
CS 161 Design and Analysis of Algorithms

Ioannis Panageas

Lecture 1

Course staff

Instructor: Ioannis Panageas
Email: ipanagea at ics dot uci dot edu
Office hours: Wednesday 2:00-4:00pm (zoom)

Head TA: Navin Velazco (any requests)

Email: nvelazco at uci dot edu
Office hours: Monday 12:00-1:00pm (zoom)

TAs:
Parnian Shahkar (shahkarp at uci dot edu)
Office hours: Friday 5:00-6:00pm (zoom)

Nikolas Patris (npatris at uci dot edu)
Office hours: Wednesday 1:00-2:00pm (zoom)

Stelios Stavroulakis (sstavrou at uci dot edu)
Office hours: Wednesday 11:00-12:00pm (zoom)

Design and Analysis of Algorithms

Course material

We will use canvas for announcements. Slide materials will be posted on
https://panageas.github.io/algo2024.html

We will use gradescope for posting homeworks and grading.

We will be using Edstem for questions of general interest about the course
material, the homework, and the tests
https://edstem.org/us/courses/57731/discussion/

Required Textbook
• Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia.

Recommended Textbook
• Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald

L. Rivest, and Clifford Stein.

Design and Analysis of Algorithms

https://panageas.github.io/algo2024.html
https://edstem.org/us/courses/57731/discussion/

Grading

• Homeworks: 20%

– There will be given 4 Homeworks to solve (+5% bonus for
Homework 5).

• Midterms: 20+20+20%

– There will be given 3 midterms, on Tuesdays of week 4,6 and 9.
Each midterm will contain topics from previous weeks.

• Final : 20%

– Material from all weeks (except last week).

+1% for Course Evaluation

Design and Analysis of Algorithms

Letter Grades

● Not a straight scale nor straight curve

● 90% and up guaranteed some sort of A or A-
● 80% and up guaranteed at least B-
● 70% and up guaranteed at least C-

Design and Analysis of Algorithms

Submitting Assignments

● Written assignments in Gradescope
○ Must be legible

■ If you have messy handwriting, type your homework!
■ Bonus 5% for Homework 5!

○ Must be on-time.
○ Deadline: Fridays 23:59pm (see syllabus)

● Programming assignments optional in
Gradescope
○ Code must be in python and need to pass test

cases
Design and Analysis of Algorithms

Exam Dates and Rules

● The exams are held on the days listed (syllabus)
○ See policy in syllabus, no makeup exams

● Exams will not be excused for reasons within
your control.

● If there is a valid reason (needs approval from
instructor) for missing an exam, the grade will
be split equally among the other components.

Academic Integrity Policy

● If you need help, see:
○ Ioannis
○ TAs

● Plagiarism risks an F in the class and more.

● The following are examples of not okay:
○ Chegg GeeksForGeeks
○ CourseHero Quora
○ StackOverflow Github (generally)
○ Chatgpt or related platform

Design and Analysis of Algorithms

Collaboration with classmates

● You can discuss some things freely with others:

○ What a problem is asking

○ How to do a non-homework or non-exam problem

○ How something from lecture worked

● You should never:

○ Show your homework assignment to someone else

○ Write your solutions from notes taken outside lecture / discussion
○ Seek homework solutions from outside sources -- especially online!

○ Tell a student specifically how to solve a homework problem

● Penalty for academic dishonesty: F in the course.

Design and Analysis of Algorithms

To-Do This Week

● Read the syllabus
○ Treat it as though it’s a reading assignment.
○ Main document plus associated policy documents

● Review Prerequisites
○ Help is available all week, including at all discussion

sections

Design and Analysis of Algorithms

What is algorithm

• Algorithm is a procedure for solving a task

e.g. how do you sort a cart of books
in increasing order of the volume
number? (i.e. volume 1, volume 2,
volume 3….)

- Bad algorithm: compare all
books, put smallest volume in the
beginning and repeat.

- Clever algorithm: divide the cart
into two, sort the first half, sort
the second half, merge them.

Design and Analysis of Algorithms

What is algorithm

• Algorithm is a procedure for solving a task

e.g. How to find the best travelling
time between from a station to any
other station?

- Bad algorithm: manually find the
travelling between each station.

- Clever algorithm: just record the
travelling time between
consecutive stations, then use
the Dijkstra shortest path
algorithm.

Design and Analysis of Algorithms

 Case study I: Finding a Celebrity

Since coming to UC Irvine, has anyone met a
celebrity?

Design and Analysis of Algorithms

What is a celebrity?
● Within a group of people G,

we say a person p is a celebrity (famous) if:

○ Everyone knows who p is

(celebrities must be known by everyone)

○ Person p does not know who anyone else is

● Goal: Find a celebrity from G if there exists one.

Design and Analysis of Algorithms

● Within a group of people G,

we say a person p is a celebrity (famous) if:

○ Everyone knows who p is

(celebrities must be known by everyone)

○ Person p does not know who anyone else is

● Goal: Find a celebrity from G if there exists one.

● You are allowed to only query if person 𝑖 knows person 𝑗 for various choices

of (𝑖, 𝑗).

Design and Analysis of Algorithms

What is a celebrity?

Brute force approach
● Given a person p we want to check if it is a celebrity

○ How efficiently can I check if person p is a celebrity? # of queries

Design and Analysis of Algorithms

Brute force approach
● Given a person p we want to check if it is a celebrity

○ How efficiently can I check if person p is a celebrity? # of queries

○ Query all other persons if they know p and also if p does not know

them.

Design and Analysis of Algorithms

Brute force approach
● Given a person p we want to check if it is a celebrity

○ How efficiently can I check if person p is a celebrity? # of queries

○ Query all other persons if they know p and also if p does not know

them.

Design and Analysis of Algorithms

Brute force approach
● Given a person p we want to check if it is a celebrity

○ How efficiently can I check if person p is a celebrity? # of queries

○ Query all other persons if they know p and also if p does not know

them.

○ We have to do the above for all possible persons p.

Design and Analysis of Algorithms

Brute force approach
● Given a person p we want to check if it is a celebrity

○ How efficiently can I check if person p is a celebrity? # of queries

○ Query all other persons if they know p and also if p does not know

them.

○ We have to do the above for all possible persons p.

Design and Analysis of Algorithms

Brute force approach
● Given a person p we want to check if it is a celebrity

○ How efficiently can I check if person p is a celebrity? # of queries

○ Query all other persons if they know p and also if p does not know

them.

○ We have to do the above for all possible persons p.

Design and Analysis of Algorithms

Can we do better?

Faster approach
● Put all the members in a list (arbitrary order)

○ Pick the first two members of the list, let p, q.

○ Query if p knows q.

Design and Analysis of Algorithms

Faster approach
● Put all the members in a list (arbitrary order)

○ Pick the first two members of the list, let p, q.

○ Query if p knows q.

2 Cases:

1. p knows q. Then p is not a celebrity (remove p from the list).

2. p does not know q. Then q is not a celebrity (remove q from the list).

Design and Analysis of Algorithms

Faster approach
● Put all the members in a list (arbitrary order)

○ Pick the first two members of the list, let p, q.

○ Query if p knows q.

2 Cases:

1. p knows q. Then p is not a celebrity (remove p from the list).

2. p does not know q. Then q is not a celebrity (remove q from the list).

○ Repeat the above process. At every iterate, we remove one person.

Design and Analysis of Algorithms

Faster approach
● Put all the members in a list (arbitrary order)

○ Pick the first two members of the list, let p, q.

○ Query if p knows q.

○ Repeat the above process. At every iterate, we remove one person.

Check if this remaining person is a celebrity.

Design and Analysis of Algorithms

Faster approach
● Put all the members in a list (arbitrary order)

○ Pick the first two members of the list, let p, q.

○ Query if p knows q.

○ Repeat the above process. At every iterate, we remove one person.

Check if this remaining person is a celebrity. Why do you need to check?

Design and Analysis of Algorithms

Faster approach
● Put all the members in a list (arbitrary order)

○ Pick the first two members of the list, let p, q.

○ Query if p knows q.

○ Repeat the above process. At every iterate, we remove one person.

Check if this remaining person is a celebrity. Why do you need to check?

Design and Analysis of Algorithms

Case study II: Finding the heaviest
and lightest item

Design and Analysis of Algorithms

● We are given a set of n items of different weights:

𝑥1, 𝑥2, … , 𝑥𝑛

● Goal: Find the heaviest and the lightest item.

Case study II: Finding the heaviest
and lightest item

Design and Analysis of Algorithms

● We are given a set of n items of different weights:

𝑥1, 𝑥2, … , 𝑥𝑛

● Goal: Find the heaviest and the lightest item.

● You are allowed to only compare 𝑥𝑖 with 𝑥𝑗 for various choices of 𝑖, 𝑗.

 Brute force approach

Design and Analysis of Algorithms

● Find the heaviest item among 𝑥1, 𝑥2, … , 𝑥𝑛. How many comparisons?

 Brute force approach

Design and Analysis of Algorithms

● Find the heaviest item among 𝑥1, 𝑥2, … , 𝑥𝑛. 𝑛 − 1

 Brute force approach

Design and Analysis of Algorithms

● Find the heaviest item among 𝑥1, 𝑥2, … , 𝑥𝑛. 𝑛 − 1

● Find the lightest item among 𝑥1, 𝑥2, … , 𝑥𝑛. How many comparisons?

 Brute force approach

Design and Analysis of Algorithms

● Find the heaviest item among 𝑥1, 𝑥2, … , 𝑥𝑛. 𝑛 − 1

● Find the lightest item among 𝑥1, 𝑥2, … , 𝑥𝑛. 𝑛 − 1

 Brute force approach

Design and Analysis of Algorithms

● Find the heaviest item among 𝑥1, 𝑥2, … , 𝑥𝑛. 𝑛 − 1

● Find the lightest item among 𝑥1, 𝑥2, … , 𝑥𝑛. 𝑛 − 1

 Total number of comparisons 2(𝑛 − 1).

 Brute force approach

Design and Analysis of Algorithms

● Find the heaviest item among 𝑥1, 𝑥2, … , 𝑥𝑛. 𝑛 − 1

● Find the lightest item among 𝑥1, 𝑥2, … , 𝑥𝑛. 𝑛 − 1

 Total number of comparisons 2(𝑛 − 1). You may get 2𝑛 − 3.

Can we do better?

 Faster approach

Design and Analysis of Algorithms

● Compare 𝑥1 with 𝑥2, 𝑥3 with 𝑥4 etc (like round 1 of knock-out tournament).

Total number of comparisons
𝑛

2
.

 Faster approach

Design and Analysis of Algorithms

● Compare 𝑥1 with 𝑥2, 𝑥3 with 𝑥4 etc (like round 1 of knock-out tournament).

Total number of comparisons
𝑛

2
.

● Find heaviest among winners of round 1.

 Faster approach

Design and Analysis of Algorithms

● Compare 𝑥1 with 𝑥2, 𝑥3 with 𝑥4 etc (like round 1 of knock-out tournament).

Total number of comparisons
𝑛

2
.

● Find heaviest among winners of round 1.
𝑛

2
− 1

 Faster approach

Design and Analysis of Algorithms

● Compare 𝑥1 with 𝑥2, 𝑥3 with 𝑥4 etc (like round 1 of knock-out tournament).

Total number of comparisons
𝑛

2
.

● Find heaviest among winners of round 1.
𝑛

2
− 1

● Find lightest among losers of round 1.
𝑛

2
− 1

 Faster approach

Design and Analysis of Algorithms

● Compare 𝑥1 with 𝑥2, 𝑥3 with 𝑥4 etc (like round 1 of knock-out tournament).

Total number of comparisons
𝑛

2
.

● Find heaviest among winners of round 1.
𝑛

2
− 1

● Find lightest among losers of round 1.
𝑛

2
− 1

comparisons
𝟑𝒏

𝟐
 - 2

	Slide 1: Lecture 1
	Slide 2: Course staff
	Slide 3: Course material
	Slide 4: Grading
	Slide 5: Letter Grades
	Slide 6: Submitting Assignments
	Slide 7: Exam Dates and Rules
	Slide 8: Academic Integrity Policy
	Slide 9: Collaboration with classmates
	Slide 10: To-Do This Week
	Slide 11: What is algorithm
	Slide 12: What is algorithm
	Slide 13: Case study I: Finding a Celebrity
	Slide 14: What is a celebrity?
	Slide 15: What is a celebrity?
	Slide 16: Brute force approach
	Slide 17: Brute force approach
	Slide 18: Brute force approach
	Slide 19: Brute force approach
	Slide 20: Brute force approach
	Slide 21: Brute force approach
	Slide 22: Faster approach
	Slide 23: Faster approach
	Slide 24: Faster approach
	Slide 25: Faster approach
	Slide 26: Faster approach
	Slide 27: Faster approach
	Slide 28: Case study II: Finding the heaviest and lightest item
	Slide 29: Case study II: Finding the heaviest and lightest item
	Slide 30: Brute force approach
	Slide 31: Brute force approach
	Slide 32: Brute force approach
	Slide 33: Brute force approach
	Slide 34: Brute force approach
	Slide 35: Brute force approach
	Slide 36: Faster approach
	Slide 37: Faster approach
	Slide 38: Faster approach
	Slide 39: Faster approach
	Slide 40: Faster approach

