
Lecture 7
 Divide and conquer (cont.),

master theorem, integer
multiplication, maxima set

CS 161 Design and Analysis of Algorithms
Ioannis Panageas

© 2015 Goodrich and Tamassia

Application: Maxima Sets
We can visualize the various trade-offs for optimizing two-
dimensional data, such as points representing hotels according to
their pool size and restaurant quality, by plotting each as a two-
dimensional point, (x, y), where x is the pool size and y is the
restaurant quality score.
We say that such a point is a maximum point in a set if there is no
other point, (x′, y′), in that set such that x ≤ x′ and y ≤ y′.
The maximum points are the best potential choices based on these
two dimensions and finding all of them is the maxima set problem.

Divide-and-Conquer 2

We can efficiently find all
the maxima points

by divide-and-conquer.
Here the set is {A,H,I,G,D}.

© 2015 Goodrich and Tamassia Divide-and-Conquer 3

Divide-and-Conquer
Divide-and conquer is a
general algorithm design
paradigm:
n Divide: divide the input data S in

two or more disjoint subsets S1,
S2, …

n Conquer: solve the subproblems
recursively

n Combine: combine the solutions
for S1, S2, …, into a solution for S

The base case for the
recursion are subproblems of
constant size
Analysis can be done using
recurrence equations

© 2015 Goodrich and Tamassia Divide-and-Conquer 4

Merge-Sort Review
Merge-sort on an input
sequence S with n
elements consists of
three steps:
n  Divide: partition S into

two sequences S1 and S2
of about n/2 elements
each

n  Conquer: recursively sort
S1 and S2

n  Combine: merge S1 and
S2 into a unique sorted
sequence

Algorithm mergeSort(S)
 Input sequence S with n
 elements
 Output sequence S sorted

 according to C
if S.size() > 1

 (S1, S2) ← partition(S, n/2)
 mergeSort(S1)
 mergeSort(S2)
 S ← merge(S1, S2)

© 2015 Goodrich and Tamassia Divide-and-Conquer 5

Recurrence Equation Analysis
The conquer step of merge-sort consists of merging two sorted
sequences, each with n/2 elements and implemented by means of
a doubly linked list, takes at most bn steps, for some constant b.
Likewise, the basis case (n < 2) will take at b most steps.
Therefore, if we let T(n) denote the running time of merge-sort:

We can therefore analyze the running time of merge-sort by
finding a closed form solution to the above equation.
n  That is, a solution that has T(n) only on the left-hand side.

⎩
⎨
⎧

≥+

<
=

2if)2/(2
2if

)(
nbnnT
nb

nT

© 2015 Goodrich and Tamassia Divide-and-Conquer 6

Iterative Substitution
In the iterative substitution, or “plug-and-chug,” technique, we
iteratively apply the recurrence equation to itself and see if we can
find a pattern:

Note that base, T(n)=b, case occurs when 2i=n. That is, i = log n.
So,

Thus, T(n) is O(n log n).

ibnnT

bnnT
bnnT
bnnT

bnnbnT
bnnTnT

ii +=

=

+=

+=

+=

++=

+=

)2/(2
...

4)2/(2
3)2/(2
2)2/(2

))2/())2/(2(2
)2/(2)(

44

33

22

2

nbnbnnT log)(+=

© 2015 Goodrich and Tamassia Divide-and-Conquer 7

The Recursion Tree
Draw the recursion tree for the recurrence relation and look for a
pattern:

depth T’s size

0 1 n

1 2 n/2

i 2i n/2i

… … …

⎩
⎨
⎧

≥+

<
=

2if)2/(2
2if

)(
nbnnT
nb

nT

time

bn

bn

bn

…

Total time = bn + bn log n
(last level plus all previous levels)

© 2015 Goodrich and Tamassia Divide-and-Conquer 8

Guess-and-Test Method
In the guess-and-test method, we guess a closed form solution
and then try to prove it is true by induction:

Guess: T(n) < cn log n.

Wrong: we cannot make this last line be less than cn log n

nbncnncn
nbnncn
nbnnnc

nbnnTnT

loglog
log)2log(log
log))2/log()2/((2

log)2/(2)(

+−=

+−=

+=

+=

⎩
⎨
⎧

≥+

<
=

2iflog)2/(2
2if

)(
nnbnnT
nb

nT

© 2015 Goodrich and Tamassia Divide-and-Conquer 9

Guess-and-Test Method, (cont.)
Recall the recurrence equation:

Guess #2: T(n) < cn log2 n.

n if c > b.
So, T(n) is O(n log2 n).
In general, to use this method, you need to have a good guess
and you need to be good at induction proofs.

ncn
nbncnncnncn

nbnncn
nbnnnc

nbnnTnT

2

2

2

2

log
loglog2log

log)2log(log
log))2/(log)2/((2

log)2/(2)(

≤

++−=

+−=

+=

+=

⎩
⎨
⎧

≥+

<
=

2iflog)2/(2
2if

)(
nnbnnT
nb

nT

© 2015 Goodrich and Tamassia Divide-and-Conquer 10

Master Method
Many divide-and-conquer recurrence equations have
the form:

The Master Theorem:

⎩
⎨
⎧

≥+

<
=

dnnfbnaT
dnc

nT
if)()/(
if

)(

.1 somefor)()/(provided
)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog

<≤

ΘΩ

ΘΘ

Θ

+

+

−

δδ

ε

ε

nfbnaf
nfnTnnf

nnnTnnnf
nnTnOnf

a

kaka

aa

b

bb

bb

© 2015 Goodrich and Tamassia Divide-and-Conquer 11

Master Method, Example 1
The form:

The Master Theorem:

Example:

⎩
⎨
⎧

≥+

<
=

dnnfbnaT
dnc

nT
if)()/(
if

)(

.1 somefor)()/(provided
)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if1.

log

1loglog

loglog

<≤

ΘΩ

ΘΘ

Θ

+

+

−

δδ

ε

ε

nfbnaf
nfnTnnf

nnnTnnnf
nnTnOnf

a

kaka

aa

b

bb

bb

nnTnT +=)2/(4)(
Solution: logba=2, so case 1 says T(n) is O(n2).

© 2015 Goodrich and Tamassia Divide-and-Conquer 12

Master Method, Example 2
The form:

The Master Theorem:

Example:

⎩
⎨
⎧

≥+

<
=

dnnfbnaT
dnc

nT
if)()/(
if

)(

.1 somefor)()/(provided
)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if1.

log

1loglog

loglog

<≤

ΘΩ

ΘΘ

Θ

+

+

−

δδ

ε

ε

nfbnaf
nfnTnnf

nnnTnnnf
nnTnOnf

a

kaka

aa

b

bb

bb

nnnTnT log)2/(2)(+=
Solution: logba=1, so case 2 says T(n) is O(n log2 n).

© 2015 Goodrich and Tamassia Divide-and-Conquer 13

Master Method, Example 3
The form:

The Master Theorem:

Example:

⎩
⎨
⎧

≥+

<
=

dnnfbnaT
dnc

nT
if)()/(
if

)(

.1 somefor)()/(provided
)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog

<≤

ΘΩ

ΘΘ

Θ

+

+

−

δδ

ε

ε

nfbnaf
nfnTnnf

nnnTnnnf
nnTnOnf

a

kaka

aa

b

bb

bb

nnnTnT log)3/()(+=
Solution: logba=0, so case 3 says T(n) is O(n log n).

© 2015 Goodrich and Tamassia Divide-and-Conquer 14

Master Method, Example 4
The form:

The Master Theorem:

Example:

⎩
⎨
⎧

≥+

<
=

dnnfbnaT
dnc

nT
if)()/(
if

)(

.1 somefor)()/(provided
)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if1.

log

1loglog

loglog

<≤

ΘΩ

ΘΘ

Θ

+

+

−

δδ

ε

ε

nfbnaf
nfnTnnf

nnnTnnnf
nnTnOnf

a

kaka

aa

b

bb

bb

2)2/(8)(nnTnT +=
Solution: logba=3, so case 1 says T(n) is O(n3).

© 2015 Goodrich and Tamassia Divide-and-Conquer 15

Master Method, Example 5
The form:

The Master Theorem:

Example:

⎩
⎨
⎧

≥+

<
=

dnnfbnaT
dnc

nT
if)()/(
if

)(

.1 somefor)()/(provided
)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if1.

log

1loglog

loglog

<≤

ΘΩ

ΘΘ

Θ

+

+

−

δδ

ε

ε

nfbnaf
nfnTnnf

nnnTnnnf
nnTnOnf

a

kaka

aa

b

bb

bb

3)3/(9)(nnTnT +=
Solution: logba=2, so case 3 says T(n) is O(n3).

© 2015 Goodrich and Tamassia Divide-and-Conquer 16

Master Method, Example 6
The form:

The Master Theorem:

Example:

⎩
⎨
⎧

≥+

<
=

dnnfbnaT
dnc

nT
if)()/(
if

)(

.1 somefor)()/(provided
)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if1.

log

1loglog

loglog

<≤

ΘΩ

ΘΘ

Θ

+

+

−

δδ

ε

ε

nfbnaf
nfnTnnf

nnnTnnnf
nnTnOnf

a

kaka

aa

b

bb

bb

1)2/()(+= nTnT
Solution: logba=0, so case 2 says T(n) is O(log n).

(binary search)

© 2015 Goodrich and Tamassia Divide-and-Conquer 17

Master Method, Example 7
The form:

The Master Theorem:

Example:

⎩
⎨
⎧

≥+

<
=

dnnfbnaT
dnc

nT
if)()/(
if

)(

.1 somefor)()/(provided
)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if1.

log

1loglog

loglog

<≤

ΘΩ

ΘΘ

Θ

+

+

−

δδ

ε

ε

nfbnaf
nfnTnnf

nnnTnnnf
nnTnOnf

a

kaka

aa

b

bb

bb

nnTnT log)2/(2)(+=
Solution: logba=1, so case 1 says T(n) is O(n).

(heap construction)

© 2015 Goodrich and Tamassia Divide-and-Conquer 18

Sketch of Proof of the Master
Theorem

Using iterative substitution, let us see if we can find a pattern:

We then distinguish the three cases as
n  The first term is dominant
n  Each part of the summation is equally dominant
n  The summation is a geometric series

∑

∑
−

=

−

=

+=

+=

=

+++=

++=

++=

+=

1)(log

0

log

1)(log

0

log

2233

22

2

)/()1(

)/()1(

. . .
)()/()/()/(

)()/()/(
))/())/((

)()/()(

n

i

iia

n

i

iin

b
b

b
b

bnfaTn

bnfaTa

nfbnafbnfabnTa
nfbnafbnTa
bnbnfbnaTa

nfbnaTnT

© 2015 Goodrich and Tamassia Divide-and-Conquer 19

Integer Multiplication
Algorithm: Multiply two n-bit integers I and J.
n  Divide step: Split I and J into high-order and low-order bits

n  We can then define I*J by multiplying the parts and adding:

n  So, T(n) = 4T(n/2) + n, which implies T(n) is O(n2).
n  But that is no better than the algorithm we learned in grade

school.

l
n

h

l
n

h

JJJ
III
+=

+=
2/

2/

2

2

ll
n

hl
n

lh
n

hh

l
n

hl
n

h

JIJIJIJI
JJIIJI

+++=

++=
2/2/

2/2/

222

)2(*)2(*

© 2015 Goodrich and Tamassia Divide-and-Conquer 20

An Improved Integer
Multiplication Algorithm

Algorithm: Multiply two n-bit integers I and J.
n  Divide step: Split I and J into high-order and low-order bits

n  Observe that there is a different way to multiply parts:

n  So, T(n) = 3T(n/2) + n, which implies T(n) is O(nlog
2
3), by

the Master Theorem.
n  Thus, T(n) is O(n1.585).

l
n

h

l
n

h

JJJ
III
+=

+=
2/

2/

2

2

ll
n

hllh
n

hh

ll
n

llhhhlhhlllh
n

hh

ll
n

llhhhllh
n

hh

JIJIJIJI
JIJIJIJIJIJIJIJI

JIJIJIJJIIJIJI

+++=

++++−−+=

+++−−+=

2/

2/

2/

2)(2

2])[(2

2]))([(2*

2 Maxima Set Problem Statement

▶ We have a database of hotels.

▶ Each hotel has:
▶ a pool size (x -coordinate)

▶ quality of restaurant (y -coordinate)

▶ Assume all coordinates distinct

▶ Want hotel with largest pool and best restaurant
Might not be a unique hotel.
▶ One might have largest pool, other best restaurant.
▶ Return the set that aren’t wrong.

▶ Any where no other hotel has both larger pool and
better restuarant.

3 Maxima Set Example

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10
Pool size

Q
ua

lit
y

4 Minima Set Brute Force

Sort hotels along any dimension
for i = 1→ n − 1 do

for j = i + 1→ n do
if Ai has larger pool and better food than Aj

Remove Aj
return All hotels that we did not remove
▶ This is O(n2).

5 Beginning Divide and Conquer

MaximaSet(S)
if n ≤ 1 then

return S
p ← median point in S by x -coordinate
L ← points less than p
G ← points greater than or equal to p
M1 ← MaximaSet(L)
M2 ← MaximaSet(G)
▶ return M1 ∪M2?

6 Example revisited

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10
Pool size

Q
ua

lit
y

▶ From M1 ∪M2, which point(s) belong for sure?

7 Finding a correct recombine

MaximaSet(S)
if n ≤ 1 then

return S
p ← median point in S by x -coordinate
L ← points less than p
G ← points greater than or equal to p
M1 ← MaximaSet(L)
M2 ← MaximaSet(G)
▶ return M1 ∪M2?
▶ How do I recombine correctly?

8 Improved Recombine

M1 ← MaximaSet(L)
M2 ← MaximaSet(G)
for each a ∈ M1 do

for each b ∈ M2 do
if a better than b then

remove b from M2

▶ How can we improve the “recombine” step?

▶ What is the resulting running time?

© 2015 Goodrich and Tamassia

Example for the Combine Step

Divide-and-Conquer 23

© 2015 Goodrich and Tamassia

Analysis
In either case, the rest of the non-recursive steps can
be performed in O(n) time, so this implies that,
ignoring floor and ceiling functions (as allowed by the
analysis of Exercise C-11.5), the running time for the
divide-and-conquer maxima-set algorithm can be
specified as follows (where b is a constant):

Thus, according to the Master Theorem, this algorithm
runs in O(n log n) time.

Divide-and-Conquer 26

⎩
⎨
⎧

≥+

<
=

2if)2/(2
2if

)(
nbnnT
nb

nT

	2022_01W_161___Slides__1_.pdf
	Beginning Divide and Conquer

