TxT
alr
U Lecture /

Divide and conquer (cont.),
master theorem, integer
multiplication, maxima set

CS 161 Design and Analysis of Algorithms

loannis Panageas

Application: Maxima Sets

N

4 We can visualize the various trade-offs for optimizing two-
dimensional data, such as points representing hotels according to
their pool size and restaurant quality, by plotting each as a two-
dimensional point, (X, y), where x is the pool size and y is the
restaurant quality score.

@ We say that such a point is a maximum point in a set if there is no
other point, (x’, y’), in that set such that x < x’andy < vy’.

4 The maximum points are the best potential choices based on these
two dimensions and finding all of them is the maxima set problem.

We can efficiently find all 17 e
the maX|ma p0|nts Restaurant

quality

by divide-and-conquer. 7 YT

Here the set is {A,H,I,G,D}.

Pool size

© 2015 Goodrich and Tamassia Divide-and-Conquer 2

Divide-and-Conquer

N

" @ Divide-and conquer is a
general algorithm design
paradigm:

= Divide: divide the input data S in

two or more disjoint subsets S,
Sz’ oo o

2

= Conquer: solve the subproblems

recursively

s Combine: combine the solutions
for S, §,, ..., into a solution for §
The base case for the

recursion are subproblems of
constant size

Analysis can be done using

recurrence equations
© 2015 Goodrich and Tamassia Divide-and-Conquer

N

Merge-sort on an input
sequence S with n
elements consists of
three steps:

= Divide: partition § into
two sequences S, and S,

of about n/2 elements
each

= Conquer: recursively sort
S, and S,
= Combine: merge §, and

S, into a unique sorted
sequence

© 2015 Goodrich and Tamassia Divide-and-Conquer

Merge-Sort Review

Algorithm mergeSort(S)

Input sequence § with n
elements

Output sequence S sorted
according to C

if S.size() > 1
(8, 8,) < partition(S, n/2)
mergeSort(S,)
mergeSort(S,)
S < merge(S,, S,)

Recurrence Equation Analysis e

@ The conquer step of merge-sort consists of merging two sorted
sequences, each with »n/2 elements and implemented by means of
a doubly linked list, takes at most bn steps, for some constant b.

@ Likewise, the basis case (n < 2) will take at » most steps.
@ Therefore, if we let T(n) denote the running time of merge-sort:

N

(b ifn<?2

T(I”l)=< :
2T(n/2)+bn 1tn=z=2

@ We can therefore analyze the running time of merge-sort by
finding a closed form solution to the above equation.

= Thatis, a solution that has 7T(n) only on the left-hand side.

© 2015 Goodrich and Tamassia Divide-and-Conquer

[terative Substitution

N

@ In the iterative substitution, or “plug-and-chug,” technique, we
iteratively apply the recurrence equation to itself and see if we can

find a pattern: T(n) =2T(n/2) +bn
= 22T (n/2%))+b(n/2))+bn
=2°T(n/2%)+2bn
=2°T(n/2%) +3bn
=2'T(n/2%) +4bn

=2'T(n/2") +ibn
Note that base, T(n)=b, case occurs when 2'=n. That is, i = log n.
¢ So, T'(n)=>bn+bnlogn

@ Thus, T(n) is O(n log n).
© 2015 Goodrich and Tamassia Divide-and-Conquer 6

The Recursion Tree

® Draw the recursion tree for the recurrence relation and look for a

N

pattern:
b ifn<?2
I'(n) = .
2T(n/2)+bn ifn=2
depth T's size tme
0 1 n |] bn
I 2 ap [) [) bre

i2’°n/2"[][]|][T‘ br
[/][\][/][\][][][][]

Total time = bn + bnlogn
(last level plus all previous levels)

© 2015 Goodrich and Tamassia Divide-and-Conquer 7

Guess-and-Test Method

@ In the guess-and-test method, we guess a closed form solution
and then try to prove it is true by induction:

b ifn<?2
I'(n)= .
2T (n/2)+bnlogn 1fn=2
@ Guess: T(n) < cn log n.
T'(n)=2T(n/2)+bnlogn
=2(c(n/2)log(n/2))+bnlogn
= cn(logn —log2) + bnlogn

=cnlogn —cn + bnlogn

#® Wrong: we cannot make this last line be less than cn log n

© 2015 Goodrich and Tamassia Divide-and-Conquer 8

Guess-and-Test Method, (cont.)

Recall the recurrence equation:

b ifn<?2
I'(n)= .
2T (n/2)+bnlogn ifn=2

@ Guess #2: T(n) < cn log? n.
T'(n)=2T(n/2)+bnlogn
=2(c(n/2)log*(n/2))+bnlogn
=cn(logn -log2)” +bnlogn
=cnlog” n—-2cnlogn +cn +bnlogn

<cnlog’n
m ifc>Dh. 8

@ So, T(n) is O(n log? n).

@ In general, to use this method, you need to have a good guess
and you need to be good at induction proofs.

© 2015 Goodrich and Tamassia Divide-and-Conquer 9

Master Method

Many divide-and-conquer recurrence equations have
the form:

T(n)={

C ifn<d
al(n/b)+ f(n) 1tn=d
@ The Master Theorem:
1. if f(n)is O(n'*®“ %), then T(n)is O(n'***)
2. if f(n)is O(n'%*log" n), then T(n)is O(n'**“ log"*' n)
3. if f(n)is Qn'®“**), then T(n) is O(f(n)),
provided af (n/b) < of (n) forsomeod <1.

© 2015 Goodrich and Tamassia Divide-and-Conquer 10

Master Method, Example 1

N

/<> The form: T(n) = ¢ itn<d
al'(n/b)+ f(n) ifn=d

@ The Master Theorem:
1. if f(n)is O(n'*®“*), then T(n) is O(n'°**)
2. if f(n)is O(n'"*“ log" n), then T'(n)is O(n'°*** log"*' n)
3. if f(n)is Q(n'"*“**), then T'(n) is O(f(n)),
provided af (n/b) < (n) forsomeod <1.

@® Example:
I'(n)=4T(n/2)+n

Solution: log,a=2, so case 1 says T(n) is O(n?).

© 2015 Goodrich and Tamassia Divide-and-Conquer 11

Master Method, Example 2

N

al'(n/b)+ f(n) ifn=d
@ The Master Theorem:
1. if f(n)is O(n'*®“*), then T(n) is O(n'°**)
2. if f(n)is O(n'"*“ log" n), then T'(n)is O(n'°*** log"*' n)
3. if f(n)is Q(n'"*“**), then T'(n) is O(f(n)),
provided af (n/b) < (n) forsomeod <1.
@® Example:

T'(n)=2T(n/2)+nlogn

Solution: log,a=1, so case 2 says T(n) is O(n log? n).

@ The form: 7, ={ ¢ iftn<d

© 2015 Goodrich and Tamassia Divide-and-Conquer 12

Master Method, Example 3

N

al'(n/b)+ f(n) ifn=d
@ The Master Theorem:
1. if f(n)is O(n'*®“), then T(n) is O(n'°**)
2. if f(n)is O(n'"*“log" n), then T'(n)is O(n'°*** log"*' n)
3. if f(n)is Q(n'"*“**), then T'(n) is O(f(n)),
provided af (n/b) < (n) forsomeod <1.
@® Example:

I'(n)=T(n/3)+nlogn

Solution: log,a=0, so case 3 says T(n) is O(n log n).

® The form: 7, ={ ¢ itn<d

© 2015 Goodrich and Tamassia Divide-and-Conquer 13

Master Method, Example 4

N

/<> The form: T(n) = ¢ itn<d
al'(n/b)+ f(n) ifn=d

@ The Master Theorem:
1. if f(n)is O(n'*®“*), then T(n) is O(n'°**)
2. if f(n)is O(n'"*“ log" n), then T'(n)is O(n'°*** log"*' n)
3. if f(n)is Q(n'"*“**), then T'(n) is O(f(n)),
provided af (n/b) < (n) forsomeod <1.
@® Example:

T(n)=8T(n/2)+n’

Solution: log,a=3, so case 1 says T(n) is O(n3).

© 2015 Goodrich and Tamassia Divide-and-Conquer 14

Master Method, Example 5

N

/<> The form: T(n) = ¢ itn<d
al'(n/b)+ f(n) ifn=d

@ The Master Theorem:
1. if f(n)is O(n'*®“*), then T(n) is O(n'°**)
2. if f(n)is O(n'"*“ log" n), then T'(n)is O(n'°*** log"*' n)
3. if f(n)is Q(n'"*“**), then T'(n) is O(f(n)),
provided af (n/b) < (n) forsomeod <1.
@® Example:

T(n)=9T(n/3)+n’

Solution: log,a=2, so case 3 says T(n) is O(n3).

© 2015 Goodrich and Tamassia Divide-and-Conquer 15

Master Method, Example 6

N

al'(n/b)+ f(n) ifn=d
@ The Master Theorem:
1. if f(n)is O(n'*®“*), then T(n) is O(n'°**)
2. if f(n)is O(n'"*“ log" n), then T'(n)is O(n'°*** log"*' n)
3. if f(n)is Q(n'"*“**), then T'(n) is O(f(n)),
provided af (n/b) < (n) forsomeod <1.
@® Example:

@ The form: 7, ={ ¢ iftn<d

I'(n)=T(n/2)+1 (binary search)

Solution: log,a=0, so case 2 says T(n) is O(log n).

© 2015 Goodrich and Tamassia Divide-and-Conquer 16

Master Method, Example 7

N

/<> The form: T(n) = ¢ itn<d
al'(n/b)+ f(n) ifn=d

@ The Master Theorem:
1. if f(n)is O(n'*®“*), then T(n) is O(n'°**)
2. if f(n)is O(n'"*“ log" n), then T'(n)is O(n'°*** log"*' n)
3. if f(n)is Q(n'"*“**), then T'(n) is O(f(n)),
provided af (n/b) < (n) forsomeod <1.
@® Example:

I'(n)=2T(n/2)+logn (heap construction)

Solution: log,a=1, so case 1 says T(n) is O(n).

© 2015 Goodrich and Tamassia Divide-and-Conquer 17

Sketch of Proof of the Master @@

Theorem

@ Using iterative substitution, let us see if we can find a pattern:
T(n)=aT(n/b)+ f(n)

=a(aT(n/b*))+ f(n/b))+bn
=a’T(n/b*)+af (n/b)+ f(n)
=a’T(n/bY+a’ f(n/b*)+af (n/b)+ f(n)

N

(log, n)-1

=a"*"T(1) + 2 a f(n/b")

(log, n)-1
=n"®T(1) + 2 a'f(n/b)
#® We then distinguish the three cases as
= The first term is dominant
= Each part of the summation is equally dominant
= The summation is a geometric series

© 2015 Goodrich and Tamassia Divide-and-Conquer 18

Integer Multiplication

@ Algorithm: Multiply two n-bit integers I and J.
= Divide step: Split I and J into high-order and low-order bits

I=12""+1
J=J 2"+]
= We can then define I*J by multiplying the parts and adding:
I*J=(1,2"%+1)*(J,2"* +J)
=1,J,2"+1,J2"+1J,2" +1J,

= S0, T(n) = 4T(n/2) + n, which implies T(n) is O(n2).

= But that is no better than the algorithm we learned in grade
school.

© 2015 Goodrich and Tamassia Divide-and-Conquer 19

An Improved Integer
Multiplication Algorithm

@ Algorithm: Multiply two n-bit integers I and J.

= Divide step: Split I and J into high-order and low-order bits
I=12""+1

J=J2"+J,
s Observe that there is a different way to multiply parts:

I*J=1J2"+[U, -I)J, -J)+1,J, +1J 12" +1J,
=1,J2"+[(,J -1J, -1J, +1J)+1J, +1J 12" +1J,
=1,J2"+(,J, +1J,)2"*+1J,

= S0, T(n) = 3T(n/2) + n, which implies T(n) is O(n'°9,3), by
the Master Theorem.
= Thus, T(n) is O(n1-283),
© 2015 Goodrich and Tamassia Divide-and-Conquer 20

Maxima Set Problem Statement

» We have a database of hotels.

» Each hotel has:
» apool size (x-coordinate)

» quality of restaurant (y-coordinate)

» Assume all coordinates distinct

» Want hotel with largest pool and best restaurant
Might not be a unique hotel.
» One might have largest pool, other best restaurant.

» Return the set that aren’t wrong.
» Any where no other hotel has both larger pool and
better restuarant.

Maxima Set Example

(Y

O NWRUIO~N 0 © O

EEEVENRRE!
Pool size

Minima Set Brute Force

Sort hotels along any dimension
fori=1—n—1do
forj=i+1— ndo
if A; has larger pool and better food than A;
Remove A;
return All hotels that we did not remove

» This is O(n?).

Beginning Divide and Conquer

MaximaSet (S)
if n <1 then
return S
p < median point in S by x-coordinate
L < points less than p

G < points greater than or equal to p
M; <+ MaximaSet (L)
M, < MaximaSet (G)

» return My U My?

6

Example revisited

[y

Quality
OHRHNWAUIO~N®MOO
[]

0123456780910
Pool size

» From M; U M,, which point(s) belong for sure?

7

Finding a correct recombine

MaximaSet (S)
if n <1 then
return S

p < median point in S by x-coordinate
L < points less than p

G < points greater than or equal to p
M; <+ MaximaSet (L)
M, < MaximaSet (G)

» return My U My?
» How do | recombine correctly?

Improved Recombine

M; < MaximaSet (L)
M, < MaximaSet (G)
for each a € M;do
for each b € M, do
if a better than b then
remove b from M,

» How can we improve the “recombine” step?

» What is the resulting running time?

Example for the Combine Step

Dominance point
from the right

i===9

.’

————pm—————

T--

F--1-----=-----49

Rt EEREY

23

Divide-and-Conquer

© 2015 Goodrich and Tamassia

Analysis

N

" @ In either case, the rest of the non-recursive steps can
be performed in O(n) time, so this implies that,
ignoring floor and ceiling functions (as allowed by the
analysis of Exercise C-11.5), the running time for the
divide-and-conquer maxima-set algorithm can be
specified as follows (where b is a constant):

(b ifn<?2
2T (n/2)+bn 1fn=z2

@ Thus, according to the Master Theorem, this algorithm
runs in O(n log n) time.

T(I”l)=<

© 2015 Goodrich and Tamassia Divide-and-Conquer 26

	2022_01W_161___Slides__1_.pdf
	Beginning Divide and Conquer

