
CS 161 Design and Analysis of Algorithms

Ioannis Panageas

Lecture 2
Overview of concepts

Design and Analysis of Algorithms

Design and Analysis of Algorithms

• This is a theoretical/of mathematical nature
class. Ideas the primarily focus, not
implementation.

• An algorithm is a step-by-step procedure for performing some task in a
finite amount of time. Transforms input object to output object.

Input Algorithm Output

Design and Analysis of Algorithms

Design and Analysis of Algorithms

• Design: Come up with a procedure.
• Analysis: Running time.

Design and Analysis of Algorithms

Design and Analysis of Algorithms

• Design: Come up with a procedure.
• Analysis: Running time.

Running time is denoted by 𝑇(𝑛)

• Number of “operations” for algorithm to terminate.
• We actually care about how it scales with input size n.
• Main focus is on worst-case analysis (vs average case analysis or best

case analysis).

Design and Analysis of Algorithms

Example on worst-case vs
average/best case

Given different numbers 𝑥1, 𝑥2, … , 𝑥𝑛, find the position of 𝑥 (assume exists).

Design and Analysis of Algorithms

Example on worst-case vs
average/best case

Given different numbers 𝑥1, 𝑥2, … , 𝑥𝑛, find the position of 𝑥 (assume exists).

Design and Analysis of Algorithms

Best case: 1 iterate

Example on worst-case vs
average/best case

Given different numbers 𝑥1, 𝑥2, … , 𝑥𝑛, find the position of 𝑥 (assume exists).

Example on worst-case vs
average/best case

Design and Analysis of Algorithms

Best case: 1 iterate

Worst case: n iterates

Given different numbers 𝑥1, 𝑥2, … , 𝑥𝑛, find the position of 𝑥 (assume exists).

Design and Analysis of Algorithms

Best case: 1 iterate

Worst case: n iterates

Average case: Challenging

Example on worst-case vs
average/best case

Given different numbers 𝑥1, 𝑥2, … , 𝑥𝑛, find the position of 𝑥 (assume exists).

Design and Analysis of Algorithms

Best case: 1 iterate

Worst case: n iterates

Average case:
𝒏+𝟏

𝟐
 iterates

Example on worst-case vs
average/best case

Given different numbers 𝑥1, 𝑥2, … , 𝑥𝑛, find the position of 𝑥 (assume exists).

Design and Analysis of Algorithms

Example on worst-case vs
average/best case

Given different numbers 𝑥1, 𝑥2, … , 𝑥𝑛, find the position of 𝑥 (assume exists).

Design and Analysis of Algorithms

Example on worst-case vs
average/best case

Given different numbers 𝑥1, 𝑥2, … , 𝑥𝑛, find the position of 𝑥 (assume exists).

Design and Analysis of Algorithms

Example on worst-case vs
average/best case

Given different numbers 𝑥1, 𝑥2, … , 𝑥𝑛, find the position of 𝑥 (assume exists).

Design and Analysis of Algorithms

Given different numbers 𝑥1, 𝑥2, … , 𝑥𝑛, find the position of 𝑥 (assume exists).

Example on worst-case vs
average/best case

Recap on proofs

Design and Analysis of Algorithms

Recap on proofs

Design and Analysis of Algorithms

Recap on proofs

Design and Analysis of Algorithms

Recap on proofs

Design and Analysis of Algorithms

Recap on proofs

Design and Analysis of Algorithms

Recap on proofs

Design and Analysis of Algorithms

Recap on proofs

Design and Analysis of Algorithms

Recap on proofs

Design and Analysis of Algorithms

Recap on proofs

Design and Analysis of Algorithms

Recap on proofs

Design and Analysis of Algorithms

Recap on proofs

Design and Analysis of Algorithms

Recap on proofs

Design and Analysis of Algorithms

Recap on proofs

Design and Analysis of Algorithms

Recap on proofs

Design and Analysis of Algorithms

Recap on proofs

Design and Analysis of Algorithms

Recap on proofs

Design and Analysis of Algorithms

3 and 6 have exchanged phone
numbers.

2 and 5 have not exchanged
Phone numbers.

Recap on proofs

Design and Analysis of Algorithms

Recap on proofs

Design and Analysis of Algorithms

Recap on proofs

Design and Analysis of Algorithms

Recap on proofs

Design and Analysis of Algorithms

Either 𝐴 or 𝐵 has size
at least three.

Consider the classmate with name 1 (green).

Recap on proofs

Design and Analysis of Algorithms

Case 1: 𝐴 is at least of size three

Recap on proofs

Design and Analysis of Algorithms

Case 1: 𝐴 is at least of size three

Subcase 1:

If at least two of the people in 𝐴
have exchanged contacts then we
found three people (two+ the green)

Recap on proofs

Design and Analysis of Algorithms

Case 1: 𝐴 is at least of size three

Subcase 2:

If all people in 𝐴 have not exchanged
contacts then we found three people

Recap on proofs

Design and Analysis of Algorithms

Case 1: 𝐴 is at least of size three

Subcase 2:

If all people in 𝐴 have not exchanged
contacts then we found three people

Case 2: 𝑩 is at least of size 3 (similar)

Recap on Asymptotics

• The asymptotic complexity describes 𝑇(𝑛), as 𝑛
grows to infinity

• Focus on 3 types of Asymptotic complexity

– Θ (Big Theta)

– 𝑂 (Big O)

– Ω (Big Omega)

Design and Analysis of Algorithms

Recap on Asymptotics

– Θ (Big Theta) means “grows asymptotically = ”

– 𝑂 (Big O) means “grows asymptotically ≤ ”

– Ω (Big Omega) means “grows asymptotically ≥ ”

Design and Analysis of Algorithms

Recap on Asymptotics

• 𝑔 𝑛 ∈ Θ(𝑓(𝑛)) means “𝑔 grows as 𝑓, when 𝑛
goes to infinity”.

Design and Analysis of Algorithms

Big Θ examples:

Recap on Asymptotics

• 𝑔 𝑛 ∈ 𝑂(𝑓(𝑛)) means “𝑔 grows at most as fast
as 𝑓, when 𝑛 goes to infinity”.

Design and Analysis of Algorithms

Big 𝑂 examples:

Recap on Asymptotics

• 𝑔 𝑛 ∈ 𝑂(𝑓(𝑛)) means “𝑔 grows at least as fast
as 𝑓, when 𝑛 goes to infinity”.

Design and Analysis of Algorithms

Big Ω examples:

Recap on Asymptotics

Design and Analysis of Algorithms

Recap on Asymptotics

Design and Analysis of Algorithms

Recap on Asymptotics

Design and Analysis of Algorithms

Recap on Asymptotics

Design and Analysis of Algorithms

Recap on Graphs
• Undirected

• V={a,b,c,d}

• E={{a,b}, {a,c}, {b,c},
{b,d}, {c,d}}

• Directed

• V = {a,b,c}

• E = {(a,c), (a,b) (b,c),
(c,b)}

a

c d

b a

b c

Design and Analysis of Algorithms

• Representation

 Adjacency matrix/list, incidence list.

Recap on Graphs

Design and Analysis of Algorithms

Recap on Graphs

Design and Analysis of Algorithms

Recap on Graphs

Design and Analysis of Algorithms

Induction?

Recap on binary search

Canonical problem: Given a sorted array, find position of 𝑥.

Idea: Pick median (middle element). If we 𝑥 = median we are done.

 Case 1: If 𝑥 is greater than median,
 repeat the process on the right half of the array.

 Case 2: If 𝑥 is smaller than median,
 repeat the process on the left half of the array.

Example: above for 𝑥 = 10.

1 2 3 5 8 10 13

Design and Analysis of Algorithms

Recap on binary search

• Consider an array A[1…n] :

• An element 𝐴[𝑖] is a peak if it is not smaller than all
its neighbor(s)
– if 𝑖 ≠ 1, 𝑛 : 𝐴[𝑖] ≥ 𝐴[𝑖 − 1] 𝑎𝑛𝑑 𝐴[𝑖] ≥ 𝐴[𝑖 + 1]
– If 𝑖 = 1 : 𝐴[1] ≥ 𝐴[2]
– If 𝑖 = 𝑛 : 𝐴[𝑛] ≥ 𝐴[𝑛 − 1]

Exercise 6: find any peak.

10 13 5 8 3 2 1

Design and Analysis of Algorithms

Recap on binary search

Algorithm 1:

– Scan the array from left to right

– Compare each 𝐴[𝑖] with its neighbors

– Exit when found a peak

Worse-case Complexity:

– Might need to scan all elements, so 𝑇(𝑛) is Θ(𝑛)

1 2 4 8 9 12 21

Design and Analysis of Algorithms

Recap on binary search

Algorithm 2:

• Consider the middle element of the array and
compare with neighbors
– If 𝐴[𝑛/2 − 1] > 𝐴[𝑛/2]
 then search for a peak among 𝐴[1] … 𝐴[𝑛/2 − 1]
– Else, if 𝐴[𝑛/2] < 𝐴[𝑛/2 + 1]
 then search for a peak among 𝐴[𝑛/2 + 1] … 𝐴[𝑛]
– Else 𝐴[𝑛/2] is a peak!

A[n/2-1] A[n/2] A[n/2+1]

Design and Analysis of Algorithms

Recap on binary search

Algorithm 2:

• Consider the middle element of the array and
compare with neighbors
– If 𝐴[𝑛/2 − 1] > 𝐴[𝑛/2]
 then search for a peak among 𝐴[1] … 𝐴[𝑛/2 − 1]
– Else, if 𝐴[𝑛/2] < 𝐴[𝑛/2 + 1]
 then search for a peak among 𝐴[𝑛/2 + 1] … 𝐴[𝑛]
– Else 𝐴[𝑛/2] is a peak!

A[n/2-1] A[n/2] A[n/2+1]

Design and Analysis of Algorithms

Pseudocode

Design and Analysis of Algorithms

• High-level description of an algorithm
• Less detailed than a program
• Preferred notation for describing

algorithms
• Hides program design issues

Pseudocode

Design and Analysis of Algorithms

Control flow:

Expressions
• Equality testing
• Assignment ←
• Addition, subtraction, etc

Define methods/functions

Pseudocode

Design and Analysis of Algorithms

Example (running time 𝑇(𝑛) is Θ(𝑛), linear time)

Need to Review (Reading)

Design and Analysis of Algorithms

• Sums, summations, Logarithms
• Asymptotics
• Data structures: Queues, stacks, lists,

binary search trees
• Binary search
• Insertion and Selection sort
• Graph representation and DFS, BFS
We are here to help, please ask questions!

Next week Divide and Conquer Method

	Slide 1: Lecture 2 Overview of concepts
	Slide 2: Design and Analysis of Algorithms
	Slide 3: Design and Analysis of Algorithms
	Slide 4: Design and Analysis of Algorithms
	Slide 5: Example on worst-case vs average/best case
	Slide 6: Example on worst-case vs average/best case
	Slide 7: Example on worst-case vs average/best case
	Slide 8: Example on worst-case vs average/best case
	Slide 9: Example on worst-case vs average/best case
	Slide 10: Example on worst-case vs average/best case
	Slide 11: Example on worst-case vs average/best case
	Slide 12: Example on worst-case vs average/best case
	Slide 13: Example on worst-case vs average/best case
	Slide 14: Example on worst-case vs average/best case
	Slide 15: Recap on proofs
	Slide 16: Recap on proofs
	Slide 17: Recap on proofs
	Slide 18: Recap on proofs
	Slide 19: Recap on proofs
	Slide 20: Recap on proofs
	Slide 21: Recap on proofs
	Slide 22: Recap on proofs
	Slide 23: Recap on proofs
	Slide 24: Recap on proofs
	Slide 25: Recap on proofs
	Slide 26: Recap on proofs
	Slide 27: Recap on proofs
	Slide 28: Recap on proofs
	Slide 29: Recap on proofs
	Slide 30: Recap on proofs
	Slide 31: Recap on proofs
	Slide 32: Recap on proofs
	Slide 33: Recap on proofs
	Slide 34: Recap on proofs
	Slide 35: Recap on proofs
	Slide 36: Recap on proofs
	Slide 37: Recap on proofs
	Slide 38: Recap on proofs
	Slide 39: Recap on Asymptotics
	Slide 40: Recap on Asymptotics
	Slide 41: Recap on Asymptotics
	Slide 42: Recap on Asymptotics
	Slide 43: Recap on Asymptotics
	Slide 44: Recap on Asymptotics
	Slide 45: Recap on Asymptotics
	Slide 46: Recap on Asymptotics
	Slide 47: Recap on Asymptotics
	Slide 48: Recap on Graphs
	Slide 49: Recap on Graphs
	Slide 50: Recap on Graphs
	Slide 51: Recap on Graphs
	Slide 52: Recap on binary search
	Slide 53: Recap on binary search
	Slide 54: Recap on binary search
	Slide 55: Recap on binary search
	Slide 56: Recap on binary search
	Slide 57: Pseudocode
	Slide 58: Pseudocode
	Slide 59: Pseudocode
	Slide 60: Need to Review (Reading)

