TxT
alr
Lecture 5
Binary search (cont.),
insertion/selection sort,

analysis of quick sort

CS 161 Design and Analysis of Algorithms

loannis Panageas

Binary Search: Searching in a sorted array

Input: A: Sorted array with n entries [0..n — 1]
x: ltem we are seeking

Output: Location of x, if x found
-1, if x not found

def binarySearch(A,x,first,last)
if first > last:
return (-1)
else:
mid = |(first+last)/2]
if x == A[mid]:
return mid
else if x < A[mid]:
return binarySearch(A,x,first,mid-1)
else:
return binarySearch(A,x,mid+1,last)

binarySearch(A,x,0,n-1)

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-18

Optimality of binary search

» We will establish a lower bound on the worst-case number of
decisions required to find an item in an array, using only 3-way
comparisons of the item against array entries.

» The lower bound we will establish is [Ign| + 1 3-way
comparisons.

» Since Binary Search performs within this bound, it is optimal.
» Qur lower bound is established using a Decision Tree model.

» Note that the bound is exact (not just asymptotic)
» Our lower bound is on the worst case

» |t says: for every algorithm for finding an item in an array of
size n, there is some input that forces it to perform [lgn| + 1
comparisons.

> It does not say: for every algorithm for finding an item in an
array of size n, every input forces it to perform [lgn] + 1
comparisons.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-19

The decision tree model for searching in an array

Consider any algorithm that searches for an item x in an array A of size n
by comparing entries in A against x. Any such algorithm can be modeled
as a decision tree:

> Each node is labeled with an integer € {0...n— 1}.
> A node labeled i represents a 3-way comparison between x and A[/].

» The left subtree of a node labeled i/ describes the decision tree for
what happens if x < A[i].

> The right subtree of a node labeled i describes the decision tree for
what happens if x > A[/].

Example: Decision tree for binary search with n = 13:

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-20

Lower bound on locating an item in an array of size n

1. Any algorithm for searching an array of size n can be modeled by a
decision tree with at least n nodes.

2. Since the decision tree is a binary tree with n nodes,
the depth is at least |lgn].

3. The worst-case number of comparisons for the algorithm is the depth of

the decision tree +1. (Remember, root has depth 0).

Hence any algorithm for locating an item in an array of size n using only
comparisons must perform at least |Ign| + 1 comparisons in the worst case.

So binary search is optimal with respect to worst-case performance.
CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-21

Sorting

v

Rearranging a list of items in nondescending order.

v

Useful preprocessing step (e.g., for binary search)

v

Important step in other algorithms

v

[llustrates more general algorithmic techniques

We will discuss in the class

» Comparison-based sorting algorithms (Insertion sort, Selection
Sort, Quicksort, Mergesort, Heapsort)

» Bucket-based sorting methods

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-22

Comparison-based sorting

» Basic operation: compare two items.
» Abstract model.

» Advantage: doesn't use specific properties of the data items.
So same algorithm can be used for sorting integers, strings,
etc.

» Disadvantage: under certain circumstances, specific properties
of the data item can speed up the sorting process.
» Measure of time: number of comparisons
» Consistent with philosophy of counting basic operations,
discussed earlier.
» Misleading if other operations dominate (e.g., if we sort by
moving items around without comparing them)
» Comparison-based sorting has lower bound of Q(nlog n)
comparisons. (We will prove this.)

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-23

O(nlog n) work vs. quadratic (©(n?)) work

Yy
700000 —§
600000 —|
500000 —|
400000 —|
300000 —|
200000 —|

100000 —

y=10nlgn

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-24

Some terminology

» A permutation of a sequence of items is a reordering of the
sequence. A sequence of n items has n! distinct permutations.

» Note: Sorting is the problem of finding a particular
distinguished permutation of a list.

> An inversion in a sequence or list is a pair of items such that
the larger one precedes the smaller one.

Example: The list
18 29 12 15 32 10
has 9 inversions:

{(18,12), (18,15), (18,10), (29,12), (29,15),
(29,10), (12,10), (15,10), (32,10)}

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

Insertion sort

» Work from left to right across array
» Insert each item in correct position with respect to (sorted)

elements to its left

(Unsorted)

(Sorted) z

(Unsorted)

(Sorted)

2-25

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-26

Insertion sort pseudocode

f |

<z >z >x x

N NN

def insertionSort(n, A):
for k = 1 to n-1:

x = A[k]

j = k-1

while (j >= 0) and (A[j] > x):
Alj+1]1 = A[j]
3 =31

A[j+1] = x

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

Insertion sort example

‘ 23 ‘ 19 42 ‘ 17 ‘ 85 ‘ 38 ‘
‘ 23 ‘ 19 42 ‘ 17 ‘ 85 ‘ 38 ‘
19 23 12 17 85 ‘ 38
‘ 19 ‘ 23 42 ‘ 17 ‘ 85 ‘ 38 ‘
‘ 17 ‘ 19 23 ‘ 42 ‘ 85 ‘ 38 ‘
‘ 17 ‘ 19 23 ‘ 42 ‘ 85 ‘ 38 ‘

23 ‘ 38 ‘ 42 85

2-27

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-28
Analysis of Insertion Sort

» Worst-case running time:

» On kth iteration of outer loop, element A[k] is compared with
at most k elements:
Alk —1], Alk—2], ..., A0].
» Total number comparisons over all iterations is at most:

Y k= nMn=1) _ o(n2).

> Insertion Sort is a bad choice when n is large. (O(n?)
vs. O(nlogn)).

» Insertion Sort is a good choice when n is small. (Constant
hidden in the "big oh” is small).

» Insertion Sort is efficient if the input is “almost sorted"”:

Time < n— 1+ (# inversions)

» Storage: in place: O(1) extra storage

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-29

Selection Sort

» Two variants:

1. Repeatedly (for i from 0 to n — 1) find the minimum value,
output it, delete it.

> Values are output in sorted order
2. Repeatedly (for i from n — 1 down to 1)
» Find the maximum of A[0],A[1],... ,A[].
> Swap this value with A[i] (no-op if it is already A[/]).
» Both variants run in O(n?) time if we use the straightforward
approach to finding the maximum /minimum.

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-31

Quicksort

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-31

Quicksort

Basic idea

> Classify keys as small keys or large keys. All small keys are
less than all large keys

» Rearrange keys so small keys precede all large keys.

> Recursively sort small keys, recursively sort large keys.

+ +

’ small keys ‘ ‘ large keys ‘

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

Quicksort: One specific implementation

» Let the first item in the array be the pivot value x (also call
the split value).

» Small keys are the keys < x.
> Large keys are the keys > x.

first

last

T

first splitpoint

x

v
8

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-32

Pseudocode for Quicksort

def quickSort(A,first,last):
if first < last:
splitpoint = split(A,first,last)
quickSort(A,first,splitpoint-1)
quickSort(A,splitpoint+1,last)

first splitpoint last
<z T >z

2-33

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-34

The split step

def split(A,first,last):
splitpoint = first
x = A[first]
for k = first+l to last do:
if Alk] < x:
Alsplitpoint+1] < A[k]
splitpoint = splitpoint + 1
Alfirst] <> Al[splitpoint]
return splitpoint

Loop invariants:

> A[first+1..splitpoint] contains keys < x.
> A[splitpoint+1..k-1] contains keys > x.

» Af[k..last] contains unprocessed keys.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

The split step

At start:
first k last
vy v
T ?
A
splitpoint
In middle:
first splitpoint k last
v v v v
x <z > ?
At end:
first splitpoint last
v v v
T <z >z

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

Example of split step

[2 [[]ss 23 36 15 79 22 18
s k
[27 || s3 | 23 36 15 79 22 18
s k
[27 | 25 | s3 | 36 15 79 22 18
s k
EAERE 36 15 79 22 18
s k
[27 | = 15 | 36 83 | 22 18
s k
[27 | 23 15 | 36 83 79 22 18
s k
[27 | 23 15 22 83 79 36 18
s k
[27 | 15 22 18 | 70 36 83
S
[18 23 15 2 |2 [7 36 83
S

2-36

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-37
Analysis of Quicksort
We can visualize the lists sorted by quicksort as a binary tree.
» The root is the top-level list (of all items to be sorted)

» The children of a node are the two sublists to be sorted.
> ldentify each list with its split value.

27 83 23 36 15 79 22 18

18 23 15 22 79 36 83

15 23 22 36 83

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-38

Worst-case Analysis of Quicksort

» Any pair of values x and y gets compared at most once
during the entire run of Quicksort.

» The number of possible comparisons is

(-

» Hence the worst-case number of comparisons performed by
Quicksort when sorting n items is O(n?).

» Question: Is there a better bound? Is it o(n?)? Or is it ©(n?)?

» Answer: The bound is tight. It is ©(n?). We will see why on
the next slide.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-39

A bad case case for Quicksort: 1,2,3,....,n—1,n

(5) comparisons required. So the worst-case running time for

Quicksort is ©(n?). But what about the average case ...?

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-40

Average-case analysis of Quicksort:

Our approach:
1. Use the binary tree of sorted lists
2. Number the items in sorted order
3. Calculate the probability that two items get compared
4

. Use this to compute the expected number of comparisons
performed by Quicksort.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-41

Average-case analysis of Quicksort:

27 83 23 36 15 79 22 18

18 23 15 22 79 36 83

15 23 22 36 83

Sorted order: ‘15 18 22 23 27 36 79 83

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-42

Average-case analysis of Quicksort

» Number the keys in sorted order: 51 < S < --- < S,

» Fact about comparisons: During the run of Quicksort, two
keys S; and S; get compared if and only if the first key from
the set of keys {S;, Sjt1,...,S;} to be chosen as a pivot is
either S; or §;.

» If some key Sy is chosen first with S; < Sx < §;, then S; goes
in the left half, S; goes in the right half, and S; and S; never
get compared.

» If S; is chosen first, it is compared against all the other keys in
the set in the split step (including S;).

» Similar if S; is chosen first.

Examples:
» 23 and 22 (both statements true)
» 36 and 83 (both statements false)

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-43
Average-case analysis of Quicksort

Assume:
» All n keys are distinct
» All permutations are equally likely
> The keys in sorted order are 57 < Sp < -+ < S,.

Let P;; = The probability that keys S; and S; are compared
with each other during the invocation of quicksort

Then by Fact about comparisons on previous slide:

P;j = The probability that the first key from
{Si, Sit+1,..., 5} to be chosen as a pivot value is
either 5; or §;
2
j—i+1

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

Average-case analysis of Quicksort
Define indicator random variables {X;; : 1 </ < j < n}
X — 1 if keys S; and S; get compared
7 0 if keys Sj and S do not get compared

1. The total number of comparisons is:

> X

i=1 j=i+1

2. The expected (average) total number of comparisons is:

E{>. > Xi|=> > EXy)

i=1 j=i+1 i=1 j=i+1
3. The expected value of X is:

2
E(X,)=P ;= ——

2-44

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-45

Average-case analysis of Quicksort
Hence the expected number of comparisons is

n n n n 2
ZZE(Xi’j) = 227-_-+1
i=1 j=i+1 i=1 j:i+1'/ !

n n—i+1

= > Z% (k=j—i+1)
i=1 k=2
n n 2
< ZZ;
i=1 k=1
n n 1
=2) >
i=1 k=1
= 2zn:Hn:2an€O(nlgn).
i=1

So the average time for Quicksort is O(nlgn).

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

