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Application: Maxima Sets 
We can visualize the various trade-offs for optimizing two-
dimensional data, such as points representing hotels according to 
their pool size and restaurant quality, by plotting each as a two-
dimensional point, (x, y), where x is the pool size and y is the 
restaurant quality score. 
We say that such a point is a maximum point in a set if there is no 
other point, (x′, y′), in that set such that x ≤ x′ and y ≤ y′. 
The maximum points are the best potential choices based on these 
two dimensions and finding all of them is the maxima set problem. 

Divide-and-Conquer 2 

We can efficiently find all 
the maxima points 

by divide-and-conquer. 
Here the set is {A,H,I,G,D}. 
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Divide-and-Conquer 
Divide-and conquer is a 
general algorithm design 
paradigm: 
n Divide: divide the input data S in 

two or more disjoint subsets S1, 
S2, … 

n Conquer: solve the subproblems 
recursively

n Combine: combine the solutions 
for S1, S2, …, into a solution for S 

The base case for the 
recursion are subproblems of 
constant size 
Analysis can be done using 
recurrence equations 
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Merge-Sort Review 
Merge-sort on an input 
sequence S with n 
elements consists of 
three steps: 
n  Divide: partition S into 

two sequences S1 and S2 
of about n/2 elements 
each 

n  Conquer: recursively sort 
S1 and S2 

n  Combine: merge S1 and 
S2 into a unique sorted 
sequence 

Algorithm mergeSort(S) 
 Input sequence S with n 
     elements  
 Output sequence S sorted 

 according to C 
if S.size() > 1 

 (S1, S2) ← partition(S, n/2)  
 mergeSort(S1) 
 mergeSort(S2) 
 S ← merge(S1, S2) 
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Recurrence Equation Analysis 
The conquer step of merge-sort consists of merging two sorted 
sequences, each with n/2 elements and implemented by means of 
a doubly linked list, takes at most bn steps, for some constant b. 
Likewise, the basis case (n < 2) will take at b most steps. 
Therefore, if we let T(n) denote the running time of merge-sort: 

We can therefore analyze the running time of merge-sort by 
finding a closed form solution to the above equation. 
n  That is, a solution that has T(n) only on the left-hand side. 
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Iterative Substitution 
In the iterative substitution, or “plug-and-chug,” technique, we 
iteratively apply the recurrence equation to itself and see if we can 
find a pattern: 

Note that base, T(n)=b, case occurs when 2i=n. That is, i = log n. 
So, 

Thus, T(n) is O(n log n). 
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The Recursion Tree 
Draw the recursion tree for the recurrence relation and look for a 
pattern:  

depth T’s size 

0 1 n 

1 2 n/2 

i 2i n/2i 

… … … 
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Total time = bn + bn log n 
(last level plus all previous levels) 
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Guess-and-Test Method 
In the guess-and-test method, we guess a closed form solution 
and then try to prove it is true by induction: 

Guess: T(n) < cn log n. 

Wrong: we cannot make this last line be less than cn log n 
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Guess-and-Test Method, (cont.) 
Recall the recurrence equation: 

Guess #2: T(n) < cn log2 n. 

n if c > b.
So, T(n) is O(n log2 n). 
In general, to use this method, you need to have a good guess 
and you need to be good at induction proofs. 
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Master Method 
Many divide-and-conquer recurrence equations have 
the form: 

 
 

The Master Theorem: 
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Master Method, Example 1 
The form: 

The Master Theorem: 

Example: 
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Solution: logba=2, so case 1 says T(n) is O(n2). 
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Master Method, Example 2 
The form: 

The Master Theorem: 

Example: 

⎩
⎨
⎧

≥+

<
=

dnnfbnaT
dnc

nT
if)()/(
if 

)(

.1 somefor   )()/(  provided   
)),((is)(then),(is)(if  3.

)log(is)(then),log(is)(if  2.

)(is)(then),(is)(if1.

log

1loglog

loglog

<≤

ΘΩ

ΘΘ

Θ

+

+

−

δδ

ε

ε

nfbnaf
nfnTnnf

nnnTnnnf
nnTnOnf

a

kaka

aa

b

bb

bb

nnnTnT log)2/(2)( +=
Solution: logba=1, so case 2 says T(n) is O(n log2 n). 
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Master Method, Example 3 
The form: 

The Master Theorem: 

 

Example: 
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Solution: logba=0, so case 3 says T(n) is O(n log n). 
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Master Method, Example 4 
The form: 

The Master Theorem: 

Example: 
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Solution: logba=3, so case 1 says T(n) is O(n3). 
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Master Method, Example 5 
The form: 

The Master Theorem: 

Example: 
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Solution: logba=2, so case 3 says T(n) is O(n3). 
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Master Method, Example 6 
The form: 

The Master Theorem: 

Example: 
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Solution: logba=0, so case 2 says T(n) is O(log n). 

(binary search) 



© 2015 Goodrich and Tamassia Divide-and-Conquer 17 

Master Method, Example 7 
The form: 

The Master Theorem: 

Example: 
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Solution: logba=1, so case 1 says T(n) is O(n). 

(heap construction) 
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Sketch of Proof of the Master 
Theorem 

Using iterative substitution, let us see if we can find a pattern: 

We then distinguish the three cases as 
n  The first term is dominant
n  Each part of the summation is equally dominant 
n  The summation is a geometric series 
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Integer Multiplication 
Algorithm: Multiply two n-bit integers I and J. 
n  Divide step: Split I and J into high-order and low-order bits 

n  We can then define I*J by multiplying the parts and adding: 

n  So, T(n) = 4T(n/2) + n, which implies T(n) is O(n2). 
n  But that is no better than the algorithm we learned in grade 

school. 

l
n

h

l
n

h

JJJ
III
+=

+=
2/

2/

2

2

ll
n

hl
n

lh
n

hh

l
n

hl
n

h

JIJIJIJI
JJIIJI

+++=

++=
2/2/

2/2/

222

)2(*)2(*



© 2015 Goodrich and Tamassia Divide-and-Conquer 20 

An Improved Integer 
Multiplication Algorithm 

Algorithm: Multiply two n-bit integers I and J. 
n  Divide step: Split I and J into high-order and low-order bits 

n  Observe that there is a different way to multiply parts: 

n  So, T(n) = 3T(n/2) + n, which implies T(n) is O(nlog
2
3), by 

the Master Theorem. 
n  Thus, T(n) is O(n1.585). 
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2 Maxima Set Problem Statement

▶ We have a database of hotels.

▶ Each hotel has:
▶ a pool size (x -coordinate)

▶ quality of restaurant (y -coordinate)

▶ Assume all coordinates distinct

▶ Want hotel with largest pool and best restaurant
Might not be a unique hotel.
▶ One might have largest pool, other best restaurant.
▶ Return the set that aren’t wrong.

▶ Any where no other hotel has both larger pool and 
better restuarant.



3 Maxima Set Example
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4 Minima Set Brute Force

Sort hotels along any dimension
for i = 1→ n − 1 do

for j = i + 1→ n do
if Ai has larger pool and better food than Aj 

Remove Aj
return All hotels that we did not remove
▶ This is O(n2).



5 Beginning Divide and Conquer

MaximaSet(S)
if n ≤ 1 then

return S
p ← median point in S by x -coordinate 
L ← points less than p
G ← points greater than or equal to p 
M1 ← MaximaSet(L)
M2 ← MaximaSet(G)
▶ return M1 ∪M2?



6 Example revisited
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▶ From M1 ∪M2, which point(s) belong for sure?



7 Finding a correct recombine

MaximaSet(S)
if n ≤ 1 then

return S
p ← median point in S by x -coordinate 
L ← points less than p
G ← points greater than or equal to p 
M1 ← MaximaSet(L)
M2 ← MaximaSet(G)
▶ return M1 ∪M2?
▶ How do I recombine correctly?



8 Improved Recombine

M1 ← MaximaSet(L) 
M2 ← MaximaSet(G) 
for each a ∈ M1 do

for each b ∈ M2 do
if a better than b then

remove b from M2

▶ How can we improve the “recombine” step?

▶ What is the resulting running time?
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Example for the Combine Step 

Divide-and-Conquer 23 
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Analysis 
In either case, the rest of the non-recursive steps can 
be performed in O(n) time, so this implies that, 
ignoring floor and ceiling functions (as allowed by the 
analysis of Exercise C-11.5), the running time for the 
divide-and-conquer maxima-set algorithm can be 
specified as follows (where b is a constant): 

Thus, according to the Master Theorem, this algorithm 
runs in O(n log n) time. 

Divide-and-Conquer 26 
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