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Flow Network
A flow network (or just network) N consists of
◼ A weighted digraph G with nonnegative integer edge weights, 

where the weight of an edge e is called the capacity c(e) of e

◼ Two distinguished vertices, s and t of G, called the source and sink, 
respectively, such that s has no incoming edges and t has no 
outgoing edges.

Example:
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Flow
A flow f for a network N is is an assignment of an integer value 
f(e) to each edge e that satisfies the following properties:

Capacity Rule: For each edge e,  0  f (e)  c(e)

Conservation Rule: For each vertex v  s,t

where E-(v) and E+(v) are the incoming and outgoing edges of v, resp. 

The value of a flow f , denoted |f|, is the total flow from the source, 

which is the same as the total flow into the sink 

Example:
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Maximum Flow
A flow for a network N is 

said to be maximum if its 
value is the largest of all 
flows for N

The maximum flow 
problem consists of 
finding a maximum flow 
for a given network N

Applications

◼ Hydraulic systems

◼ Electrical circuits

◼ Traffic movements

◼ Freight transportation
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Flow of value 8 = 2 + 3 + 3 = 1 + 3 + 4

Maximum flow of value 10 = 4 + 3 + 3 = 3 + 3 + 4
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Cut
A cut of a network N with source s
and sink t is a partition c = (Vs,Vt)
of the vertices of N such that s 
Vs and t  Vt

◼ Forward edge of cut c: origin in Vs

and destination in Vt

◼ Backward edge of cut c: origin in 
Vt and destination in Vs

Flow f(c) across a cut c: total flow 
of forward edges minus total flow 
of backward edges

Capacity c(c) of a cut c: total 
capacity of forward edges

Example:
◼ c(c) = 24

◼ f(c) = 8
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Flows and Cuts
Lemma:

The flow f(c) across any 
cut c is equal to the flow 
value |f|

Lemma:

The flow f(c) across a cut 
c is less than or equal to 
the capacity c(c) of the cut

Theorem:

The value of any flow is 
less than or equal to the 
capacity of any cut, i.e., 
for any flow f and any cut 
c, we have

|f|  c(c)
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c1 c2

c(c1) = 12 = 6 + 3 + 1 + 2

c(c2) = 21 = 3 + 7 + 9 + 2

|f| = 8
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Augmenting Path
Consider a flow f for a 
network N

Let e be an edge from u to v:
◼ Residual capacity of e from 

u to v: Df(u, v) = c(e) - f (e)

◼ Residual capacity of e from 
v to u: Df(v, u) = f (e)

Let p be a path from s to t
◼ The residual capacity Df(p)

of p is the smallest of the 
residual capacities of the 
edges of p in the direction 
from s to t

A path p from s to t is an 
augmenting path if Df(p) > 0
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Df(s,u) = 3

Df(u,w) = 1

Df(w,v) = 1

Df(v,t) = 2

Df(p) = 1

|f| = 7
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Flow Augmentation
Lemma:

Let p be an augmenting path 
for flow f in network N. There 
exists a flow f for N of value

| f | = |f | + Df(p)

Proof:

We compute flow f by 

modifying the flow on the 
edges of p

◼ Forward edge:
f (e) = f(e) + Df(p)

◼ Backward edge:
f (e) = f(e) - Df(p)
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Df(p) = 1
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The Ford-Fulkerson Algorithm
Initially, f(e) = 0 for each 
edge e

Repeatedly

◼ Search for an 
augmenting path p

◼ Augment by Df(p) the 

flow along the edges 
of p

A specialization of DFS 
(or BFS) searches for an 
augmenting path

◼ An edge e is traversed 
from u to v provided 
Df(u, v) > 0
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Max-Flow and Min-Cut
Termination of Ford-
Fulkerson’s algorithm
◼ There is no augmenting path 

from s to t with respect to the 
current flow f

Define
Vs set of vertices reachable from s

by augmenting paths

Vt set of remaining vertices 

Cut c = (Vs,Vt) has capacity
c(c) = |f|

◼ Forward edge: f(e) = c(e)

◼ Backward edge: f(e) = 0

Thus, flow f has maximum 
value and cut c has minimum 
capacity
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Theorem:

The value of a maximum 
flow is equal to the 
capacity of a minimum cut

c(c) = | f | = 10
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Example (1)
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Example (2)
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Analysis
In the worst case, Ford-
Fulkerson’s algorithm 
performs |f*| flow 
augmentations, where f* is a 
maximum flow

Example
◼ The augmenting paths found 

alternate between p1 and p2

◼ The algorithm performs 100 
augmentations

Finding an augmenting path 
and augmenting the flow 
takes O(n + m) time

The running time of Ford-
Fulkerson’s algorithm is 
O(|f*|(n + m))
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Maximum Bipartite Matching
In the maximum bipartite matching problem, we are 
given a connected undirected graph with the following 
properties:

◼ The vertices of G are partitioned into two sets, X and Y.

◼ Every edge of G has one endpoint in X and the other endpoint 
in Y.

Such a graph is called a bipartite graph. 

A matching in G is a set of edges that have no 
endpoints in common—such a set “pairs” up vertices 
in X with vertices in Y so that each vertex has at most 
one “partner” in the other set. 

The maximum bipartite matching problem is to find a 
matching with the greatest number of edges.
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Reduction to Max Flow

Given a flow f for H, we use f to define a set M of edges of G 
using the rule that an edge e is in M whenever f(e) = 1.
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Example and Analysis

Running time is O(nm), because G is 
connected.
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