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Design and Analysis of Algorithms

Design and Analysis of Algorithms

• This is a theoretical/of mathematical nature 
class. Ideas the primarily focus, not 
implementation.

• An algorithm is a step-by-step procedure for performing some task in a 
finite amount of time. Transforms input object to output object.

Input          Algorithm       Output
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• Design: Come up with a procedure.
• Analysis: Running time.
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Design and Analysis of Algorithms

• Design: Come up with a procedure.
• Analysis: Running time.

Running time is denoted by 𝑇(𝑛) 

• Number of “operations” for algorithm to terminate.
• We actually care about how it scales with input size n.
• Main focus is on worst-case analysis (vs average case analysis or best 

case analysis).
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Example on worst-case vs 
average/best case

Given different numbers 𝑥1, 𝑥2, … , 𝑥𝑛, find the position of 𝑥 (assume exists).
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Best case: 1 iterate

Worst case: n iterates

Average case: 
𝒏+𝟏

𝟐
 iterates
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Given different numbers 𝑥1, 𝑥2, … , 𝑥𝑛, find the position of 𝑥 (assume exists).

Example on worst-case vs 
average/best case



Recap on proofs

Design and Analysis of Algorithms



Recap on proofs

Design and Analysis of Algorithms



Recap on proofs

Design and Analysis of Algorithms



Recap on proofs

Design and Analysis of Algorithms



Recap on proofs

Design and Analysis of Algorithms



Recap on proofs

Design and Analysis of Algorithms



Recap on proofs

Design and Analysis of Algorithms



Recap on proofs

Design and Analysis of Algorithms



Recap on proofs

Design and Analysis of Algorithms



Recap on proofs

Design and Analysis of Algorithms



Recap on proofs

Design and Analysis of Algorithms



Recap on proofs

Design and Analysis of Algorithms



Recap on proofs

Design and Analysis of Algorithms



Recap on proofs

Design and Analysis of Algorithms



Recap on proofs

Design and Analysis of Algorithms



Recap on proofs

Design and Analysis of Algorithms

3 and 6 have exchanged phone
numbers.

2 and 5 have not exchanged 
Phone numbers.
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Design and Analysis of Algorithms

Either 𝐴 or 𝐵 has size 
at least three.

Consider the classmate with name 1 (green).
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Design and Analysis of Algorithms

Case 1: 𝐴 is at least of size three
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Design and Analysis of Algorithms

Case 1: 𝐴 is at least of size three

Subcase 1: 

If at least two of the people in 𝐴
have exchanged contacts then we
found three people (two+ the green)
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Design and Analysis of Algorithms

Case 1: 𝐴 is at least of size three

Subcase 2: 

If all people in 𝐴 have not exchanged 
contacts then we found three people 
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Design and Analysis of Algorithms

Case 1: 𝐴 is at least of size three

Subcase 2: 

If all people in 𝐴 have not exchanged 
contacts then we found three people 

Case 2: 𝑩 is at least of size 3 (similar)



Recap on Asymptotics

• The asymptotic complexity describes 𝑇(𝑛), as 𝑛 
grows to infinity

• Focus on 3 types of Asymptotic complexity 

– Θ (Big Theta)

– 𝑂 (Big O)

– Ω (Big Omega)

Design and Analysis of Algorithms



Recap on Asymptotics 

– Θ (Big Theta) means “grows asymptotically = ”

– 𝑂 (Big O) means “grows asymptotically ≤ ”

– Ω (Big Omega) means “grows asymptotically ≥ ”

Design and Analysis of Algorithms



Recap on Asymptotics

• 𝑔 𝑛 ∈ Θ(𝑓(𝑛)) means “𝑔 grows as 𝑓, when 𝑛 
goes to infinity”.

Design and Analysis of Algorithms

Big Θ examples:
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• 𝑔 𝑛 ∈  𝑂(𝑓(𝑛)) means “𝑔 grows at most as fast 
as 𝑓, when 𝑛 goes to infinity”.

Design and Analysis of Algorithms

Big 𝑂 examples:
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• 𝑔 𝑛 ∈  𝑂(𝑓(𝑛)) means “𝑔 grows at least as fast 
as 𝑓, when 𝑛 goes to infinity”.
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Big Ω examples:
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Recap on Graphs
• Undirected

• V={a,b,c,d}

• E={{a,b}, {a,c}, {b,c}, 
{b,d}, {c,d}}

• Directed

• V = {a,b,c}

• E = {(a,c), (a,b) (b,c), 
(c,b)} 

a

c d

b a

b c

Design and Analysis of Algorithms

• Representation 

 Adjacency matrix/list, incidence list. 
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Recap on Graphs

Design and Analysis of Algorithms

Induction?



Recap on binary search

Canonical problem: Given a sorted array, find position of 𝑥.

Idea: Pick median (middle element). If we 𝑥 = median we are done.

  Case 1: If 𝑥 is greater than median,       
    repeat the process on the right half of the array.
  
  Case 2: If 𝑥 is smaller than median,       
    repeat the process on the left half of the array. 

Example: above for 𝑥 = 10.

  
  

1 2 3 5 8 10 13

Design and Analysis of Algorithms



Recap on binary search

• Consider an array A[1…n] :

• An element 𝐴[𝑖] is a peak if it is not smaller than all 
its neighbor(s)
– if 𝑖 ≠  1, 𝑛 :  𝐴[𝑖] ≥ 𝐴[𝑖 − 1] 𝑎𝑛𝑑 𝐴[𝑖] ≥ 𝐴[𝑖 + 1]
– If 𝑖 = 1 :        𝐴[1]  ≥  𝐴[2]
– If 𝑖 = 𝑛 :        𝐴[𝑛]  ≥  𝐴[𝑛 − 1]

Exercise 6: find any peak.

10 13 5 8 3 2 1

Design and Analysis of Algorithms



Recap on binary search

Algorithm 1:

– Scan the array from left to right

– Compare each 𝐴[𝑖] with its neighbors

– Exit when found a peak

Worse-case Complexity: 

– Might need to scan all elements, so 𝑇(𝑛) is Θ(𝑛)

1 2 4 8 9 12 21

Design and Analysis of Algorithms



Recap on binary search

Algorithm 2:

• Consider the middle element of the array and 
compare with neighbors
– If 𝐴[𝑛/2 − 1] > 𝐴[𝑛/2]
   then search for a peak among 𝐴[1] …  𝐴[𝑛/2 − 1]
– Else, if 𝐴[𝑛/2] < 𝐴[𝑛/2 + 1]
   then search for a peak among 𝐴[𝑛/2 + 1] …  𝐴[𝑛]
– Else 𝐴[𝑛/2] is a peak! 
  

A[n/2-1] A[n/2] A[n/2+1]

Design and Analysis of Algorithms
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Pseudocode

Design and Analysis of Algorithms

• High-level description of an algorithm
• Less detailed than a program 
• Preferred notation for describing 

algorithms  
• Hides program design issues



Pseudocode

Design and Analysis of Algorithms

Control flow:

Expressions
• Equality testing
• Assignment ←
• Addition, subtraction, etc

Define methods/functions



Pseudocode

Design and Analysis of Algorithms

Example (running time 𝑇(𝑛) is Θ(𝑛), linear time)



Need to Review (Reading)

Design and Analysis of Algorithms

• Sums, summations, Logarithms
• Asymptotics
• Data structures: Queues, stacks, lists, 

binary search trees
• Binary search
• Insertion and Selection sort
• Graph representation and DFS, BFS
We are here to help, please ask questions!

Next week Divide and Conquer Method
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