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Binary Search: Searching in a sorted array

Input: A: Sorted array with n entries [0..n − 1]
x : Item we are seeking

Output: Location of x , if x found
-1, if x not found

def binarySearch(A,x,first,last)

if first > last:

return (-1)

else:

mid = b(first+last)/2c
if x == A[mid]:

return mid

else if x < A[mid]:

return binarySearch(A,x,first,mid-1)

else:

return binarySearch(A,x,mid+1,last)

binarySearch(A,x,0,n-1)
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Optimality of binary search

I We will establish a lower bound on the worst-case number of
decisions required to find an item in an array, using only 3-way
comparisons of the item against array entries.

I The lower bound we will establish is blg nc+ 1 3-way
comparisons.

I Since Binary Search performs within this bound, it is optimal.

I Our lower bound is established using a Decision Tree model.

I Note that the bound is exact (not just asymptotic)
I Our lower bound is on the worst case

I It says: for every algorithm for finding an item in an array of
size n, there is some input that forces it to perform blg nc+ 1
comparisons.

I It does not say: for every algorithm for finding an item in an
array of size n, every input forces it to perform blg nc+ 1
comparisons.
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The decision tree model for searching in an array

Consider any algorithm that searches for an item x in an array A of size n
by comparing entries in A against x . Any such algorithm can be modeled
as a decision tree:

I Each node is labeled with an integer ∈ {0 . . . n − 1}.
I A node labeled i represents a 3-way comparison between x and A[i ].

I The left subtree of a node labeled i describes the decision tree for
what happens if x < A[i ].

I The right subtree of a node labeled i describes the decision tree for
what happens if x > A[i ].

Example: Decision tree for binary search with n = 13:

1 3 5 8 10 12

0 4 7 11

2 9

6
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Lower bound on locating an item in an array of size n

1. Any algorithm for searching an array of size n can be modeled by a
decision tree with at least n nodes.

2. Since the decision tree is a binary tree with n nodes,
the depth is at least blg nc.

3. The worst-case number of comparisons for the algorithm is the depth of
the decision tree +1. (Remember, root has depth 0).

Hence any algorithm for locating an item in an array of size n using only
comparisons must perform at least blg nc+ 1 comparisons in the worst case.

So binary search is optimal with respect to worst-case performance.
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Sorting

I Rearranging a list of items in nondescending order.

I Useful preprocessing step (e.g., for binary search)

I Important step in other algorithms

I Illustrates more general algorithmic techniques

We will discuss

I Comparison-based sorting algorithms (Insertion sort, Selection
Sort, Quicksort, Mergesort, Heapsort)

I Bucket-based sorting methods
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Comparison-based sorting

I Basic operation: compare two items.

I Abstract model.

I Advantage: doesn’t use specific properties of the data items.
So same algorithm can be used for sorting integers, strings,
etc.

I Disadvantage: under certain circumstances, specific properties
of the data item can speed up the sorting process.

I Measure of time: number of comparisons
I Consistent with philosophy of counting basic operations,

discussed earlier.
I Misleading if other operations dominate (e.g., if we sort by

moving items around without comparing them)

I Comparison-based sorting has lower bound of Ω(n log n)
comparisons. (We will prove this.)
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Θ(n log n) work vs. quadratic (Θ(n2)) work

n

y
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y =
(
n
2

)

y = 10n lgn
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Some terminology

I A permutation of a sequence of items is a reordering of the
sequence. A sequence of n items has n! distinct permutations.

I Note: Sorting is the problem of finding a particular
distinguished permutation of a list.

I An inversion in a sequence or list is a pair of items such that
the larger one precedes the smaller one.

Example: The list

18 29 12 15 32 10

has 9 inversions:

{(18,12), (18,15), (18,10), (29,12), (29,15),

(29,10), (12,10), (15,10), (32,10)}
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distinguished permutation of a list.

I An inversion in a sequence or list is a pair of items such that
the larger one precedes the smaller one.

Example: The list

18 29 12 15 32 10

has 9 inversions:

{(18,12), (18,15), (18,10), (29,12), (29,15),

(29,10), (12,10), (15,10), (32,10)}
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Insertion sort

I Work from left to right across array

I Insert each item in correct position with respect to (sorted)
elements to its left

(Sorted) x

k

(Unsorted)

0

(Unsorted)

(Sorted)

n − 1
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Insertion sort pseudocode

≤ x > x · · · > x x

k

def insertionSort(n, A):

for k = 1 to n-1:

x = A[k]

j = k-1

while (j >= 0) and (A[j] > x):

A[j+1] = A[j]

j = j-1

A[j+1] = x
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Insertion sort example

23 19 42 17 85 38

23 19 42 17 85 38

19 23 42 17 85 38

19 23 42 17 85 38

17 19 23 42 85 38

17 19 23 42 85 38

17 19 23 38 42 85
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Analysis of Insertion Sort
I Worst-case running time:

I On kth iteration of outer loop, element A[k] is compared with
at most k elements:

A[k − 1], A[k − 2], . . . , A[0].
I Total number comparisons over all iterations is at most:

n−1∑

k=1

k =
n(n − 1)

2
= O(n2).

I Insertion Sort is a bad choice when n is large. (O(n2)
vs. O(n log n) ).

I Insertion Sort is a good choice when n is small. (Constant
hidden in the ”big oh” is small).

I Insertion Sort is efficient if the input is “almost sorted”:

Time ≤ n − 1 + (# inversions)

I Storage: in place: O(1) extra storage
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Selection Sort

I Two variants:
1. Repeatedly (for i from 0 to n − 1) find the minimum value,

output it, delete it.
I Values are output in sorted order

2. Repeatedly (for i from n − 1 down to 1)
I Find the maximum of A[0],A[1],. . . ,A[i ].
I Swap this value with A[i ] (no-op if it is already A[i ]).

I Both variants run in O(n2) time if we use the straightforward
approach to finding the maximum/minimum.

I They can be improved by treating the items A[0],A[1],. . . ,A[i ]
as items in an appropriately designed priority queue. (Next set
of notes)
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Quicksort

Basic idea

I Classify keys as small keys or large keys. All small keys are
less than all large keys

I Rearrange keys so small keys precede all large keys.

I Recursively sort small keys, recursively sort large keys.

keys

small keys large keys
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Quicksort: One specific implementation

I Let the first item in the array be the pivot value x (also call
the split value).

I Small keys are the keys < x .
I Large keys are the keys ≥ x .

x

first

?

last

< x

first

x

splitpoint

≥ x

last
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Pseudocode for Quicksort

def quickSort(A,first,last):

if first < last:

splitpoint = split(A,first,last)

quickSort(A,first,splitpoint-1)

quickSort(A,splitpoint+1,last)

< x

first

x

splitpoint

≥ x

last
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The split step

def split(A,first,last):

splitpoint = first

x = A[first]

for k = first+1 to last do:

if A[k] < x:

A[splitpoint+1] ↔ A[k]

splitpoint = splitpoint + 1

A[first] ↔ A[splitpoint]

return splitpoint

Loop invariants:

I A[first+1..splitpoint] contains keys < x .

I A[splitpoint+1..k-1] contains keys ≥ x .

I A[k..last] contains unprocessed keys.
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The split step
At start:

x

first

splitpoint

?

k last

In middle:

x

first

< x

splitpoint

≥ x ?

k last

At end:

x

first

< x

splitpoint

≥ x

last
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Example of split step

27

s

83

k

23 36 15 79 22 18

27

s

83 23

k

36 15 79 22 18

27 23

s

83 36

k

15 79 22 18

27 23

s

83 36 15

k

79 22 18

27 23 15

s

36 83 79

k

22 18

27 23 15

s

36 83 79 22

k

18

27 23 15 22

s

83 79 36 18

k

27 23 15 22 18

s

79 36 83

18 23 15 22 27

s

79 36 83
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Analysis of Quicksort

We can visualize the lists sorted by quicksort as a binary tree.

I The root is the top-level list (of all items to be sorted)
I The children of a node are the two sublists to be sorted.
I Identify each list with its split value.

22

15 23 22 36 83

18 23 15 22 79 36 83

27 83 23 36 15 79 22 18
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Worst-case Analysis of Quicksort

I Any pair of values x and y gets compared at most once
during the entire run of Quicksort.

I The number of possible comparisons is

(
n

2

)
= O(n2)

I Hence the worst-case number of comparisons performed by
Quicksort when sorting n items is O(n2).

I Question: Is there a better bound? Is it o(n2)? Or is it Θ(n2)?

I Answer: The bound is tight. It is Θ(n2). We will see why on
the next slide.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-38

Worst-case Analysis of Quicksort

I Any pair of values x and y gets compared at most once
during the entire run of Quicksort.

I The number of possible comparisons is

(
n

2

)
= O(n2)

I Hence the worst-case number of comparisons performed by
Quicksort when sorting n items is O(n2).

I Question: Is there a better bound? Is it o(n2)? Or is it Θ(n2)?

I Answer: The bound is tight. It is Θ(n2). We will see why on
the next slide.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-38

Worst-case Analysis of Quicksort

I Any pair of values x and y gets compared at most once
during the entire run of Quicksort.

I The number of possible comparisons is

(
n

2

)
= O(n2)

I Hence the worst-case number of comparisons performed by
Quicksort when sorting n items is O(n2).

I Question: Is there a better bound? Is it o(n2)? Or is it Θ(n2)?

I Answer: The bound is tight. It is Θ(n2). We will see why on
the next slide.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-38

Worst-case Analysis of Quicksort

I Any pair of values x and y gets compared at most once
during the entire run of Quicksort.

I The number of possible comparisons is

(
n

2

)
= O(n2)

I Hence the worst-case number of comparisons performed by
Quicksort when sorting n items is O(n2).

I Question: Is there a better bound? Is it o(n2)? Or is it Θ(n2)?

I Answer: The bound is tight. It is Θ(n2). We will see why on
the next slide.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-38

Worst-case Analysis of Quicksort

I Any pair of values x and y gets compared at most once
during the entire run of Quicksort.

I The number of possible comparisons is

(
n

2

)
= O(n2)

I Hence the worst-case number of comparisons performed by
Quicksort when sorting n items is O(n2).

I Question: Is there a better bound? Is it o(n2)? Or is it Θ(n2)?

I Answer: The bound is tight. It is Θ(n2). We will see why on
the next slide.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-38

Worst-case Analysis of Quicksort

I Any pair of values x and y gets compared at most once
during the entire run of Quicksort.

I The number of possible comparisons is

(
n

2

)
= O(n2)

I Hence the worst-case number of comparisons performed by
Quicksort when sorting n items is O(n2).

I Question: Is there a better bound? Is it o(n2)? Or is it Θ(n2)?

I Answer: The bound is tight. It is Θ(n2).

We will see why on
the next slide.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-38

Worst-case Analysis of Quicksort

I Any pair of values x and y gets compared at most once
during the entire run of Quicksort.

I The number of possible comparisons is

(
n

2

)
= O(n2)

I Hence the worst-case number of comparisons performed by
Quicksort when sorting n items is O(n2).

I Question: Is there a better bound? Is it o(n2)? Or is it Θ(n2)?

I Answer: The bound is tight. It is Θ(n2). We will see why on
the next slide.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-39

A bad case case for Quicksort: 1, 2, 3, . . . , n − 1, n

1 2 3 . . . n− 1 n

2 3 . . . n− 1 n

3 . . . n− 1 n

n− 1 n

n

(n
2

)
comparisons required. So the worst-case running time for

Quicksort is Θ(n2).

But what about the average case . . . ?
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Average-case analysis of Quicksort:

Our approach:

1. Use the binary tree of sorted lists

2. Number the items in sorted order

3. Calculate the probability that two items get compared

4. Use this to compute the expected number of comparisons
performed by Quicksort.
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Average-case analysis of Quicksort:

22

15 23 22 36 83

18 23 15 22 79 36 83

27 83 23 36 15 79 22 18

Sorted order: 15 18 22 23 27 36 79 83
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Average-case analysis of Quicksort

I Number the keys in sorted order: S1 < S2 < · · · < Sn.
I Fact about comparisons: During the run of Quicksort, two

keys Si and Sj get compared if and only if the first key from
the set of keys {Si ,Si+1, . . . ,Sj} to be chosen as a pivot is
either Si or Sj .

I If some key Sk is chosen first with Si < Sk < Sj , then Si goes
in the left half, Sj goes in the right half, and Si and Sj never
get compared.

I If Si is chosen first, it is compared against all the other keys in
the set in the split step (including Sj).

I Similar if Sj is chosen first.

Examples:

I 23 and 22 (both statements true)

I 36 and 83 (both statements false)
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Average-case analysis of Quicksort

Assume:

I All n keys are distinct

I All permutations are equally likely

I The keys in sorted order are S1 < S2 < · · · < Sn.

Let Pi ,j = The probability that keys Si and Sj are compared
with each other during the invocation of quicksort

Then by Fact about comparisons on previous slide:

Pi ,j = The probability that the first key from
{Si ,Si+1, . . . ,Sj} to be chosen as a pivot value is
either Si or Sj

=
2

j − i + 1
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Average-case analysis of Quicksort
Define indicator random variables {Xi ,j : 1 ≤ i < j ≤ n}

Xi ,j =

{
1 if keys Si and Sj get compared
0 if keys Si and Sj do not get compared

1. The total number of comparisons is:
n∑

i=1

n∑

j=i+1

Xi ,j

2. The expected (average) total number of comparisons is:

E




n∑

i=1

n∑

j=i+1

Xi ,j


 =

n∑

i=1

n∑

j=i+1

E (Xi ,j)

3. The expected value of Xi ,j is:

E (Xi ,j) = Pi ,j =
2

j − i + 1
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Average-case analysis of Quicksort
Hence the expected number of comparisons is

n∑

i=1

n∑

j=i+1

E (Xi ,j)

=
n∑

i=1

n∑

j=i+1

2

j − i + 1

=
n∑

i=1

n−i+1∑

k=2

2

k
(k = j − i + 1)

<
n∑

i=1

n∑

k=1

2

k

= 2
n∑

i=1

n∑

k=1

1

k

= 2
n∑

i=1

Hn = 2nHn ∈ O(n lg n).

So the average time for Quicksort is O(n lg n).
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