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NP-complete problems, reductions



Example of a reduction

• The 3-SAT problem is NP-complete

• The 𝐾-Graph Independent Set (𝐾-GIS) problem is 
in NP but we don’t know if it is hard

• Now, let’s reduce the 3-SAT to 𝐾-GIS using a poly-
reduction.

• Hard part: find the reduction! how to write 3-SAT 
as a special case of 𝐾-GIS.



The 3-SAT problem

• SAT (Satisfiability): given a boolean formula, can you make

it TRUE;

• 3-SAT: AND clauses, each clause contains 3 variables by OR.

For example:

• Cook’s Theorem: 3-SAT is NP-complete

0,0,1 321 === xxx

)()()()( 321321321321 xxxxxxxxxxxx 



Κ-Coloring

• Given a graph 𝐺(𝑉, 𝐸), color the vertices using at most 𝐾colors so that all 
neighboring vertices do not share the same color!

• For example, the following graph can be colored with 4 colors.

• Question: Is K-Coloring NP-complete?
Answer: YES
• First K-Coloring belongs to NP: We can verify in polynomial time if all 

edges have incident vertices with different colors (in Θ(𝐸 + 𝑉) time).
• Then reduce (polynomial reduction) 3-SAT to K-Coloring.



Goal: We want to solve the 3-SAT problem by making use of an

“oracle” that can answer any instance of the 3-colorability problem.

Thought process:

• The input to the 3-SAT problem is a Boolean expression, e.g.
𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥5 ∧ 𝑥1 ∨ 𝑥3 ∨ 𝑥5 .

• The input to the 3-colorability problem is a graph.

• So for the reduction, we have to transform a Boolean expression
𝐸 into a suitable graph 𝐺.

Question: How do we relate a Boolean expression to 3-colorability?

Observation: For a Boolean expression 𝐸 to be satisfiable, every 
clause (𝑥 ∨ 𝑦 ∨ 𝑧) in 𝐸 must evaluate to 𝑡𝑟𝑢𝑒. [Here, 𝑥, 𝑦, 𝑧 are literals.]

• This means 𝑥, 𝑦, 𝑧 cannot all be assigned 𝑓𝑎𝑙𝑠𝑒.

Reduction of 3-SAT to 3-colorability
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Key Idea 1: Consider a 3-coloring of the following graph:

If vertices     ,     have distinct colors, then the color of the “output 
vertex”      can be chosen to be any of the three colors.

If vertices     ,     have the same color, then the color of the “output 
vertex”      must also be that same color.

Reduction of 3-SAT to 3-colorability
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Let’s now consider the satisfiability of a single clause (𝑥 ∨ 𝑦 ∨ 𝑧).

Key Idea 2: Consider a 3-coloring of the following “combined graph”, 
using three colors 𝐓, 𝐅, 𝐍 (for “true”, “false”, “neutral”).

Color each of the vertices     ,    ,     either 𝐓 or 𝐅, depending on 
whether we assign the corresponding variable to be 𝑡𝑟𝑢𝑒 or 𝑓𝑎𝑙𝑠𝑒.

Key Observation 1: As long as     ,    ,     are not all colored 𝐅, then we 
can always choose the final “output vertex”     to have color 𝐓.

Key Observation 2: If all three     ,    ,     are colored 𝐅, then the final 
“output vertex” must have color 𝐅.

Reduction of 3-SAT to 3-colorability
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Key Idea 3: Consider the following “gadget graph”:

Let each clause (𝑥 ∨ 𝑦 ∨ 𝑧) be associated to a gadget graph.

• The three literals 𝑥, 𝑦, 𝑧 in (𝑥 ∨ 𝑦 ∨ 𝑧) shall correspond to the
“input vertices” of this gadget graph.

• The final “output vertex” of this gadget graph shall be connected
to two other vertices with colors 𝐅 and 𝐍 respectively.

Key Observation: This gadget graph has a 3-coloring if and only if 
the vertices     ,    ,      do not all have color 𝐅.

Reduction of 3-SAT to 3-colorability
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Example: The Boolean expression “ 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ” is transformed 
to the following graph:

Reduction of 3-SAT to 3-colorability
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Reduction of 3-SAT to 3-colorability
• Gadget graph for (𝑥 ∨ 𝑦 ∨ 𝑧):

• Example:

𝑢 ∨ ҧ𝑣 ∨ 𝑤 ∧ (𝑣 ∨ 𝑥 ∨ ത𝑦)



Reduction of 3-SAT to 3-colorability
• Observe that the reduction is polynomial!

Claim 1: 𝜙 is satisfiable implies constructed Graph is 3-colorable.

Proof:

• If 𝑥𝑖 variable is assigned True, color vertex 𝑥𝑖 T and ҧ𝑥𝑖 F.

• For each clause (𝑥 ∨ 𝑦 ∨ 𝑧) at least one of 𝑥, 𝑦, 𝑧 is colored T.
Graph gadget for clause (𝑥 ∨ 𝑦 ∨ 𝑧) can be 3-colored such
that output is color is T.

• Therefore, no two neighboring vertices have the same color
and we used colors T, F, N.



Reduction of 3-SAT to 3-colorability
Claim 2: Constructed Graph is 3-colorable (T, F, N) implies 𝜙 
is satisfiable.

Proof:

• Nodes True, False, Neutral use colors T, F, N(need all three)

• If 𝑥𝑖 is colored T then set variable 𝑥𝑖 to be True, this is a
truth assignment.

• Consider any clause (𝑥 ∨ 𝑦 ∨ 𝑧). It cannot be that all 𝑥, 𝑦, 𝑧
are False. If so, the output of Graph gadget for  (𝑥 ∨ 𝑦 ∨ 𝑧)
has to be colored F but output is connected to nodes
Neutral and False!



𝐾-Graph Independent Set (𝐾-IS)

• Set of 𝐾 nodes, all pairs are NOT adjacent to each other
• For example, the following blue nodes are 4-IS (𝐾=4)

• Question: Is 𝐾-IS NP-complete?
Answer: YES
• First 𝐾-IS belongs to NP: We can verify in polynomial time if a set of

K nodes are not adjacent to each other (in Θ(𝐾2) time).
• Then reduce (polynomial reduction) 3-SAT to 𝐾-IS.



Reduction of 3-SAT to Κ-IS
Given a formula 𝜙 with 𝑛 literals and 𝑚 clauses that we want to check if 
it satisfiable.

Construct a graph 𝐺(𝑉, 𝐸) as follows: 

• For each clause (𝑥 ∨ 𝑦 ∨ 𝑧) in 𝜙, create three new vertices, one for
each variable, and link all the vertices 𝑥, 𝑦 , 𝑥, 𝑧 , 𝑦, 𝑧 .

• Link each vertex (literal) 𝑥𝑖 with all its the corresponding negations.
• The construction can happen in polynomial time since V = 3𝑚, 

E ≤ 3𝑚 + 2𝑛2

• 𝜙 is satisfiable if and only if there exists an IS of size 𝑚!



Reduction of 3-SAT to Κ-IS

𝜙 ≔ (𝑥1 ∨ ǉ𝑥2 ∨ ǉ𝑥3) ∧ ( ǉ𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ ( ǉ𝑥1 ∨ 𝑥2 ∨ ǉ𝑥3) ∧ (𝑥1 ∨ ǉ𝑥2 ∨ 𝑥3)
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Vertex Cover (VC)

• Vertex Cover (VC):  is there a subset of at most k
vertices, such that it connect to all edges?

• Question: VC is NP Complete?
– Answer: YES

• First, it belongs in NP (why?)

• Then Reduce 3-SAT to VC (or there is something simpler?)

e.g. in this graph, 4 of the 8
vertices is enough to cover



Reduction of K-IS to Vertex Cover (VC)

• Given a graph 𝐺(𝑉, 𝐸), with V = n, suppose
there exists an Independent Set of size 𝑘.

• Lemma: If 𝐺(𝑉, 𝐸), is a graph, then set of vertices
𝑆 is an independent set if and only if 𝑉 − 𝑆 is a
vertex cover.

Proof: Let 𝑆 be an independent set, and 𝑒 = (𝑢, 𝑣)
be some edge. Only one of 𝑢, 𝑣 can be in 𝑆. Hence, 
at least one of 𝑢, 𝑣 is in 𝑉 − 𝑆. So, 𝑉 − 𝑆 is a 
vertex cover. The other direction is similar.



CLIQUE

• K-clique:  k vertices, all vertices are adjacent to 
each other

– E.g. both of these are 4-CLIQUE

• CLIQUE Problem: in a graph, does k-clique exists?

• Question: CLIQUE is NP-Complete?

– Answer: YES 

• First, it belongs in NP (why?)

• Then, reduce Independent set to CLIQUE



Reduction of IS to CLIQUE

• Reduce Independent set (IS) to CLIQUE

– Complement a graph!

– CLIQUE become IS, IS become CLIQUE

– (most reduction are complicated, this is exceptionally 
simple…)



Set Cover

• Set Cover: Given a set 𝑈 of elements and a
collection of sets 𝑆1 𝑆2 𝑆3 … 𝑆𝑚 subsets of 𝑈. Is
there a collection of at most k sets, whose
union is 𝑈?



Reduction of VC to Set Cover

• Question: Set Cover is NP-Complete?

– Answer: YES 

• First, show that is NP (Easy)

• Then, prove that vertex cover can reduce to set cover.



Reduction of VC to Set Cover

• Let 𝐺 = (𝑉, 𝐸) and 𝑘 be an instance of vertex 
cover

• Now, 

– 𝑈 = 𝐸 (set of edges)

– Create set of 𝑆1, 𝑆2, 𝑆3… .

• 𝑆1 = all edges adjacent to node 1

• 𝑆2 = all edges adjacent to node 2

• Etc

• Conclusion: If G has a vertex cover of size ≤ 𝑘, 
then 𝑈 has a set cover ≤ 𝑘.



Subset Sum
• Subset Sum: (Recall the Reformulation of the

partition problem!) Given a set 𝑆 of integers and a
target integer 𝑡, does there exist 𝑆′ ⊆ 𝑆
with σ𝑥∈𝑆′ 𝑥 = 𝑡 .

• Recall that Subset Sum is reduced to Knapsack!

• Question: Subset Sum is NP-Complete?
Answer: YES

• First, it belongs in NP (why?).
• Then, reduce VC to Subset Sum.



Reduction of VC to Subset Sum
• Let 𝐺 = (𝑉, 𝐸), with V = 𝑛, E = 𝑚 and and

assume that has a VC of size 𝑘. Number the vertices 
from 0 to 𝑛 − 1 and the edges from 0 to 𝑚 − 1. 

• Let 𝑆 = 𝑥0, … , 𝑥𝑛−1 ∪ {𝑦0, … , 𝑦𝑚−1}. Each 𝑥𝑖
consists of 𝑚 + 1 digits (in base 10) and can be 
written as 𝑥𝑖,𝑚𝑥𝑖,𝑚−1. . . 𝑥𝑖,0. The digit 𝑥𝑖,𝑚 is always 
1. Each remaining 𝑥𝑖,𝑗 is 1 if vertex 𝑖 is an endpoint of 
edge 𝑗, 0 otherwise. 

• Each 𝑦𝑖 has 𝑖 + 1 digits: a 1 followed by 𝑖 0’s. Finally, 
let 𝑡 be the base 10 representation of the integer 𝑘
followed by 𝑚 2’s.



Reduction of VC to Subset Sum



Reduction of VC to Subset Sum
Graph has VC of size 𝑘 implies that there is a subset of sum 𝑘.

Proof.
Assume the graph has a VC 𝑉0 of size 𝑘. Let 
𝑆0 = {𝑥𝑖 | 𝑖 ∈ 𝑉0 } ∪ {𝑦𝑖 | 𝑜𝑛𝑙𝑦 𝑜𝑛𝑒 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑒𝑑𝑔𝑒 𝑖 ∈ 𝑆0 }. 

Since there are three 1’s in positions 0 through 𝑚 − 1, there will be 
no carries from those positions. The choice of 𝑆0 items guarantees 
each of these digit positions has sum 2, as required by 𝑡. Since 
|𝑉0| = 𝑘, the 𝑥𝑖’s in 𝑆0 will contribute exactly 𝑘 1’s in position 𝑚
for a total of 𝑘.



Reduction of VC to Subset Sum
There is a subset of sum 𝑘 imples the graph has VC of size 𝑘

Proof.
Assume 𝑆0 is a set of numbers with sum 𝑘. Let 𝑉0 be the set of all 
vertices 𝑖 for which 𝑥𝑖 ∈ 𝑆0. 

Since there are no carries in the lowest 𝑚 digits, there must be
exactly 𝑘 vertices in 𝑉0 (to get 𝑡 to start with 𝑘) and each edge must 
have at least one endpoint in 𝑉0 (observe that if edge 𝑖 has no 
endpoints in 𝑉0 then 𝑆0 has only a single 1 among all the 𝑖-th digits 
and the sum of 𝑆0 cannot have a 2 in that position).



Web of reductions of the Lecture



This is the last lecture of CS161! 




