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Outline of these notes

I Review of basic data structures

I Searching in a sorted array/binary search: the algorithm,

analysis
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Basic Data structures

Prerequisite material. Review [GT Chapters 2–4, 6] as necessary)

I Arrays, dynamic arrays

I Linked lists

I Stacks, queues

I Dictionaries, hash tables

I Binary trees
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Arrays, Dynamic arrays, Linked lists
I Arrays:

I Numbered collection of cells or entries
I Numbering usually starts at 0
I Fixed number of entries

I Each cell has an index which uniquely identifies it.
I Accessing or modifying the contents of a cell given its index:

O(1) time.
I Inserting or deleting an item in the middle of an array is slow.

I Dynamic arrays:
I Similar to arrays, but size can be increased or decreased
I ArrayList in Java, list in Python

I Linked lists:
I Collection of nodes that form a linear ordering.

I The list has a first node and a last node
I Each node has a next node and a previous node (possibly null)

I Inserting or deleting an item in the middle of linked list is fast.
I Accessing a cell given its index (i.e., finding the kth item in the

list) is slow.
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Stacks and Queues

I Stacks:
I Container of objects that are inserted and removed according

to Last-In First-Out (LIFO) principle:
I Only the most-recently inserted object can be removed.

I Insert and remove are usually called push and pop

I Queues (often called FIFO Queues)
I Container of objects that are inserted and removed according

to First-In First-Out (FIFO) principle:
I Only the element that has been in the queue the longes can

be removed.

I Insert and remove are usually called enqueue and dequeue
I Elements are inserted at the rear of the queue and are removed

from the front
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Dictionaries/Maps

I Dictionaries
I A Dictionary (or Map) stores <key,value> pairs, which are

often referred to as items
I There can be at most item with a given key.
I Examples:

1. <Student ID, Student data>

2. <Object ID, Object data>
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Hashing
An efficient method for implementing a dictionary. Uses

I A hash table, an array of size N.

I A hash function, which maps any key from the set of possible
keys to an integer in the range [0,N − 1]

I A collision strategy, which determines what to do when two
keys are mapped to the same table location by the hash
function.Commonly used collision strategies are:

I Chaining
I Open addressing: linear probing, quadratic probing, double

hashing
I Cuckoo hashing

Hashing is fast:

I O(1) expected time for access, insertion

I Cuckoo hashing improves the access time to O(1) worst-case
time. Insertion time remains O(1) expected time. 
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Binary Trees: a quick review

We will use as a data structure and as a tool for analyzing
algorithms.

Level 0 (root)

Level 1

Level 2

Level 3

The depth of a binary tree is the maximum of the levels of all its
leaves.
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Traversing binary trees

G H

D E F

B C

A

I Preorder: root, left subtree (in preorder), right subtree (in
preorder): ABDGHCEF

I Inorder: left subtree (in inorder), root, right subtree (in
inorder): GDHBAECF

I Postorder: left subtree (in postorder), right subtree (in
postorder), root: GHDBEFCA

I Breadth-first order (level order): level 0 left-to-right, then
level 1 left-to-right, . . . : ABCDEFGH
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Facts about binary trees

1. There are at most 2k nodes at level k.

2. A binary tree with depth d has:
I At most 2d leaves.
I At most 2d+1 − 1 nodes.

3. A binary tree with n leaves has depth ≥ dlg ne.
4. A binary tree with n nodes has depth ≥ blg nc.
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Binary search trees

9 32

25 52 79

36 65

47

I Function as ordered dictionaries. (Can find successors,
predecessors)

I find, insert, and remove can all be done in O(h) time
(h = tree height)

I AVL trees, Red-Black Trees, Weak AVL trees: h = O(log n),
so find, insert, and remove can all be done in O(log n) time.

I Splay trees and Skip Lists: alternatives to balanced trees

I Can traverse the tree and list all items in O(n) time.

I [GT] Chapters 3–4 for details
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Binary Search: Searching in a sorted array

I Input is a sorted array A and an item x .

I Problem is to locate x in the array.
I Several variants of the problem, for example. . .

1. Determine whether x is stored in the array
2. Find the largest i such that A[i ] ≤ x (with a reasonable

convention if x < A[0]).

We will focus on the first variant.

I We will show that binary search is an optimal algorithm for
solving this problem.
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Binary Search: Searching in a sorted array

Input: A: Sorted array with n entries [0..n − 1]
x : Item we are seeking

Output: Location of x , if x found
-1, if x not found

def binarySearch(A,x,first,last)

if first > last:

return (-1)

else:

mid = b(first+last)/2c
if x == A[mid]:

return mid

else if x < A[mid]:

return binarySearch(A,x,first,mid-1)

else:

return binarySearch(A,x,mid+1,last)

binarySearch(A,x,0,n-1)
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Correctness of Binary Search

We need to prove two things:

1. If x is in the array, its location in the array (its index) is
between first and last, inclusive.
Note that this is equivalent to:

Either x is not in the array, or its location is between
first and last, inclusive.

2. On each recursive call, the difference last − first gets strictly
smaller.

first last
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Correctness of Binary Search
To prove that the invariant continues to hold, we need to consider
three cases.

1. last ≥ first + 2
first last

mid

2. last = first + 1
first last

mid

3. last = first
first = last

mid
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Binary Search: Analysis of Running Time

I We will count the number of 3-way comparisons of x against
elements of A. (also known as decisions)

I Rationale:

1. This is the essentially the same as the number of recursive
calls. Every recursive call, except for possibly the very last one,
results in a 3-way comparison.

2. Gives us a way to compare binary search against other
algorithms that solve the same problem: searching for an item
in an array by comparing the item against array entries.
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Binary Search: Analysis of Running Time (continued)

I Binary search in an array of size 1: 1 decision

I Binary search in an array of size n > 1: after 1 decision, either
we are done, or the problem is reduced to binary search in a
subarray with a worst-case size of bn/2c

I So the worst-case time to do binary search on an array of size
n is T (n), where T (n) satisfies the equation

T (n) =

{
1 if n = 1

1 + T
(⌊

n
2

⌋)
otherwise

I The solution to this equation is:

T (n) = blg nc+ 1

This can be proved by induction.

I So binary search does blg nc+ 1 3-way comparisons on an
array of size n, in the worst case.
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