$
- 2. If f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
- 3. If f(n) is $\Omega(n^{\log_b a + \epsilon})$, then T(n) is $\Theta(f(n))$, need to check af(n/b) < f(n).

Case 1: $n^{\log_b a}$ dominates f(n)

$$T(n) = \begin{cases} T(1) = \Theta(1) \\ aT(n/b) + f(n) \end{cases}$$

- 1. If f(n) is $O(n^{\log_b a \epsilon})$, then T(n) is $\Theta(n^{\log_b a})$
- 2. If f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
- 3. If f(n) is $\Omega(n^{\log_b a + \epsilon})$, then T(n) is $\Theta(f(n))$, need to check af(n/b) < f(n).

Case 2: $n^{\log_b a}$ have same order as f(n) (up to $\log^k n$)

$$T(n) = \begin{cases} T(1) = \Theta(1) \\ aT(n/b) + f(n) \end{cases}$$

- 1. If f(n) is $O(n^{\log_b a \epsilon})$, then T(n) is $\Theta(n^{\log_b a})$
- 2. If f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
- 3. If f(n) is $\Omega(n^{\log_b a + \epsilon})$, then T(n) is $\Theta(f(n))$, need to check af(n/b) < f(n).

Case 3: $n^{\log_b a}$ is dominated by f(n) (+ another condition)

$$T(n) = 4T(n/2) + n$$

$$T(n) = 4T(n/2) + n$$

Solution:

We have a = 4, b = 2, hence $\log_b a = 2$.

Since $n^2 \gg n$, we are in case 1. Answer is $\Theta(n^2)$

$$T(n) = 2T(n/2) + \Theta(n)$$

Mergesort running time

$$T(n) = 2T(n/2) + \Theta(n)$$

Mergesort running time

Solution:

We have a = 2, b = 2, hence $\log_b a = 1$.

Since n is $\Theta(n)$, we are in case 2 with k=0. Answer is $\Theta(n \log n)$

$$T(n) = 2T(n/2) + n \log n$$

$$T(n) = 2T(n/2) + n\log n$$

Solution:

We have a = 2, b = 2, hence $\log_b a = 1$.

Since n is $\Theta(n)$, we are in case 2 with k=1. Answer is $\Theta(n \log^2 n)$

$$T(n) = 9T(n/3) + n^3$$

$$T(n) = 9T(n/3) + n^3$$

Solution:

We have a = 9, b = 3, hence $\log_b a = 2$.

Since $n^2 \ll n^3$, we are in case 3. Need to check that

$$9\left(\frac{n}{3}\right)^3 < n^3$$
 which is equivalent to $\frac{n^3}{3} < n^3$ (holds)

Answer is $\Theta(n^3)$

$$T(n) = T(n/2) + \Theta(1)$$

Binary search running time

$$T(n) = T(n/2) + \Theta(1)$$

Binary search running time

Solution:

We have a = 1, b = 2, hence $\log_b a = 0$.

Since n^0 =1 is $\Theta(1)$, we are in case 2 with k=0. Answer is $\Theta(\log n)$

Divide and conquer method

- Steps of method:
 - Divide input into parts (smaller problems)
 - Conquer (solve) each part <u>recursively</u>
 - Combine results to obtain solution of original

$$T(n) =$$
divide time
+ $T(n_1) + T(n_2) + ... + T(n_k)$
+ combine time

Given numbers A_1, \dots, A_n in an array A, compute the number of inversions.

(i,j) is an inversion: $A_i > A_j$ and i < j.

Given numbers A_1, \dots, A_n in an array A, compute the number of inversions.

```
(i,j) is an inversion: A_i > A_j and i < j.
```

Example [18, 29, 12, 15, 32, 10] has 9 inversions:

Given numbers A_1, \dots, A_n in an array A, compute the number of inversions.

$$(i,j)$$
 is an inversion: $A_i > A_j$ and $i < j$.

- Minimum number of inversions is zero (when sorted in increasing order)
- Maximum number of inversions is $\binom{n}{2}$ (when sorted in decreasing order)

- For all i, j with i < j, compare A_i with A_j and increase counter if $A_i > A_j$. Total number of comparisons $\frac{n(n-1)}{2}$. Running time $\Theta(n^2)$.
- Use Divide and conquer. Tricky part the combine step.

- For all i, j with i < j, compare A_i with A_j and increase counter if $A_i > A_j$. Total number of comparisons $\frac{n(n-1)}{2}$. Running time $\Theta(n^2)$.
- Use Divide and conquer. Tricky part the combine step.
- Question: Assume that $B_1, ..., B_k$ and $C_1, ..., C_l$ are both sorted. Can you compute the number of inversions of the sequence $B_1, ..., B_k, C_1, ..., C_l$?

• Question: Assume that $B_1, ..., B_k$ and $C_1, ..., C_l$ are both sorted. Can you compute the number of inversions of the sequence $B_1, ..., B_k, C_1, ..., C_l$?

If
$$B_i > C_j \ge B_{i-1}$$
 there are

including C_j

$$B_1, \dots, B_i, \dots, B_k$$
 $C_1, \dots, C_j, \dots, C_l$
 j^{\uparrow}

• Question: Assume that $B_1, ..., B_k$ and $C_1, ..., C_l$ are both sorted. Can you compute the number of inversions of the sequence $B_1, ..., B_k, C_1, ..., C_l$?

If
$$B_i > C_j \ge B_{i-1}$$
 there are $k-i+1$ including C_j

Problem: Given two sorted arrays B, C, merge them to a sorted array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While
$$k < \operatorname{len}(B) + \operatorname{len}(C)$$
 do

If $B[i] <= C[j]$ then
$$A[k] \leftarrow B[i]$$

$$i = i + 1, k = k + 1$$
else
$$A[k] \leftarrow C[j]$$

B: 1349220C: 2357810counter = 0counter = counter + len(B) - i + 1

$$j = j + 1, k = k + 1$$

Problem: Given two sorted arrays B, C, merge them to a sorted array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While
$$k < \text{len(B)} + \text{len(C)}$$
 do

If $B[i] <= C[j]$ then
$$A[k] \leftarrow B[i]$$

$$i = i + 1, k = k + 1$$
else
$$A[k] \leftarrow C[j]$$

j = j + 1, k = k + 1

Problem: Given two sorted arrays B, C, merge them to a sorted array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While
$$k < \operatorname{len}(B) + \operatorname{len}(C)$$
 do

If
$$B[i] \le C[j]$$
 then
$$A[k] \leftarrow B[i]$$

$$i = i + 1, k = k + 1$$

else

$$A[k] \leftarrow C[j]$$

$$j = j + 1, k = k + 1$$

Problem: Given two sorted arrays B, C, merge them to a sorted array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While
$$k < \text{len(B)} + \text{len(C)}$$
 do

If $B[i] <= C[j]$ then
$$A[k] \leftarrow B[i]$$

$$i = i + 1, k = k + 1$$
else
$$A[k] \leftarrow C[j]$$

B: 1349220 C: 2357810 i^{\uparrow} A: 123 counter = 4

$$j = j + 1, k = k + 1$$

Problem: Given two sorted arrays B, C, merge them to a sorted array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While
$$k < \operatorname{len}(B) + \operatorname{len}(C)$$
 do

If
$$B[i] \le C[j]$$
 then
$$A[k] \leftarrow B[i]$$

$$i = i + 1, k = k + 1$$

else

$$A[k] \leftarrow C[j]$$

$$j = j + 1, k = k + 1$$

$$B: 1349220$$
 $C: 2357810$
 i
 $A: 1233$
 $counter = 7$

Problem: Given two sorted arrays B, C, merge them to a sorted array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While
$$k < \operatorname{len}(B) + \operatorname{len}(C)$$
 do

If
$$B[i] \le C[j]$$
 then $A[k] \leftarrow B[i]$ $i = i + 1, k = k + 1$

else

$$A[k] \leftarrow C[j]$$

$$j = j + 1, k = k + 1$$

$$B: 1349220$$
 $C: 2357810$
 i
 $A: 12334$
 $counter = 7$

Problem: Given two sorted arrays B, C, merge them to a sorted array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While
$$k < \text{len(B)} + \text{len(C)}$$
 do
If $B[i] <= C[j]$ then

$$A[k] \leftarrow B[i]$$

$$i = i + 1, k = k + 1$$

else

$$A[k] \leftarrow C[j]$$

$$j = j + 1, k = k + 1$$

$$B: 1349220$$
 $C: 2357810$
 i^{\uparrow}
 $A: 123345$
 $counter = 9$

Problem: Given two sorted arrays B, C, merge them to a sorted array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While
$$k < \text{len(B)} + \text{len(C)}$$
 do
If $B[i] <= C[j]$ then

$$A[k] \leftarrow B[i]$$

$$i = i + 1, k = k + 1$$

else

$$A[k] \leftarrow C[j]$$

$$j = j + 1, k = k + 1$$

$$B: 1349220$$
 $C: 2357810$
 i
 $A: 1233457$
 $counter = 11$

Problem: Given two sorted arrays B, C, merge them to a sorted array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While
$$k < \text{len(B)} + \text{len(C)}$$
 do
If $B[i] <= C[j]$ then

$$A[k] \leftarrow B[i]$$
 then $A[k] \leftarrow B[i]$ $i = i + 1, k = k + 1$

else

$$A[k] \leftarrow C[j]$$

$$j = j + 1, k = k + 1$$

Problem: Given two sorted arrays B, C, merge them to a sorted array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While
$$k < \operatorname{len}(B) + \operatorname{len}(C)$$
 do

If $B[i] <= C[j]$ then
$$A[k] \leftarrow B[i]$$

$$i = i + 1, k = k + 1$$
else
$$A[k] \leftarrow C[j]$$

$$\operatorname{counter} = \operatorname{counter} + \operatorname{len}(B) - i + 1$$

j = j + 1, k = k + 1

Problem: Given two sorted arrays B, C, merge them to a sorted array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While
$$k < \text{len(B)} + \text{len(C)} do$$

If
$$B[i] \le C[j]$$
 then $A[k] \leftarrow B[i]$ $i = i + 1, k = k + 1$

else

$$A[k] \leftarrow C[j]$$

$$j = j + 1, k = k + 1$$

$$B: 1349220$$
 $C: 2357810$

$$i^{\uparrow}$$
 $A: 12334578910$

$$counter = 14$$

Problem: Given two sorted arrays B, C, merge them to a sorted array and count number of inversions simultaneously.

Solution: Index i for B, index j for C, index k for A, counter.

While
$$k < \operatorname{len}(B) + \operatorname{len}(C)$$
 do

If
$$B[i] \le C[j]$$
 then $A[k] \leftarrow B[i]$ $i = i + 1, k = k + 1$

else

$$A[k] \leftarrow C[j]$$

$$j = j + 1, k = k + 1$$

- For all i, j with i < j, compare A_i with A_j and increase counter if $A_i > A_j$. Total number of comparisons $\frac{n(n-1)}{2}$. Running time $\Theta(n^2)$.
- Use Divide and conquer. Tricky part the combine step.
- Solution: Run a modification of Mergesort that has a counter that counts inversions during merge steps.

Pseudocode:

```
Mergesort(A[1:n])
   If n == 1 then
      return A, 0
   B, \mathbf{countL} = \mathrm{Mergesort} (A|1:\frac{n}{2}|)
   C, \mathbf{countR} = \text{Mergesort } (A[\frac{n}{2} + 1 : n])
   A \leftarrow \text{Merge}(B, C)
  Get counter from merging
  return A, countL + countR + counter
```