

Lecture 2 Math overview

CS 161 Design and Analysis of Algorithms Ioannis Panageas

Algorithms and Data Structures

- An algorithm is a step-by-step procedure for performing some task in a finite amount of time.
- Typically, an algorithm takes input data and produces an output based upon it.

Input
Algorithm

Output

- A data structure is a systematic way of organizing and accessing data.

Running Time

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus primarily on the worst case running time.
- Easier to analyze

- Crucial to applications such as games, finance and robotics

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n
a Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Pseudocode

- High-level description of an algorithm

- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Pseudocode Details

- Control flow
- if ... then ... [else ...]
- while ... do ...
- repeat ... until ...
- for ... do ...
- Indentation replaces braces
- Method declaration

Algorithm method (arg [, arg...]) Input ...
Output ...

- Method call
method (arg [, arg...])
- Return value
return expression
- Expressions:
\leftarrow Assignment
$=$ Equality testing
n^{2} Superscripts and other mathematical formatting allowed

Seven Important Functions

- Seven functions that often appear in algorithm ${ }^{1 \mathrm{E}+30}$ analysis:
- Constant ≈ 1
- Logarithmic $\approx \log n$
- Linear $\approx n$
- $N-L o g-N \approx n \log n$
- Quadratic $\approx \boldsymbol{n}^{2}$
- Cubic $\approx n^{3}$
- Exponential $\approx \mathbf{2}^{n}$
- In a log-log chart, the slope of the line corresponds to the growth rate

Analysis of Algorithms

Functions Graphed Using "Normal" Scale

Slide by Matt Stallmann included with permission.

$$
g(n)=1
$$

$$
g(n)=n \lg n / g(n)=2^{n}
$$

$$
g(n)=n^{2}
$$

$$
g(n)=\lg n
$$

(C) 2015 Goodrich and Tamassia

$$
g(n)=n^{3}
$$

Analysis of Algorithms

Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important
- Examples:
- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method

Counting Primitive Operations

- Example: By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

```
Algorithm arrayMax \((A, n)\) :
    Input: An array \(A\) storing \(n \geq 1\) integers.
    Output: The maximum element in \(A\).
currentMax \(\leftarrow A[0]\)
for \(i \leftarrow 1\) to \(n-1\) do
        if currentMax \(<A[i]\) then
                currentMax \(\leftarrow A[i]\)
return currentMax
```


Growth Rate of Running Time

- Changing the hardware/ software environment
- Affects $T(n)$ by a constant factor, but
- Does not alter the growth rate of $T(n)$
- The linear growth rate of the running time $\boldsymbol{T}(\boldsymbol{n})$ is an intrinsic property of algorithm arrayMax

Slide by Matt Stallmann included with permission.

Why Growth Rate Matters

if runtime is...	time for $n+1$	time for $2 n$	time for $4 n$
$c \lg n$	$c \lg (n+1)$	$c(\lg n+1)$	$c(\lg n+2)$
$c n$	$c(n+1)$	$2 c n$	$4 c n$
$c n \lg n$	$\sim c n \lg n$ $+c n$	$2 c n \lg n+$ $2 c n$	$4 c n \lg n+$ $4 c n$
runtime quadruples			
$c n^{2}$	$\sim c n^{2}+2 c n$	$4 c n^{2}$	$16 c n^{2}$
$c n^{3}$	$\sim c n^{3}+3 c n^{2}$	$8 c n^{3}$	$64 c n^{3}$
sizoblem doubles			
size			

Constant Factors

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
- We find the worst-case number of primitive operations executed as a function of the input size
- We express this function with big-Oh notation
- Example:
- We say that algorithm arrayMax "runs in $\boldsymbol{O}(\boldsymbol{n})$ time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Big-Oh Rules

- If is $f(n)$ a polynomial of degree d, then $f(n)$ is $\boldsymbol{O}\left(\boldsymbol{n}^{d}\right)$, i.e.,

1. Drop lower-order terms
2. Drop constant factors

- Use the smallest possible class of functions
- Say " $2 \boldsymbol{n}$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $2 \boldsymbol{n}$ is $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ "
- Use the simplest expression of the class
- Say " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(3 \boldsymbol{n})$ "

Analyzing Recursive Algorithms

- Use a function, $\mathrm{T}(n)$, to derive a recurrence relation that characterizes the running time of the algorithm in terms of smaller values of n.

> Algorithm recursive $\operatorname{Max}(A, n)$:
> Input: An array A storing $n \geq 1$ integers.
> Output: The maximum element in A.
> if $n=1$ then
> return $A[0]$
> return $\max \{$ recursiveMax $(A, n-1), A[n-1]\}$

$$
T(n)= \begin{cases}3 & \text { if } n=1 \\ T(n-1)+7 & \text { otherwise }\end{cases}
$$

Arithmetic Progression

- Assume the running time of P is
$\boldsymbol{O}(1+2+\ldots+\boldsymbol{n})$
- The sum of the first n integers is $\boldsymbol{n}(\boldsymbol{n}+1) / 2$
- There is a simple visual proof of this fact
- Thus, algorithm Pruns in $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ time

Math you need to Review

- Summations
- Powers
- Logarithms
- Proof techniques
- Basic probability
- Properties of powers: $a^{(b+c)}=a^{b} a^{c}$ $a^{b c}=\left(a^{b}\right)^{c}$ $a^{b} / a^{c}=a^{(b-c)}$
$b=a \log _{\mathrm{a}} \mathrm{b}$
$b^{c}=a^{c *} \log _{a} b$
- Properties of logarithms:

$$
\begin{aligned}
& \log _{b}(x y)=\log _{b} x+\log _{b} y \\
& \log _{b}(x / y)=\log _{b} x-\log _{b} y \\
& \log _{b} x a=a \log _{b} x \\
& \log _{b} a=\log _{x} a / \log _{x} b
\end{aligned}
$$

O ("big oh")

Informally:

- $g \in O(f)$ if g is bounded above by a constant multiple of f (for sufficiently large values of n).
- $g \in O(f)$ if " g grows no faster than (a constant multiple of) f."
- $g \in O(f)$ if the ratio g / f is bounded above by a constant (for sufficiently values of n).

O ("big oh")

Formally:

- $g \in O(f)$ if and only if:

$$
\exists_{C>0} \exists_{n_{0}>0} \forall_{n>n_{0}} g(n) \leq C \cdot f(n) .
$$

- Equivalently: $g \in O(f)$ if and only if:

$$
\exists_{C>0} \exists_{n_{0}>0} \forall_{n>n_{0}} \frac{g(n)}{f(n)} \leq C .
$$

- Sometimes we write: $g=O(f)$ rather than $g \in O(f)$

Examples of O-notation:

Example 1: $f(n)=n, g(n)=1000 n: g \in O(f)$.
Proof: Let $C=1000$. Then $g(n) \leq C \cdot f(n)$ for all n.

Examples of O-notation:

Example 2: $f(n)=n^{2}, g(n)=n^{3 / 2}: g \in O(f)$.
Proof: $\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=0$.
Hence for any $C>0$ the ratio is less than C as long as n is sufficiently large.(Of course, how large n must be to be "sufficiently large" depends on C).

Alternate Proof: If $n \geq 1, n^{1 / 2} \geq 1$, so $n^{3 / 2} \leq n^{2}$. Hence we can choose $C=1$ and $n_{0}=1$.

Examples of O-notation:

Example 3: $f(n)=n^{3}, g(n)=n^{4}: g \notin O(f)$.
Proof: $\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=\infty$.
Hence there is no $C>0$ such that $g(n) \leq C \cdot f(n)$ for sufficiently large n.

Examples of O-notation:

Example 4: $f(n)=n^{2}, g(n)=5 n^{2}+23 n+2: g \in O(f)$.
Proof: If $n \geq 1$, then $n \leq n^{2}$ and $1 \leq n^{2}$. Hence:

$$
\begin{aligned}
g(n) & =5 n^{2}+23 n+2 \\
& \leq 5 n^{2}+23 n^{2}+2 n^{2} \\
& \leq 30 n^{2} \\
& =30 f(n)
\end{aligned}
$$

So we can take $C=30, n_{0}=1$.

More asymptotic notation:

o ("little oh"), Ω ("big Omega")

- o ('little oh"):

$$
g \in o(f) \text { if and only if } \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=0 \text {. }
$$

- Ω ("big Omega") (or just "Omega")
$g \in \Omega(f)$ if and only if $\exists_{C>0} \exists_{n_{0}>0} \forall_{n>n_{0}} g(n) \geq C \cdot f(n)$.

Equivalently:

$$
g \in \Omega(f) \text { if and only if } \exists_{C>0} \exists_{n_{0}>0} \forall_{n>n_{0}} \frac{g(n)}{f(n)} \geq C .
$$

One more definition:

Θ ("Theta")

- $g \in \Theta(f)$ if and only if:

$$
g \in O(f) \text { and } g \in \Omega(f) \text {. }
$$

- Equivalently, $g \in \Theta(f)$ if and only if:

$$
\exists C_{1}>0 \quad \exists C_{2}>0 \exists_{n_{0}>0} \forall_{n>n_{0}} C_{1} \leq \frac{g(n)}{f(n)} \leq C_{2} .
$$

Examples of Asymptotic notation

Example 1: $f(n)=n, g(n)=1000 n$.
$g \in \Omega(f), g \in \Theta(f)$
To see that $g \in \Omega(f)$, we can take $C=1$.
Then $g(n)=1000 \cdot n>1 \cdot n=C \cdot f(n)$.
To see that $g \in \Theta(f)$, we could argue that $g \in O(f)$ (shown earlier) and $g \in \Omega(f)$ (shown above).

Or we can take $C_{1}=1, C_{2}=1000$. Then

$$
C_{1} \leq \frac{g(n)}{f(n} \leq C_{2}
$$

Examples of Asymptotic notation

Example 2: $f(n)=n^{2}, g(n)=n^{3 / 2}$:
$g \in o(f)$
Because $\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=0$.

Examples of Asymptotic notation

Example 3: $f(n)=n^{3}, g(n)=n^{4}$:
$g \in \Omega(f)$
Because $\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=\infty$, so we can choose any C we want.

Examples of Asymptotic notation

Example 4: $f(n)=n^{2}, g(n)=5 n^{2}-23 n+2$:
$g \in \Omega(f)$.
Proof: If $n \geq 23$, then $23 n \leq n^{2}$. Hence if $n \geq 23$:

$$
\begin{aligned}
g(n) & =5 n^{2}-23 n+2 \\
& \geq 5 n^{2}-n^{2} \\
& \geq 4 n^{2} \\
& =4 f(n)
\end{aligned}
$$

So we can take $C=4, n_{0}=23$.

Another Example

Example 5: $\ln n=o(n)$
Proof:
Examine the ratio $\frac{\ln n}{n}$ as $n \rightarrow \infty$.
If we try to evaluate the limit directly, we obtain the "indeterminate form" $\frac{\infty}{\infty}$.

We need to apply L'Hôpital's rule (from calculus).

Example 5, continued:

$\ln n=o(n)$

L'Hôpital's rule: If the ratio of limits

$$
\frac{\lim _{n \rightarrow \infty} g(n)}{\lim _{n \rightarrow \infty} f(n)}
$$

is an indeterminate form (i.e., ∞ / ∞ or $0 / 0$), then

$$
\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=\lim _{n \rightarrow \infty} \frac{g^{\prime}(n)}{f^{\prime}(n)}
$$

where f^{\prime} and g^{\prime} are, respectively, the derivatives of f and g.

Example 5, continued:

$\ln n=o(n)$
Let $f(n)=n, g(n)=\ln n$.
Then $f^{\prime}(n)=1, g^{\prime}(n)=1 / n$.
By L'Hôpital's rule:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)} & =\lim _{n \rightarrow \infty} \frac{g^{\prime}(n)}{f^{\prime}(n)} \\
& =\lim _{n \rightarrow \infty} \frac{1 / n}{1} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \\
& =0
\end{aligned}
$$

Hence $g(n)=o(f(n))$.

Math background

- Sums, Summations
- Logarithms, Exponents Floors, Ceilings, Harmonic Numbers
- Proof Techniques
- Basic Probability

Sums, Summations

- Summation notation:

$$
\sum_{i=a}^{b} f(i)=f(a)+f(a+1)+\cdots+f(b)
$$

- Special cases:
- What if $a=b ? \quad f(a)$
- What if $a>b$? 0
- If $S=\left\{s_{1}, \ldots, s_{n}\right\}$ is a finite set:

$$
\sum_{x \in S} f(x)=f\left(s_{1}\right)+f\left(s_{2}\right)+\cdots+f\left(s_{n}\right)
$$

Geometric sum

- Geometric sum:

$$
\sum_{i=0}^{n} a^{i}=1+a^{1}+a^{2}+\cdots+a^{n}=\frac{1-a^{n+1}}{1-a}
$$

provided that $a \neq 1$.

- Previous formula holds for $a=0$ because $a^{0}=1$ even when $a=0$.
- Special case of geometric sum:

$$
\sum_{i=0}^{n} 2^{i}=1+2+4+8+\cdots+2^{n}=2^{n+1}-1
$$

Infinite Geometric sum

- From the previous slide:

$$
\sum_{i=0}^{n} a^{i}=1+a^{1}+a^{2}+\cdots+a^{n}=\frac{1-a^{n+1}}{1-a}
$$

provided that $a \neq 1$.

- If $|a|<1$, we can take the limit as $n \rightarrow \infty$:

$$
\sum_{i=0}^{\infty} a^{i}=1+a^{1}+a^{2}+\cdots=\frac{1}{1-a}
$$

- Special case of infinite geometric sum:

$$
\sum_{i=0}^{\infty} \frac{1}{2^{i}}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots=2
$$

Other Summations

- Sum of first n integers

$$
\sum_{i=1}^{n} i=1+2+3+\cdots+n=\frac{n(n+1)}{2}=\Theta\left(n^{2}\right)
$$

- Sum of first n squares

$$
\sum_{i=1}^{n} i^{2}=1+4+9+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}=\Theta\left(n^{3}\right)
$$

- In general, for any fixed positive integer k :

$$
\sum_{i=1}^{n} i^{k}=1+2^{k}+3^{k}+\cdots+n^{k}=\Theta\left(n^{k+1}\right)
$$

Logarithms

Definition: $\log _{b} x=y$ if and only if $b^{y}=x$.
Some useful properties:

1. $\log _{b} 1=0$.
2. $\log _{b} b^{a}=a$.
3. $\log _{b}(x y)=\log _{b} x+\log _{b} y$.
4. $\log _{b}\left(x^{a}\right)=a \log _{b} x$.
5. $x^{\log _{b} y}=y^{\log _{b} x}$.
6. $\log _{x} b=\frac{1}{\log _{b} x}$.
7. $\log _{a} x=\frac{\log _{b} x}{\log _{b} a}$.
8. $\log _{a} x=\left(\log _{b} x\right)\left(\log _{a} b\right)$.

Floors and ceilings

- $\lfloor x\rfloor=$ largest integer $\leq x$. (Read as Floor of x)
- $\lceil x\rceil=$ smallest integer $\geq x$ (Read as Ceiling of x)

Factorials

- $n!=1 \cdot 2 \cdots n$
- n ! represents the number of distinct permutations of n objects.

1	2	3
1	3	2
2	1	3
2	3	1
3	1	2
3	2	1

Combinations

$\binom{n}{k}=$ The number of different ways of choosing k objects from a collection of n objects. (Pronounced " n choose $k^{\prime \prime}$.)

Example: $\binom{5}{2}=10$

$$
\begin{array}{lllll}
\{1,2\} & \{1,3\} & \{1,4\} & \{1,5\} & \{2,3\} \\
\{2,4\} & \{2,5\} & \{3,4\} & \{3,5\} & \{4,5\}
\end{array}
$$

Formula: $\binom{n}{k}=\frac{n!}{k!(n-k)!}$
Special cases: $\binom{n}{0}=1,\binom{n}{1}=n,\binom{n}{2}=\frac{n(n-1)}{2}$

Harmonic Numbers

The nth Harmonic number is the sum:

$$
H_{n}=\sum_{i=1}^{n} \frac{1}{i}
$$

These numbers go to infinity:

$$
\lim _{n \rightarrow \infty} H_{n}=\sum_{i=1}^{\infty} \frac{1}{i}=\infty
$$

Harmonic Numbers

The harmonic numbers are closely related to logs. Recall:

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t
$$

We will show that $H_{n}=\Theta(\log n)$.

Harmonic Numbers

$$
\begin{array}{ll}
\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n} & <\ln n<1+\frac{1}{2}+\ldots+\frac{1}{n-1} \\
H_{n}-1 & <\ln n<H_{n}-\frac{1}{n}
\end{array}
$$

Hence $\ln n+\frac{1}{n}<H_{n}<\ln n+1$, so $H_{n}=\Theta(\log n)$.

Proof/Justification Techniques

- Proof by Example Can be used to prove
- A statement of the form "There exists..." is true.
- A statement of the form "For all..." is false.
- A statement of the form "If P then Q " is false.
- Illustration: Consider the statement:

All numbers of the form $2^{k}-1$ are prime.
This statement is False: $2^{4}-1=15=3 \cdot 5$

- Note: The statement can be rewritten as:

If n is an integer of the form $2^{k}-1$, then n is prime.

Proof/Justification Techniques

- Suppose we want to prove a statement of the form "If P then $Q^{\prime \prime}$ is true.
There are three approaches:

1. Direct proof: Assume P is true. Show that Q must be true.
2. Indirect proof: Assume Q is false. Show that P must be false. This is also known as a proof by contraposition.
3. Proof by contradiction: Assume P is true and Q is false. Show that there is a contradiction.
See [GT] Section 1.3.3 for examples.

Proof/Justification Techniques: Induction

- A technique for proving theorems about the positive (or nonnegative) integers.
- Let $P(n)$ be a statement with an integer parameter, n. Mathematical induction is a technique for proving that $P(n)$ is true for all integers \geq some base value b.
- Usually, the base value is 0 or 1 .
- To show $P(n)$ holds for all $n \geq b$, we must show two things:

1. Base Case: $P(b)$ is true (where b is the base value).
2. Inductive step: If $P(k)$ is true, then $P(k+1)$ is true.

Induction Example

Example: Show that for all $n \geq 1$

$$
\sum_{i=1}^{n} i \cdot 2^{i}=(n-1) \cdot 2^{(n+1)}+2
$$

Base Case: $(n=1)$
LHS $=\sum_{i=1}^{1} i \cdot 2^{i}=1 \cdot 2^{1}=2$.
RHS $=(1-1) \cdot 2^{1+1}+2=0+2=2$.
LHS $=$ RHS \checkmark

Induction Example, continued

Inductive Step:
Assume $P(k)$ is true:

$$
\sum_{i=1}^{k} i \cdot 2^{i}=(k-1) \cdot 2^{(k+1)}+2
$$

Show $P(k+1)$ is true:

$$
\sum_{i=1}^{k+1} i \cdot 2^{i}=k \cdot 2^{(k+2)}+2
$$

Induction Example, continued

$$
\begin{aligned}
& \text { Assume: } \sum_{i=1}^{k} i \cdot 2^{i}=(k-1) \cdot 2^{(k+1)}+2 \\
& \text { Show: } \sum_{i=1}^{k+1} i \cdot 2^{i}=k \cdot 2^{(k+2)}+2 . \\
& \\
& =\begin{aligned}
\sum_{i=1}^{k+1} i \cdot 2^{i} & =\sum_{i=1}^{k} i \cdot 2^{i}+(k+1) \cdot 2^{(k+1)} \\
= & 2 k \cdot 2^{(k+1)}+2 \\
= & k \cdot 2^{(k+2)}+2
\end{aligned}
\end{aligned}
$$

Probability

- Defined in terms of a sample space, S.
- Sample space consists of a finite set of outcomes, also called elementary events.
- An event is a subset of the sample space. (So an event is a set of outcomes).
- Sample space can be infinite, even uncountable. In this course, it will generally be finite.

Example: (2-coin example.) Flip two coins.

- Sample space $S=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$.
- The event "first coin is heads" is the subset $\{\mathrm{HH}, \mathrm{HT}\}$.

Probability function

- A probability function is a function $P(\cdot)$ that maps events (subsets of the sample space S) to real numbers such that:

1. $P(\emptyset)=0$.
2. $P(S)=1$.
3. For every event $A, 0 \leq P(A) \leq 1$.
4. If $A, B \subseteq S$ and $A \cap B=\emptyset$, then $P(A \cup B)=P(A)+P(B)$.

- Note: Property 4 implies that if $A \subseteq B$ then $P(A) \leq P(B)$.

Probability function (continued)

For finite sample spaces, this can be simplified:

- Sample space $S=\left\{s_{1}, \ldots, s_{k}\right\}$,
- Each outcome S_{i} is assigned a probability $P\left(s_{i}\right)$, with

$$
\sum_{i=1}^{k} P\left(s_{i}\right)=1
$$

- The probability of an event $E \subseteq S$ is:

$$
P(E)=\sum_{s_{i} \in E} P\left(s_{i}\right)
$$

Example: (2-coin example, continued). Define

$$
P(\mathrm{HH})=P(\mathrm{HT})=P(\mathrm{TH})=P(\mathrm{TT})=\frac{1}{4}
$$

Random variables

- Intuitive definition: a random variable is a variable whose value depends on the outcome of some experiment.
- Formal definition: a random variable is a function that maps outcomes in a sample space S to real numbers.
- Special case: An Indicator variable is a random variable that is always either 0 or 1 .

Expectation

- The expected value, or expectation, of a random variable X represents its "average value".
- Formally: Let X be a random variable with a finite set of possible values $\mathrm{V}=\left\{x_{1}, \ldots, x_{k}\right\}$. Then

$$
E(X)=\sum_{x \in V} x \cdot P(X=x)
$$

Example: (2-coin example, continued). Let X be the number of heads when two coins are thrown. Then

$$
\begin{aligned}
E(X) & =0 \cdot P(X=0)+1 \cdot P(X=1)+2 \cdot P(X=2) \\
& =0 \cdot\left(\frac{1}{4}\right)+1 \cdot\left(\frac{1}{2}\right)+2 \cdot\left(\frac{1}{4}\right) \\
& =1
\end{aligned}
$$

Expectation

Example: Throw a single six-sided die. Assume the die is fair, so each possible throw has a probability of $1 / 6$.

The expected value of the throw is:

$$
1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6}=3.5
$$

Linearity of Expectation

- For any two random variables X and Y,

$$
E(X+Y)=E(X)+E(Y)
$$

- Proof: see [GT], 1.3.4
- Very useful, because usually it is easier to compute $E(X)$ and $E(Y)$ and apply the formula than to compute $E(X+Y)$ directly.

Example 1: Throw two six-sided dice. Let X be the sum of the values. Then

$$
E(X)=E\left(X_{1}+X_{2}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)=3.5+3.5=7,
$$

where X_{i} is the value on die $i(i=1,2)$.
Example 2: Throw 100 six-sided dice. Let Y be the sum of the values. Then

$$
E(Y)=100 \cdot 3.5=350 .
$$

Independent events

- Two events A_{1} and A_{2} are independent iff

$$
P\left(A_{1} \cap A_{2}\right)=P\left(A_{1}\right) \cdot P\left(A_{2}\right) .
$$

Example: (2-coin example, continued). Let

$$
\begin{aligned}
& A_{1}=\text { coin } 1 \text { is heads }=\{\mathrm{HH}, \mathrm{HT}\} \\
& A_{2}=\text { coin } 2 \text { is tails }=\{\mathrm{HT}, \mathrm{TT}\}
\end{aligned}
$$

Then $P\left(A_{1}\right)=\frac{1}{2}, P\left(A_{2}\right)=\frac{1}{2}$, and

$$
P\left(A_{1} \cap A_{2}\right)=P(H T)=\frac{1}{4}=P\left(A_{1}\right) \cdot P\left(A_{2}\right) .
$$

So A_{1} and A_{2} are independent.

Independent events

A collection of n events $C=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ is mutually independent (or simply independent) if:

For every subset $\left\{A_{i_{1}}, A_{i_{2}}, \ldots A_{i_{k}}\right\} \subseteq C$:

$$
P\left(A_{i_{1}} \cap A_{i_{2}} \cap \ldots \cap A_{i_{k}}\right)=P\left(A_{i_{1}}\right) \cdot P\left(A_{i_{2}}\right) \cdots P\left(A_{i_{k}}\right) .
$$

Example: Suppose we flip 10 coins. Suppose the flips are fair $(P(\mathrm{H})=P(\mathrm{~T})=1 / 2)$ and independent. Then the probability of any particular sequence of flips (e.g., нНTTTHTHTH) is $1 /\left(2^{10}\right)$.

Example: Probability and counting

Example: Suppose we flip a coin 10 times. Suppose the flips are fair and independent. What is the probability of getting exactly 7 heads out of the 10 flips?

Solution:

- The outcomes consist of the set of possible sequences of 10 flips (e.g., HHTTTHTHTH).
- The probability of each outcome is $1 /\left(2^{10}\right)$.
- The number of successful outcomes is $\binom{10}{7}$.
- Hence the probability of getting exactly 7 heads is:

$$
\frac{\binom{10}{7}}{2^{10}}=\frac{120}{1024}=0.117 .
$$

An average-case result about finding the maximum

$$
\begin{aligned}
& \mathrm{v}=-\infty \\
& \text { for } \mathrm{i}=0 \text { to } \mathrm{n}-1 \text { : } \\
& \text { if } \mathrm{A}[\mathrm{i}]>\mathrm{v} \text { : } \\
& \mathrm{V}=\mathrm{A}[\mathrm{i}] \\
& \text { return } \mathrm{v}
\end{aligned}
$$

- Worst-case number of comparisons is n.
- This can be reduced to $n-1$
- How many times is the running maximum updated?
- In the worst case n.
- What about the average case? ...

Average number of updates to the running maximum

- Assume
- all possible orderings (permutations) of A are equally likely
- all n elements of A are distinct.
- The running maximum gets updated on iteration i of the loop iff $\max \{A[0], \ldots, A[i]\}=A[i]$.
- The probability of this happening is $1 /(i+1)$.
- Define indicator variables X_{i} :

$$
X_{i}= \begin{cases}1 & \text { if } v \text { gets updated on iteration } \# i \\ 0 & \text { if } v \text { does not get updated on iteration } \# i\end{cases}
$$

Then $E\left(X_{i}\right)=\frac{1}{i+1}$

- The total number of times that v gets updated is:

$$
X=\sum_{i=0}^{n-1} X_{i}
$$

Average number of updates to the running maximum (continued)

The expected total number of times that v gets updated is:

$$
E(X)=E\left(\sum_{i=0}^{n-1} X_{i}\right)=\sum_{i=0}^{n-1} E\left(X_{i}\right)=\sum_{i=0}^{n-1} \frac{1}{i+1}=\sum_{i=1}^{n} \frac{1}{i}=H_{n}=O(\log n)
$$

It can be shown that

$$
H_{n}=\ln n+\gamma+o(1), \quad \text { where } \gamma=0.5772157 \ldots
$$

If there are 30,000 elements in the list, the expected update count is about 10.9

If there are $3,000,000,000$ elements in the list, the expected update count is about 22.4

