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Flow Network

# A flow network (or just network) N consists of

= A weighted digraph G with nonnegative integer edge weights,
where the weight of an edge e is called the capacity c(e) of e

= Two distinguished vertices, s and t of G, called the source and sink,
respectively, such that s has no incoming edges and t has no
outgoing edges.

#® Example:

N
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Flow

L/
# A flow f for a network N is is an assignment of an integer value
f(e) to each edge e that satisfies the following properties:

Capacity Rule: For each edge e, 0<f(e) <c(e)
Conservation Rule: For each vertex v =s,t Z f(e)= Z f(e)

ecE™ (v) ecE™ (v)
where E-(v) and E*(v) are the incoming and outgoing edges of v, resp.

# The value of a flow f, denoted |f|, is the total flow from the source,
which is the same as the total flow into the sink

#® Example:

N
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Maximum Flow

# A flow for a network N is
said to be maximum if its
value is the largest of all
flows for N

#® The maximum flow
problem consists of 512
finding a maximum flow Flowof value8=2+3+3=1+3+4
for a given network N

# Applications

= Hydraulic systems

» Electrical circuits

= Traffic movements

= Freight transportation

N

2/2
Maximum flow of value 10 =4+ 3+ 3 =3+3 + 4

© 2015 Goodrich and Tamassia Maximum Flow 4




Cut

L

N

# A cut of a network N with source s
and sink t is a partition y = (V.,V,)
of the vertices of N such that s e
V,andt € V,

» Forward edge of cut y: origin in V,
and destination in V,

= Backward edge of cut y: origin in
V, and destination in V,

# Flow f(y) across a cut y: total flow
of forward edges minus total flow
of backward edges

# Capacity c(y) of a cut y: total
capacity of forward edges

#® Example:
| C(Z’)=24
= f()=8
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Flows and Cuts

Lemma:

The flow f(y) across any
cut y is equal to the flow
value |f|

Lemma:

The flow f(y) across a cut
z is less than or equal to
the capacity c(y) of the cut

Theorem:

N

] 212\
The value of any flow is ' \
less than or equal to the
capacity of any cut, i.e., C(x1)=12=6+3+1+2
for any flow f and any cut C(g,)=21=3+7+9+2
7, we have 2
Ifl < c(x) f| =8
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Augmenting Path

# Consider a flow f for a
network N

# Let e be an edge from u to v:
= Residual capacity of e from
uto v: A(u, v) =c(e) —f (e)
= Residual capacity of e from
v to u: 4q(v, u) =1 (e)
#® Let #be apath fromstot
= The residual capacity 4:(x)
of xis the smallest of the
residual capacities of the

edges of xin the direction
fromstot

#® A path zfromstotisan
augmenting path if 4(z) >0

N
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Flow Augmentation

Lemma:

Let # be an augmenting path

for flow f in network N. There (s)

exists a flow f/for N of value
| 7] =|f [+ A7)

Proof:

We compute flow f’by
modifying the flow on the
edges of

= Forward edge:
f7(e) = f(e) + A(~)

= Backward edge:
f7(e) = f(e) — A(~)

N

216
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N

# Initially, f(e) = 0 for each
edge e
# Repeatedly
= Search for an
augmenting path =

= Augment by 4/(x) the
flow along the edges
of n

# A specialization of DFS
(or BFS) searches for an
augmenting path

= An edge e is traversed

from u to v provided
A(u,v) >0
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The Ford-Fulkerson Algorithm

Algorithm MaxFlowFordFulkerson(N):
Input: Flow network N = (G, ¢, s, )
Output: A maximum flow f for N

for each edge e € N do
f(e) + 0
stop + false
repeat
traverse (& starting at s to find an augmenting path for f
if an augmenting path  exists then
/I Compute the residual capacity A ¢(m) of w
A+ 400
for eachedge e € m do
if A¢(e) <A then
A Ag(e) 4
for eachedge e € 7 do //push A = Ay() units along 7
if e is a forward edge then <
f(e) + fle) + A
else
f(e) «— f(e) — A // e is a backward edge
else
stop +— true
until stop

/l f is a maximum flow
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Max-Flow and Min-Cut

p
4
# Termination of Ford- Theorem:
Fulkerson' s algorithm The value of a maximum
= There is no augmenting path flow is equal to the
from s to t with respect to the capacity of a minimum cut
current flow f
# Define 2y
V, set of vertices reachable from s

by augmenting paths
V, set of remaining vertices
# Cut y=(V,,V,) has capacity
c(x) = If
= Forward edge: f(e) = c(e)
= Backward edge: f(e) =0 u

. 12/2
# Thus, flow f has maximum /

value and cut y has minimum ~
capacity c(y)=|f|=10
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Example (2)

N

112
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Analysis

N

®

®

®
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In the worst case, Ford-
Fulkerson’ s algorithm
performs |f*| flow
augmentations, where f* is a
maximum flow

Example

= The augmenting paths found
alternate between =, and =,

= The algorithm performs 100
augmentations

Finding an augmenting path

and augmenting the flow
takes O(n + m) time

The running time of Ford-
Fulkerson’s algorithm is
O(|*|(n +m))

Maximum Flow
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Maximum Bipartite Matching

“# In the maximum bipartite matching problem, we are
given a connected undirected graph with the following
properties:

= The vertices of G are partitioned into two sets, X and Y.
= Every edge of G has one endpoint in X and the other endpoint
inY.
# Such a graph is called a bipartite graph.

# A matching in G is a set of edges that have no
endpoints in common—such a set “pairs” up vertices
in X with vertices in Y so that each vertex has at most
one “partner” in the other set.

# The maximum bipartite matching problem is to find a
matching with the greatest number of edges.
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Reduction to Max Flow

N

Let G be a bipartite graph whose vertices are partitioned into sets X and Y. We
create a flow network H such that a maximum flow in H can be immediately con-
verted into a maximum matching in G:

e We begin by including all the vertices of GG in H, plus a new source vertex s
and a new sink vertex .

e Next, we add every edge of G to H, but direct each such edge so that it is
oriented from the endpoint in X to the endpoint in Y. In addition, we insert
a directed edge from s to each vertex in X, and a directed edge from each
vertex in Y to . Finally, we assign to each edge of H a capacity of 1.

# Given a flow f for H, we use f to define a set M of edges of G
using the rule that an edge e is in M whenever f(e) = 1.
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Example and Analysis

N

Figure 16.11: (a) A bipartite graph G. (b) Flow network H derived from & and a
maximum flow in H; thick edges have unit flow and other edges have zero flow.

#Running time is O(nhm), because G is
connected.
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