
CS 161 Design and Analysis of Algorithms

Ioannis Panageas

Lecture 2
Math overview

Algorithms and Data Structures
q An algorithm is a step-by-step procedure for

performing some task in a finite amount of
time.
n Typically, an algorithm takes input data and

produces an output based upon it.

q A data structure is a systematic way of
organizing and accessing data.

© 2015 Goodrich and Tamassia Analysis of Algorithms

AlgorithmInput Output

Analysis of Algorithms

Running Time
q Most algorithms transform

input objects into output
objects.

q The running time of an
algorithm typically grows
with the input size.

q Average case time is often
difficult to determine.

q We focus primarily on the
worst case running time.
n Easier to analyze
n Crucial to applications such as

games, finance and robotics

0

20

40

60

80

100

120

R
un

ni
ng

 T
im

e
1000 2000 3000 4000

Input Size

best case
average case
worst case

© 2015 Goodrich and Tamassia

Analysis of Algorithms

Theoretical Analysis
q Uses a high-level description of the

algorithm instead of an implementation
q Characterizes running time as a

function of the input size, n
q Takes into account all possible inputs
q Allows us to evaluate the speed of an

algorithm independent of the
hardware/software environment

© 2015 Goodrich and Tamassia

Analysis of Algorithms

Pseudocode
q High-level description of an algorithm
q More structured than English prose
q Less detailed than a program
q Preferred notation for describing

algorithms
q Hides program design issues

© 2015 Goodrich and Tamassia

Analysis of Algorithms

Pseudocode Details
q Control flow

n if … then … [else …]
n while … do …
n repeat … until …
n for … do …
n Indentation replaces braces

q Method declaration
Algorithm method (arg [, arg…])

Input …
Output …

q Method call
method (arg [, arg…])

q Return value
return expression

q Expressions:
¬Assignment

= Equality testing

n2 Superscripts and other
mathematical
formatting allowed

© 2015 Goodrich and Tamassia

Analysis of Algorithms

Seven Important Functions
q Seven functions that

often appear in algorithm
analysis:
n Constant » 1
n Logarithmic » log n
n Linear » n
n N-Log-N » n log n
n Quadratic » n2

n Cubic » n3

n Exponential » 2n

q In a log-log chart, the
slope of the line
corresponds to the
growth rate

1E+0
1E+2
1E+4
1E+6
1E+8
1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26
1E+28
1E+30

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n

T
(n
)

Cubic

Quadratic

Linear

© 2015 Goodrich and Tamassia

Functions Graphed
Using “Normal” Scale

© 2015 Goodrich and Tamassia Analysis of Algorithms

g(n) = 2ng(n) = 1

g(n) = lg n

g(n) = n lg n

g(n) = n

g(n) = n2

g(n) = n3

Slide by Matt Stallmann
included with permission.

Analysis of Algorithms

Primitive Operations
q Basic computations

performed by an algorithm
q Identifiable in pseudocode
q Largely independent from the

programming language
 important q Exact definition not

q Examples:
n Evaluating an

expression
n Assigning a value

to a variable
n Indexing into an

array
n Calling a method

© 2015 Goodrich and Tamassia

Analysis of Algorithms

Counting Primitive Operations
q Example: By inspecting the pseudocode, we can

determine the maximum number of primitive operations
executed by an algorithm, as a function of the input size

© 2015 Goodrich and Tamassia

Analysis of Algorithms

Growth Rate of Running Time

q Changing the hardware/ software
environment
n Affects T(n) by a constant factor, but
n Does not alter the growth rate of T(n)

q The linear growth rate of the running
time T(n) is an intrinsic property of
algorithm arrayMax

© 2015 Goodrich and Tamassia

Why Growth Rate Matters

© 2015 Goodrich and Tamassia Analysis of Algorithms

Slide by Matt Stallmann
included with permission.

if runtime
is... time for n + 1 time for 2 n time for 4 n

c lg n c lg (n + 1) c (lg n + 1) c(lg n + 2)

c n c (n + 1) 2c n 4c n

c n lg n
~ c n lg n

+ c n
2c n lg n +

2cn
4c n lg n +

4cn

c n2 ~ c n2 + 2c n 4c n2 16c n2

c n3 ~ c n3 + 3c n2 8c n3 64c n3

c 2n c 2 n+1 c 2 2n c 2 4n

runtime
quadruples
when
problem
size doubles

Analysis of Algorithms

Constant Factors

q The growth rate is
minimally affected by
n constant factors or
n lower-order terms

q Examples
n 102n + 105 is a linear

function
n 105n2 + 108n is a

quadratic function 1E+0
1E+2
1E+4
1E+6
1E+8
1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n

T
(n
)

Quadratic
Quadratic
Linear
Linear

© 2015 Goodrich and Tamassia

Analysis of Algorithms

Asymptotic Algorithm Analysis
q The asymptotic analysis of an algorithm determines

the running time in big-Oh notation
q To perform the asymptotic analysis

n We find the worst-case number of primitive operations
executed as a function of the input size

n We express this function with big-Oh notation
q Example:

n We say that algorithm arrayMax “runs in O(n) time”
q Since constant factors and lower-order terms are

eventually dropped anyhow, we can disregard them
when counting primitive operations

© 2015 Goodrich and Tamassia

Analysis of Algorithms

Big-Oh Rules

q If is f(n) a polynomial of degree d, then f(n) is
O(nd), i.e.,

1. Drop lower-order terms
2. Drop constant factors

q Use the smallest possible class of functions
n Say “2n is O(n)” instead of “2n is O(n2)”

q Use the simplest expression of the class
n Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”

© 2015 Goodrich and Tamassia

Analyzing Recursive Algorithms
q Use a function, T(n), to derive a recurrence

relation that characterizes the running time of
the algorithm in terms of smaller values of n.

© 2015 Goodrich and Tamassia Analysis of Algorithms

Analysis of Algorithms

Arithmetic Progression
q Assume the running

time of P is
O(1 + 2 + …+ n)

q The sum of the first n
integers is n(n + 1) / 2
n There is a simple visual

proof of this fact
q Thus, algorithm

P runs in O(n2)
time 0

1

2
3
4
5

6
7

1 2 3 4 5 6

© 2015 Goodrich and Tamassia

Math you need to Review
q Properties of powers:

a(b+c) = aba c
abc = (ab)c

ab /ac = a(b-c)

b = a logab

bc = a c*logab

q Properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba = logxa/logxb

q Summations
q Powers
q Logarithms
q Proof techniques
q Basic probability

© 2015 Goodrich and Tamassia Analysis of Algorithms

1

O (“big oh”)

Informally:

I g ∈ O(f) if g is bounded above by a constant multiple of f
(for sufficiently large values of n).

I g ∈ O(f) if “g grows no faster than (a constant multiple of)
f .”

I g ∈ O(f) if the ratio g/f is bounded above by a constant (for
sufficiently values of n).

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

2

O (“big oh”)

Formally:

I g ∈ O(f) if and only if:

∃C>0 ∃n0>0 ∀n>n0 g(n) ≤ C · f (n).

I Equivalently: g ∈ O(f) if and only if:

∃C>0 ∃n0>0 ∀n>n0

g(n)

f (n)
≤ C .

I Sometimes we write: g = O(f) rather than g ∈ O(f)

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

3

Examples of O-notation:

Example 1: f (n) = n, g(n) = 1000n: g ∈ O(f).

Proof: Let C = 1000. Then g(n) ≤ C · f (n) for all n.

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

4

Examples of O-notation:

Example 2: f (n) = n2, g(n) = n3/2: g ∈ O(f).

Proof: limn→∞
g(n)
f (n) = 0.

Hence for any C > 0 the ratio is less than C as long as n is
sufficiently large.(Of course, how large n must be to be“sufficiently
large” depends on C).

Alternate Proof: If n ≥ 1, n1/2 ≥ 1, so n3/2 ≤ n2.
Hence we can choose C = 1 and n0 = 1.

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

5

Examples of O-notation:

Example 3: f (n) = n3, g(n) = n4: g /∈ O(f).

Proof: limn→∞
g(n)
f (n) =∞.

Hence there is no C > 0 such that g(n) ≤ C · f (n) for sufficiently
large n.

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

6

Examples of O-notation:

Example 4: f (n) = n2, g(n) = 5n2 + 23n + 2: g ∈ O(f).

Proof: If n ≥ 1, then n ≤ n2 and 1 ≤ n2. Hence:

g(n) = 5n2 + 23n + 2

≤ 5n2 + 23n2 + 2n2

≤ 30n2

= 30f (n)

So we can take C = 30, n0 = 1.

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

7

More asymptotic notation:
o (“little oh”), Ω (“big Omega”)

I o (‘little oh”):

g ∈ o(f) if and only if lim
n→∞

g(n)

f (n)
= 0.

I Ω (“big Omega”) (or just “Omega”)

g ∈ Ω(f) if and only if ∃C>0 ∃n0>0 ∀n>n0 g(n) ≥ C · f (n).

Equivalently:

g ∈ Ω(f) if and only if ∃C>0 ∃n0>0 ∀n>n0

g(n)

f (n)
≥ C .

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

8

One more definition:
Θ (“Theta”)

I g ∈ Θ(f) if and only if:

g ∈ O(f) and g ∈ Ω(f).

I Equivalently, g ∈ Θ(f) if and only if:

∃C1>0 ∃C2>0 ∃n0>0 ∀n>n0 C1 ≤
g(n)

f (n)
≤ C2.

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

9

Examples of Asymptotic notation

Example 1: f (n) = n, g(n) = 1000n.

g ∈ Ω(f), g ∈ Θ(f)

To see that g ∈ Ω(f), we can take C = 1.

Then g(n) = 1000 · n > 1 · n = C · f (n).

To see that g ∈ Θ(f), we could argue that g ∈ O(f) (shown
earlier) and g ∈ Ω(f) (shown above).

Or we can take C1 = 1, C2 = 1000. Then

C1 ≤
g(n)

f (n
≤ C2.

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

10

Examples of Asymptotic notation

Example 2: f (n) = n2, g(n) = n3/2:

g ∈ o(f)

Because limn→∞
g(n)
f (n) = 0.

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

11

Examples of Asymptotic notation

Example 3: f (n) = n3, g(n) = n4:

g ∈ Ω(f)

Because limn→∞
g(n)
f (n) =∞, so we can choose any C we want.

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

12

Examples of Asymptotic notation

Example 4: f (n) = n2, g(n) = 5n2 − 23n + 2:

g ∈ Ω(f).

Proof: If n ≥ 23, then 23n ≤ n2. Hence if n ≥ 23:

g(n) = 5n2 − 23n + 2

≥ 5n2 − n2

≥ 4n2

= 4f (n)

So we can take C = 4, n0 = 23.

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

13

Another Example

Example 5: ln n = o(n)

Proof:

Examine the ratio ln n
n as n→∞.

If we try to evaluate the limit directly, we obtain the
“indeterminate form” ∞∞ .

We need to apply L’Hôpital’s rule (from calculus).

(Continued on next slide)

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

14

Example 5, continued:
ln n = o(n)

L’Hôpital’s rule: If the ratio of limits

limn→∞ g(n)

limn→∞ f (n)

is an indeterminate form (i.e., ∞/∞ or 0/0), then

lim
n→∞

g(n)

f (n)
= lim

n→∞

g ′(n)

f ′(n)

where f ′ and g ′ are, respectively, the derivatives of f and g .

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

15

Example 5, continued:
ln n = o(n)

Let f (n) = n, g(n) = ln n.

Then f ′(n) = 1, g ′(n) = 1/n.

By L’Hôpital’s rule:

lim
n→∞

g(n)

f (n)
= lim

n→∞

g ′(n)

f ′(n)

= lim
n→∞

1/n

1

= lim
n→∞

1

n

= 0.

Hence g(n) = o (f (n)).

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

16

Math background

I Sums, Summations

I Logarithms, Exponents Floors, Ceilings, Harmonic Numbers

I Proof Techniques

I Basic Probability

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

17

Sums, Summations

I Summation notation:

b∑
i=a

f (i) = f (a) + f (a + 1) + · · ·+ f (b).

I Special cases:
I What if a = b? f (a)
I What if a > b? 0

I If S = {s1, . . . , sn} is a finite set:∑
x∈S

f (x) = f (s1) + f (s2) + · · ·+ f (sn).

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

18

Geometric sum

I Geometric sum:

n∑
i=0

ai = 1 + a1 + a2 + · · ·+ an =
1− an+1

1− a
,

provided that a 6= 1.

I Previous formula holds for a = 0 because a0 = 1 even when
a = 0.

I Special case of geometric sum:

n∑
i=0

2i = 1 + 2 + 4 + 8 + · · ·+ 2n = 2n+1 − 1.

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

19

Infinite Geometric sum

I From the previous slide:

n∑
i=0

ai = 1 + a1 + a2 + · · ·+ an =
1− an+1

1− a
,

provided that a 6= 1.

I If |a| < 1, we can take the limit as n→∞:

∞∑
i=0

ai = 1 + a1 + a2 + · · · =
1

1− a
,

I Special case of infinite geometric sum:

∞∑
i=0

1

2i
= 1 +

1

2
+

1

4
+

1

8
+ · · · = 2.

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

20

Other Summations

I Sum of first n integers

n∑
i=1

i = 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
= Θ

(
n2
)

I Sum of first n squares

n∑
i=1

i2 = 1 + 4 + 9 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
= Θ

(
n3
)

I In general, for any fixed positive integer k:

n∑
i=1

ik = 1 + 2k + 3k + · · ·+ nk = Θ
(
nk+1

)
CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

21

Logarithms

Definition: logb x = y if and only if by = x .

Some useful properties:

1. logb 1 = 0.

2. logb b
a = a.

3. logb(xy) = logb x + logb y .

4. logb(xa) = a logb x .

5. x logb y = y logb x .

6. logx b = 1
logb x

.

7. loga x = logb x
logb a

.

8. loga x = (logb x)(loga b).

Exercise: Prove the above properties.

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

22

Floors and ceilings

I bxc = largest integer ≤ x . (Read as Floor of x)

I dxe= smallest integer ≥ x (Read as Ceiling of x)

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

23

Factorials

I n! = 1 · 2 · · · n
I n! represents the number of distinct permutations of n objects.

1 2 3

1 3 2

2 1 3

2 3 1

3 1 2

3 2 1

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

24

Combinations

(n
k

)
= The number of different ways of choosing k objects

from a collection of n objects. (Pronounced “n choose
k”.)

Example:
(5
2

)
= 10

{1, 2} {1, 3} {1, 4} {1, 5} {2, 3}
{2, 4} {2, 5} {3, 4} {3, 5} {4, 5}

Formula:
(n
k

)
= n!

k!(n−k)!

Special cases:
(n
0

)
= 1,

(n
1

)
= n,

(n
2

)
= n(n−1)

2

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

25

Harmonic Numbers

The nth Harmonic number is the sum:

Hn =
n∑

i=1

1

i

These numbers go to infinity:

lim
n→∞

Hn =
∞∑
i=1

1

i
=∞

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

26

Harmonic Numbers
The harmonic numbers are closely related to logs. Recall:

ln x =

∫ x

1

1

t
dt

1 x

y = 1
x

We will show that Hn = Θ(log n).
CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

27

Harmonic Numbers

y = 1
x

1 2 3 4 5

1
2 + 1

3 + . . .+ 1
n < ln n < 1 + 1

2 + . . .+ 1
n−1

Hn − 1 < ln n < Hn − 1
n

Hence ln n + 1
n < Hn < ln n + 1, so Hn = Θ(log n).

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

28

Proof/Justification Techniques

I Proof by Example Can be used to prove
I A statement of the form “There exists. . . ” is true.
I A statement of the form “For all. . . ” is false.
I A statement of the form “If P then Q” is false.

I Illustration: Consider the statement:

All numbers of the form 2k − 1 are prime.

This statement is False: 24 − 1 = 15 = 3 · 5
I Note: The statement can be rewritten as:

If n is an integer of the form 2k − 1, then n is prime.

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

29

Proof/Justification Techniques

I Suppose we want to prove a statement of the form “If P
then Q” is true.
There are three approaches:

1. Direct proof: Assume P is true. Show that Q must be true.
2. Indirect proof: Assume Q is false. Show that P must be

false.This is also known as a proof by contraposition.
3. Proof by contradiction: Assume P is true and Q is false. Show

that there is a contradiction.

See [GT] Section 1.3.3 for examples.

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

30

Proof/Justification Techniques:
Induction

I A technique for proving theorems about the positive (or
nonnegative) integers.

I Let P(n) be a statement with an integer parameter, n.
Mathematical induction is a technique for proving that P(n) is
true for all integers ≥ some base value b.

I Usually, the base value is 0 or 1.
I To show P(n) holds for all n ≥ b, we must show two things:

1. Base Case: P(b) is true (where b is the base value).
2. Inductive step: If P(k) is true, then P(k + 1) is true.

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

31

Induction Example

Example: Show that for all n ≥ 1

n∑
i=1

i · 2i = (n − 1) · 2(n+1) + 2

Base Case: (n = 1)

LHS =
1∑

i=1

i · 2i = 1 · 21 = 2.

RHS = (1− 1) · 21+1 + 2 = 0 + 2 = 2.

LHS = RHS X

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

32

Induction Example, continued

Inductive Step:

Assume P(k) is true:

k∑
i=1

i · 2i = (k − 1) · 2(k+1) + 2.

Show P(k + 1) is true:

k+1∑
i=1

i · 2i = k · 2(k+2) + 2.

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

33

Induction Example, continued

Assume:
k∑

i=1

i · 2i = (k − 1) · 2(k+1) + 2.

Show:
k+1∑
i=1

i · 2i = k · 2(k+2) + 2.

k+1∑
i=1

i · 2i =
k∑

i=1

i · 2i + (k + 1) · 2(k+1)

= (k − 1) · 2(k+1) + 2 + (k + 1) · 2(k+1)

= 2k · 2(k+1) + 2

= k · 2(k+2) + 2

QED

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

34

Probability

I Defined in terms of a sample space, S .

I Sample space consists of a finite set of outcomes, also called
elementary events.

I An event is a subset of the sample space. (So an event is a
set of outcomes).

I Sample space can be infinite, even uncountable. In this
course, it will generally be finite.

Example: (2-coin example.) Flip two coins.

I Sample space S = {HH, HT, TH, TT}.
I The event “first coin is heads” is the subset {HH, HT}.

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

35

Probability function

I A probability function is a function P(·) that maps events
(subsets of the sample space S) to real numbers such that:

1. P(∅) = 0.
2. P(S) = 1.
3. For every event A, 0 ≤ P(A) ≤ 1.
4. If A,B ⊆ S and A ∩ B = ∅, then P(A ∪ B) = P(A) + P(B).

I Note: Property 4 implies that if A ⊆ B then P(A) ≤ P(B).

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

36

Probability function (continued)
For finite sample spaces, this can be simplified:

I Sample space S = {s1, . . . , sk},
I Each outcome Si is assigned a probability P(si), with

k∑
i=1

P(si) = 1.

I The probability of an event E ⊆ S is:

P(E) =
∑
si∈E

P(si).

Example: (2-coin example, continued). Define

P(HH) = P(HT) = P(TH) = P(TT) =
1

4
.

Then

P(first coin is heads) = P(HH) + P(HT) =
1

2
.

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

37

Random variables

I Intuitive definition: a random variable is a variable whose
value depends on the outcome of some experiment.

I Formal definition: a random variable is a function that maps
outcomes in a sample space S to real numbers.

I Special case: An Indicator variable is a random variable that is
always either 0 or 1.

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

38

Expectation

I The expected value, or expectation, of a random variable X
represents its “average value”.

I Formally: Let X be a random variable with a finite set of
possible values V = {x1, . . . , xk}. Then

E (X) =
∑
x∈V

x · P(X = x).

Example: (2-coin example, continued). Let X be the number of heads when
two coins are thrown. Then

E(X) = 0 · P(X = 0) + 1 · P(X = 1) + 2 · P(X = 2)

= 0 ·
(

1

4

)
+ 1 ·

(
1

2

)
+ 2 ·

(
1

4

)
= 1

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

39

Expectation

Example: Throw a single six-sided die. Assume the die is fair, so
each possible throw has a probability of 1/6.

The expected value of the throw is:

1 · 1

6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
= 3.5

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

40

Linearity of Expectation

I For any two random variables X and Y ,

E (X + Y) = E (X) + E (Y).

I Proof: see [GT], 1.3.4

I Very useful, because usually it is easier to compute E (X) and
E (Y) and apply the formula than to compute E (X + Y)
directly.

Example 1: Throw two six-sided dice. Let X be the sum of the values. Then

E(X) = E(X1 + X2) = E(X1) + E(X2) = 3.5 + 3.5 = 7,

where Xi is the value on die i (i = 1, 2).

Example 2: Throw 100 six-sided dice. Let Y be the sum of the values. Then

E(Y) = 100 · 3.5 = 350.

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

41

Independent events

I Two events A1 and A2 are independent iff

P(A1 ∩ A2) = P(A1) · P(A2).

Example: (2-coin example, continued). Let

A1 = coin 1 is heads = {HH, HT}
A2 = coin 2 is tails = {HT, TT}

Then P(A1) = 1
2
, P(A2) = 1

2
, and

P(A1 ∩ A2) = P(HT) =
1

4
= P(A1) · P(A2).

So A1 and A2 are independent.

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

42

Independent events

A collection of n events C = {A1,A2, . . . ,An} is mutually
independent (or simply independent) if:

For every subset {Ai1 ,Ai2 , . . .Aik} ⊆ C:

P(Ai1 ∩ Ai2 ∩ . . . ∩ Aik) = P(Ai1) · P(Ai2) · · ·P(Aik).

Example: Suppose we flip 10 coins. Suppose the flips are fair
(P(H) = P(T) = 1/2) and independent. Then the probability of any
particular sequence of flips (e.g., HHTTTHTHTH) is 1/(210).

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

43

Example: Probability and counting

Example: Suppose we flip a coin 10 times. Suppose the flips are fair and
independent. What is the probability of getting exactly 7 heads out of
the 10 flips?

Solution:

I The outcomes consist of the set of possible sequences of 10 flips
(e.g., HHTTTHTHTH).

I The probability of each outcome is 1/(210).

I The number of successful outcomes is
(
10
7

)
.

I Hence the probability of getting exactly 7 heads is:(
10
7

)
210

=
120

1024
= 0.117.

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

44

An average-case result about finding the maximum

v = -∞
for i = 0 to n-1:

if A[i] > v:

v = A[i]

return v

I Worst-case number of comparisons is n.

I This can be reduced to n − 1
I How many times is the running maximum updated?

I In the worst case n.
I What about the average case? . . .

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

45

Average number of updates to the running maximum
I Assume

I all possible orderings (permutations) of A are equally likely
I all n elements of A are distinct.

I The running maximum gets updated on iteration i of the loop iff
max{A[0], . . . ,A[i]} = A[i].

I The probability of this happening is 1/(i + 1).

I Define indicator variables Xi :

Xi =

{
1 if v gets updated on iteration #i

0 if v does not get updated on iteration #i

Then E (Xi) = 1
i+1

I The total number of times that v gets updated is:

X =
n−1∑
i=0

Xi

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

46

Average number of updates to the running maximum
(continued)

The expected total number of times that v gets updated is:

E (X) = E

(
n−1∑
i=0

Xi

)
=

n−1∑
i=0

E (Xi) =
n−1∑
i=0

1

i + 1
=

n∑
i=1

1

i
= Hn = O(log n)

It can be shown that

Hn = ln n + γ + o(1), where γ = 0.5772157 . . .

If there are 30,000 elements in the list, the expected update count is
about 10.9

If there are 3,000,000,000 elements in the list, the expected update count
is about 22.4

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine

