
CS 161 Design and Analysis of Algorithms

Ioannis Panageas

Lecture 14
Maxflow, bipartite matching

© 2015 Goodrich and Tamassia Maximum Flow 2

Flow Network
A flow network (or just network) N consists of
◼ A weighted digraph G with nonnegative integer edge weights,

where the weight of an edge e is called the capacity c(e) of e

◼ Two distinguished vertices, s and t of G, called the source and sink,
respectively, such that s has no incoming edges and t has no
outgoing edges.

Example:

w
s

v

u

t

z

3

9

1

3

7

6

51
5

2

© 2015 Goodrich and Tamassia Maximum Flow 3

Flow
A flow f for a network N is is an assignment of an integer value
f(e) to each edge e that satisfies the following properties:

Capacity Rule: For each edge e, 0  f (e)  c(e)

Conservation Rule: For each vertex v  s,t

where E-(v) and E+(v) are the incoming and outgoing edges of v, resp.

The value of a flow f , denoted |f|, is the total flow from the source,

which is the same as the total flow into the sink

Example:


+- 

=
)()(

)()(
vEevEe

efef

w
s

v

u

t

z

3/3

2/9

1/1

1/3

3/7

2/6

4/51/1
3/5

2/2

© 2015 Goodrich and Tamassia Maximum Flow 4

Maximum Flow
A flow for a network N is

said to be maximum if its
value is the largest of all
flows for N

The maximum flow
problem consists of
finding a maximum flow
for a given network N

Applications

◼ Hydraulic systems

◼ Electrical circuits

◼ Traffic movements

◼ Freight transportation

w
s

v

u

t

z

3/3

2/9

1/1

1/3

3/7

2/6

4/51/1
3/5

2/2

w
s

v

u

t

z

3/3

2/9

1/1

3/3

3/7

4/6

4/51/1
3/5

2/2

Flow of value 8 = 2 + 3 + 3 = 1 + 3 + 4

Maximum flow of value 10 = 4 + 3 + 3 = 3 + 3 + 4

© 2015 Goodrich and Tamassia Maximum Flow 5

Cut
A cut of a network N with source s
and sink t is a partition c = (Vs,Vt)
of the vertices of N such that s 
Vs and t  Vt

◼ Forward edge of cut c: origin in Vs

and destination in Vt

◼ Backward edge of cut c: origin in
Vt and destination in Vs

Flow f(c) across a cut c: total flow
of forward edges minus total flow
of backward edges

Capacity c(c) of a cut c: total
capacity of forward edges

Example:
◼ c(c) = 24

◼ f(c) = 8

w
s

v

u

t

z

3

9

1

3

7

6

51
5

2

c

w
s

v

u

t

z

3/3

2/9

1/1

1/3

3/7

2/6

4/51/1
3/5

2/2

c

© 2015 Goodrich and Tamassia Maximum Flow 6

Flows and Cuts
Lemma:

The flow f(c) across any
cut c is equal to the flow
value |f|

Lemma:

The flow f(c) across a cut
c is less than or equal to
the capacity c(c) of the cut

Theorem:

The value of any flow is
less than or equal to the
capacity of any cut, i.e.,
for any flow f and any cut
c, we have

|f|  c(c)

w
s

v

u

t

z

3/3

2/9

1/1

1/3

3/7

2/6

4/5
1/13/5

2/2

c1 c2

c(c1) = 12 = 6 + 3 + 1 + 2

c(c2) = 21 = 3 + 7 + 9 + 2

|f| = 8

© 2015 Goodrich and Tamassia Maximum Flow 7

Augmenting Path
Consider a flow f for a
network N

Let e be an edge from u to v:
◼ Residual capacity of e from

u to v: Df(u, v) = c(e) - f (e)

◼ Residual capacity of e from
v to u: Df(v, u) = f (e)

Let p be a path from s to t
◼ The residual capacity Df(p)

of p is the smallest of the
residual capacities of the
edges of p in the direction
from s to t

A path p from s to t is an
augmenting path if Df(p) > 0

w
s

v

u

t

z

3/3

2/9

1/1

1/3

2/7

2/6

4/5
0/12/5

2/2

p

Df(s,u) = 3

Df(u,w) = 1

Df(w,v) = 1

Df(v,t) = 2

Df(p) = 1

|f| = 7

© 2015 Goodrich and Tamassia Maximum Flow 8

Flow Augmentation
Lemma:

Let p be an augmenting path
for flow f in network N. There
exists a flow f for N of value

| f | = |f | + Df(p)

Proof:

We compute flow f by

modifying the flow on the
edges of p

◼ Forward edge:
f (e) = f(e) + Df(p)

◼ Backward edge:
f (e) = f(e) - Df(p)

w
s

v

u

t

z

3/3

2/9

1/1

1/3

2/7

2/6

4/5
0/12/5

2/2

p

Df(p) = 1

w
s

v

u

t

z

3/3

2/9

0/1

2/3

2/7

2/6

4/5
1/13/5

2/2

p

| f | = 7

| f | = 8

© 2015 Goodrich and Tamassia Maximum Flow 9

The Ford-Fulkerson Algorithm
Initially, f(e) = 0 for each
edge e

Repeatedly

◼ Search for an
augmenting path p

◼ Augment by Df(p) the

flow along the edges
of p

A specialization of DFS
(or BFS) searches for an
augmenting path

◼ An edge e is traversed
from u to v provided
Df(u, v) > 0

© 2015 Goodrich and Tamassia Maximum Flow 10

Max-Flow and Min-Cut
Termination of Ford-
Fulkerson’s algorithm
◼ There is no augmenting path

from s to t with respect to the
current flow f

Define
Vs set of vertices reachable from s

by augmenting paths

Vt set of remaining vertices

Cut c = (Vs,Vt) has capacity
c(c) = |f|

◼ Forward edge: f(e) = c(e)

◼ Backward edge: f(e) = 0

Thus, flow f has maximum
value and cut c has minimum
capacity

w
s

v

u

t

z

3/3

1/9

1/1

3/3

4/7

4/6

3/5
1/13/5

2/2

c

Theorem:

The value of a maximum
flow is equal to the
capacity of a minimum cut

c(c) = | f | = 10

© 2015 Goodrich and Tamassia Maximum Flow 11

Example (1)

w
s

v

u

t

z

0/3

0/9

0/1

0/3

1/7

0/6

0/5
1/11/5

0/2

w
s

v

u

t

z

1/3

0/9

0/1

0/3

1/7

0/6

1/5
0/11/5

1/2

w
s

v

u

t

z

1/3

0/9

1/1

0/3

2/7

1/6

1/5
0/11/5

1/2

w
s

v

u

t

z

2/3

0/9

0/1

1/3

2/7

1/6

1/5
0/11/5

1/2

© 2015 Goodrich and Tamassia Maximum Flow 12

Example (2)

w
s

v

u

t

z

2/3

0/9

0/1

3/3

2/7

3/6

1/5
0/11/5

1/2

w
s

v

u

t

z

3/3

1/9

0/1

3/3

2/7

3/6

2/5
0/11/5

1/2

w
s

v

u

t

z

3/3

1/9

1/1

3/3

3/7

4/6

2/5
0/11/5

1/2

w
s

v

u

t

z

3/3

1/9

1/1

3/3

4/7

4/6

3/5
1/13/5

2/2

two steps

© 2015 Goodrich and Tamassia Maximum Flow 13

Analysis
In the worst case, Ford-
Fulkerson’s algorithm
performs |f*| flow
augmentations, where f* is a
maximum flow

Example
◼ The augmenting paths found

alternate between p1 and p2

◼ The algorithm performs 100
augmentations

Finding an augmenting path
and augmenting the flow
takes O(n + m) time

The running time of Ford-
Fulkerson’s algorithm is
O(|f*|(n + m))

t
s

v

u

1/1

1/500/50

1/50 0/50

t
s

v

u

0/1

1/501/50

1/50 1/50

p1

p2

Maximum Bipartite Matching
In the maximum bipartite matching problem, we are
given a connected undirected graph with the following
properties:

◼ The vertices of G are partitioned into two sets, X and Y.

◼ Every edge of G has one endpoint in X and the other endpoint
in Y.

Such a graph is called a bipartite graph.

A matching in G is a set of edges that have no
endpoints in common—such a set “pairs” up vertices
in X with vertices in Y so that each vertex has at most
one “partner” in the other set.

The maximum bipartite matching problem is to find a
matching with the greatest number of edges.

© 2015 Goodrich and Tamassia Maximum Flow 14

Reduction to Max Flow

Given a flow f for H, we use f to define a set M of edges of G
using the rule that an edge e is in M whenever f(e) = 1.

© 2015 Goodrich and Tamassia Maximum Flow 15

Example and Analysis

Running time is O(nm), because G is
connected.

© 2015 Goodrich and Tamassia Maximum Flow 16

