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Algorithms and Data Structures
q An algorithm is a step-by-step procedure for 

performing some task in a finite amount of 
time.
n Typically, an algorithm takes input data and 

produces an output based upon it.

q A data structure is a systematic way of 
organizing and accessing data.
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Analysis of Algorithms

Running Time
q Most algorithms transform 

input objects into output 
objects.

q The running time of an 
algorithm typically grows 
with the input size.

q Average case time is often 
difficult to determine.

q We focus primarily on the 
worst case running time.
n Easier to analyze
n Crucial to applications such as 

games, finance and robotics
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Analysis of Algorithms

Theoretical Analysis
q Uses a high-level description of the 

algorithm instead of an implementation
q Characterizes running time as a 

function of the input size, n
q Takes into account all possible inputs
q Allows us to evaluate the speed of an 

algorithm independent of the 
hardware/software environment
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Analysis of Algorithms

Pseudocode
q High-level description of an algorithm
q More structured than English prose
q Less detailed than a program
q Preferred notation for describing 

algorithms
q Hides program design issues
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Analysis of Algorithms

Pseudocode Details
q Control flow

n if … then … [else …]
n while … do …
n repeat … until …
n for … do …
n Indentation replaces braces 

q Method declaration
Algorithm method (arg [, arg…])

Input …
Output …

q Method call
method (arg [, arg…])

q Return value
return expression

q Expressions:
¬Assignment

= Equality testing

n2 Superscripts and other 
mathematical 
formatting allowed
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Analysis of Algorithms

Seven Important Functions
q Seven functions that 

often appear in algorithm 
analysis:
n Constant » 1
n Logarithmic » log n
n Linear » n
n N-Log-N » n log n
n Quadratic » n2

n Cubic » n3

n Exponential » 2n

q In a log-log chart, the 
slope of the line 
corresponds to the 
growth rate
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Functions Graphed 
Using “Normal” Scale
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g(n) = 2ng(n) = 1

g(n) = lg n

g(n) = n lg n

g(n) = n

g(n) = n2

g(n) = n3
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Analysis of Algorithms

Primitive Operations
q Basic computations

performed by an algorithm
q Identifiable in pseudocode
q Largely independent from the 

programming language
 important q Exact definition not 

q Examples:
n Evaluating an

expression
n Assigning a value 

to a variable
n Indexing into an 

array
n Calling a method
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Analysis of Algorithms

Counting Primitive Operations
q Example: By inspecting the pseudocode, we can 

determine the maximum number of primitive operations 
executed by an algorithm, as a function of the input size

© 2015 Goodrich and Tamassia



Analysis of Algorithms

Growth Rate of Running Time

q Changing the hardware/ software 
environment 
n Affects T(n) by a constant factor, but
n Does not alter the growth rate of T(n)

q The linear growth rate of the running 
time T(n) is an intrinsic property of 
algorithm arrayMax
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Why Growth Rate Matters
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Analysis of Algorithms

Constant Factors

q The growth rate is 
minimally affected by
n constant factors or 
n lower-order terms

q Examples
n 102n + 105 is a linear 

function
n 105n2 + 108n is a 
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Analysis of Algorithms

Asymptotic Algorithm Analysis
q The asymptotic analysis of an algorithm determines 

the running time in big-Oh notation
q To perform the asymptotic analysis

n We find the worst-case number of primitive operations 
executed as a function of the input size

n We express this function with big-Oh notation
q Example:

n We say that algorithm arrayMax “runs in O(n) time”
q Since constant factors and lower-order terms are 

eventually dropped anyhow, we can disregard them 
when counting primitive operations
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Analysis of Algorithms

Big-Oh Rules

q If is f(n) a polynomial of degree d, then f(n) is 
O(nd), i.e.,

1. Drop lower-order terms
2. Drop constant factors

q Use the smallest possible class of functions
n Say “2n is O(n)” instead of “2n is O(n2)”

q Use the simplest expression of the class
n Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”
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Analyzing Recursive Algorithms
q Use a function, T(n), to derive a recurrence 

relation that characterizes the running time of 
the algorithm in terms of smaller values of n.
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Analysis of Algorithms

Arithmetic Progression
q Assume the running

time of P is
O(1 + 2 + …+ n)

q The sum of the first n
integers is n(n + 1) / 2
n There is a simple visual 

proof of this fact
q Thus, algorithm

P runs in O(n2)
time 0
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Math you need to Review
q Properties of powers:

a(b+c) = aba c
abc = (ab)c

ab /ac = a(b-c)

b = a logab

bc = a c*logab

q Properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba = logxa/logxb

q Summations
q Powers
q Logarithms
q Proof techniques
q Basic probability

© 2015 Goodrich and Tamassia Analysis of Algorithms
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O (“big oh”)

Informally:

I g ∈ O(f ) if g is bounded above by a constant multiple of f
(for sufficiently large values of n).

I g ∈ O(f ) if “g grows no faster than (a constant multiple of)
f .”

I g ∈ O(f ) if the ratio g/f is bounded above by a constant (for
sufficiently values of n).
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O (“big oh”)

Formally:

I g ∈ O(f ) if and only if:

∃C>0 ∃n0>0 ∀n>n0 g(n) ≤ C · f (n).

I Equivalently: g ∈ O(f ) if and only if:

∃C>0 ∃n0>0 ∀n>n0

g(n)

f (n)
≤ C .

I Sometimes we write: g = O(f ) rather than g ∈ O(f )
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Examples of O-notation:

Example 1: f (n) = n, g(n) = 1000n: g ∈ O(f ).

Proof: Let C = 1000. Then g(n) ≤ C · f (n) for all n.
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Examples of O-notation:

Example 2: f (n) = n2, g(n) = n3/2: g ∈ O(f ).

Proof: limn→∞
g(n)
f (n) = 0.

Hence for any C > 0 the ratio is less than C as long as n is
sufficiently large.(Of course, how large n must be to be“sufficiently
large” depends on C ).

Alternate Proof: If n ≥ 1, n1/2 ≥ 1, so n3/2 ≤ n2.
Hence we can choose C = 1 and n0 = 1.
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Examples of O-notation:

Example 3: f (n) = n3, g(n) = n4: g /∈ O(f ).

Proof: limn→∞
g(n)
f (n) =∞.

Hence there is no C > 0 such that g(n) ≤ C · f (n) for sufficiently
large n.
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Examples of O-notation:

Example 4: f (n) = n2, g(n) = 5n2 + 23n + 2: g ∈ O(f ).

Proof: If n ≥ 1, then n ≤ n2 and 1 ≤ n2. Hence:

g(n) = 5n2 + 23n + 2

≤ 5n2 + 23n2 + 2n2

≤ 30n2

= 30f (n)

So we can take C = 30, n0 = 1.
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More asymptotic notation:
o (“little oh”), Ω (“big Omega”)

I o (‘little oh”):

g ∈ o(f ) if and only if lim
n→∞

g(n)

f (n)
= 0.

I Ω (“big Omega”) (or just “Omega”)

g ∈ Ω(f ) if and only if ∃C>0 ∃n0>0 ∀n>n0 g(n) ≥ C · f (n).

Equivalently:

g ∈ Ω(f ) if and only if ∃C>0 ∃n0>0 ∀n>n0

g(n)

f (n)
≥ C .
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One more definition:
Θ (“Theta”)

I g ∈ Θ(f ) if and only if:

g ∈ O(f ) and g ∈ Ω(f ).

I Equivalently, g ∈ Θ(f ) if and only if:

∃C1>0 ∃C2>0 ∃n0>0 ∀n>n0 C1 ≤
g(n)

f (n)
≤ C2.
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Examples of Asymptotic notation

Example 1: f (n) = n, g(n) = 1000n.

g ∈ Ω(f ), g ∈ Θ(f )

To see that g ∈ Ω(f ), we can take C = 1.

Then g(n) = 1000 · n > 1 · n = C · f (n).

To see that g ∈ Θ(f ), we could argue that g ∈ O(f ) (shown
earlier) and g ∈ Ω(f ) (shown above).

Or we can take C1 = 1, C2 = 1000. Then

C1 ≤
g(n)

f (n
≤ C2.
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Examples of Asymptotic notation

Example 2: f (n) = n2, g(n) = n3/2:

g ∈ o(f )

Because limn→∞
g(n)
f (n) = 0.
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Examples of Asymptotic notation

Example 3: f (n) = n3, g(n) = n4:

g ∈ Ω(f )

Because limn→∞
g(n)
f (n) =∞, so we can choose any C we want.
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Examples of Asymptotic notation

Example 4: f (n) = n2, g(n) = 5n2 − 23n + 2:

g ∈ Ω(f ).

Proof: If n ≥ 23, then 23n ≤ n2. Hence if n ≥ 23:

g(n) = 5n2 − 23n + 2

≥ 5n2 − n2

≥ 4n2

= 4f (n)

So we can take C = 4, n0 = 23.
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Another Example

Example 5: ln n = o(n)

Proof:

Examine the ratio ln n
n as n→∞.

If we try to evaluate the limit directly, we obtain the
“indeterminate form” ∞∞ .

We need to apply L’Hôpital’s rule (from calculus).

(Continued on next slide)
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Example 5, continued:
ln n = o(n)

L’Hôpital’s rule: If the ratio of limits

limn→∞ g(n)

limn→∞ f (n)

is an indeterminate form (i.e., ∞/∞ or 0/0), then

lim
n→∞

g(n)

f (n)
= lim

n→∞

g ′(n)

f ′(n)

where f ′ and g ′ are, respectively, the derivatives of f and g .
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Example 5, continued:
ln n = o(n)

Let f (n) = n, g(n) = ln n.

Then f ′(n) = 1, g ′(n) = 1/n.

By L’Hôpital’s rule:

lim
n→∞

g(n)

f (n)
= lim

n→∞

g ′(n)

f ′(n)

= lim
n→∞

1/n

1

= lim
n→∞

1

n

= 0.

Hence g(n) = o (f (n)).
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Math background

I Sums, Summations

I Logarithms, Exponents Floors, Ceilings, Harmonic Numbers

I Proof Techniques

I Basic Probability

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine
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Sums, Summations

I Summation notation:

b∑
i=a

f (i) = f (a) + f (a + 1) + · · ·+ f (b).

I Special cases:
I What if a = b? f (a)
I What if a > b? 0

I If S = {s1, . . . , sn} is a finite set:∑
x∈S

f (x) = f (s1) + f (s2) + · · ·+ f (sn).
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Geometric sum

I Geometric sum:

n∑
i=0

ai = 1 + a1 + a2 + · · ·+ an =
1− an+1

1− a
,

provided that a 6= 1.

I Previous formula holds for a = 0 because a0 = 1 even when
a = 0.

I Special case of geometric sum:

n∑
i=0

2i = 1 + 2 + 4 + 8 + · · ·+ 2n = 2n+1 − 1.
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Infinite Geometric sum

I From the previous slide:

n∑
i=0

ai = 1 + a1 + a2 + · · ·+ an =
1− an+1

1− a
,

provided that a 6= 1.

I If |a| < 1, we can take the limit as n→∞:

∞∑
i=0

ai = 1 + a1 + a2 + · · · =
1

1− a
,

I Special case of infinite geometric sum:

∞∑
i=0

1

2i
= 1 +

1

2
+

1

4
+

1

8
+ · · · = 2.
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Other Summations

I Sum of first n integers

n∑
i=1

i = 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
= Θ

(
n2
)

I Sum of first n squares

n∑
i=1

i2 = 1 + 4 + 9 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
= Θ

(
n3
)

I In general, for any fixed positive integer k:

n∑
i=1

ik = 1 + 2k + 3k + · · ·+ nk = Θ
(
nk+1

)
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Logarithms

Definition: logb x = y if and only if by = x .

Some useful properties:

1. logb 1 = 0.

2. logb b
a = a.

3. logb(xy) = logb x + logb y .

4. logb(xa) = a logb x .

5. x logb y = y logb x .

6. logx b = 1
logb x

.

7. loga x = logb x
logb a

.

8. loga x = (logb x)(loga b).

Exercise: Prove the above properties.
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Floors and ceilings

I bxc = largest integer ≤ x . (Read as Floor of x)

I dxe= smallest integer ≥ x (Read as Ceiling of x)
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Factorials

I n! = 1 · 2 · · · n
I n! represents the number of distinct permutations of n objects.

1 2 3

1 3 2

2 1 3

2 3 1

3 1 2

3 2 1
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Combinations

(n
k

)
= The number of different ways of choosing k objects

from a collection of n objects. (Pronounced “n choose
k”.)

Example:
(5
2

)
= 10

{1, 2} {1, 3} {1, 4} {1, 5} {2, 3}
{2, 4} {2, 5} {3, 4} {3, 5} {4, 5}

Formula:
(n
k

)
= n!

k!(n−k)!

Special cases:
(n
0

)
= 1,

(n
1

)
= n,

(n
2

)
= n(n−1)

2
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Harmonic Numbers

The nth Harmonic number is the sum:

Hn =
n∑

i=1

1

i

These numbers go to infinity:

lim
n→∞

Hn =
∞∑
i=1

1

i
=∞
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Harmonic Numbers
The harmonic numbers are closely related to logs. Recall:

ln x =

∫ x

1

1

t
dt

1 x

y = 1
x

We will show that Hn = Θ(log n).
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Harmonic Numbers

y = 1
x

1 2 3 4 5

1
2 + 1

3 + . . .+ 1
n < ln n < 1 + 1

2 + . . .+ 1
n−1

Hn − 1 < ln n < Hn − 1
n

Hence ln n + 1
n < Hn < ln n + 1, so Hn = Θ(log n).
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Proof/Justification Techniques

I Proof by Example Can be used to prove
I A statement of the form “There exists. . . ” is true.
I A statement of the form “For all. . . ” is false.
I A statement of the form “If P then Q” is false.

I Illustration: Consider the statement:

All numbers of the form 2k − 1 are prime.

This statement is False: 24 − 1 = 15 = 3 · 5
I Note: The statement can be rewritten as:

If n is an integer of the form 2k − 1, then n is prime.
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Proof/Justification Techniques

I Suppose we want to prove a statement of the form “If P
then Q” is true.
There are three approaches:

1. Direct proof: Assume P is true. Show that Q must be true.
2. Indirect proof: Assume Q is false. Show that P must be

false.This is also known as a proof by contraposition.
3. Proof by contradiction: Assume P is true and Q is false. Show

that there is a contradiction.

See [GT] Section 1.3.3 for examples.
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Proof/Justification Techniques:
Induction

I A technique for proving theorems about the positive (or
nonnegative) integers.

I Let P(n) be a statement with an integer parameter, n.
Mathematical induction is a technique for proving that P(n) is
true for all integers ≥ some base value b.

I Usually, the base value is 0 or 1.
I To show P(n) holds for all n ≥ b, we must show two things:

1. Base Case: P(b) is true (where b is the base value).
2. Inductive step: If P(k) is true, then P(k + 1) is true.
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Induction Example

Example: Show that for all n ≥ 1

n∑
i=1

i · 2i = (n − 1) · 2(n+1) + 2

Base Case: (n = 1)

LHS =
1∑

i=1

i · 2i = 1 · 21 = 2.

RHS = (1− 1) · 21+1 + 2 = 0 + 2 = 2.

LHS = RHS X
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Induction Example, continued

Inductive Step:

Assume P(k) is true:

k∑
i=1

i · 2i = (k − 1) · 2(k+1) + 2.

Show P(k + 1) is true:

k+1∑
i=1

i · 2i = k · 2(k+2) + 2.
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Induction Example, continued

Assume:
k∑

i=1

i · 2i = (k − 1) · 2(k+1) + 2.

Show:
k+1∑
i=1

i · 2i = k · 2(k+2) + 2.

k+1∑
i=1

i · 2i =
k∑

i=1

i · 2i + (k + 1) · 2(k+1)

= (k − 1) · 2(k+1) + 2 + (k + 1) · 2(k+1)

= 2k · 2(k+1) + 2

= k · 2(k+2) + 2

QED
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Probability

I Defined in terms of a sample space, S .

I Sample space consists of a finite set of outcomes, also called
elementary events.

I An event is a subset of the sample space. (So an event is a
set of outcomes).

I Sample space can be infinite, even uncountable. In this
course, it will generally be finite.

Example: (2-coin example.) Flip two coins.

I Sample space S = {HH, HT, TH, TT}.
I The event “first coin is heads” is the subset {HH, HT}.
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Probability function

I A probability function is a function P(·) that maps events
(subsets of the sample space S) to real numbers such that:

1. P(∅) = 0.
2. P(S) = 1.
3. For every event A, 0 ≤ P(A) ≤ 1.
4. If A,B ⊆ S and A ∩ B = ∅, then P(A ∪ B) = P(A) + P(B).

I Note: Property 4 implies that if A ⊆ B then P(A) ≤ P(B).
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Probability function (continued)
For finite sample spaces, this can be simplified:

I Sample space S = {s1, . . . , sk},
I Each outcome Si is assigned a probability P(si ), with

k∑
i=1

P(si ) = 1.

I The probability of an event E ⊆ S is:

P(E ) =
∑
si∈E

P(si ).

Example: (2-coin example, continued). Define

P(HH) = P(HT) = P(TH) = P(TT) =
1

4
.

Then

P(first coin is heads) = P(HH) + P(HT) =
1

2
.
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Random variables

I Intuitive definition: a random variable is a variable whose
value depends on the outcome of some experiment.

I Formal definition: a random variable is a function that maps
outcomes in a sample space S to real numbers.

I Special case: An Indicator variable is a random variable that is
always either 0 or 1.
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Expectation

I The expected value, or expectation, of a random variable X
represents its “average value”.

I Formally: Let X be a random variable with a finite set of
possible values V = {x1, . . . , xk}. Then

E (X ) =
∑
x∈V

x · P(X = x).

Example: (2-coin example, continued). Let X be the number of heads when
two coins are thrown. Then

E(X ) = 0 · P(X = 0) + 1 · P(X = 1) + 2 · P(X = 2)

= 0 ·
(

1

4

)
+ 1 ·

(
1

2

)
+ 2 ·

(
1

4

)
= 1
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Expectation

Example: Throw a single six-sided die. Assume the die is fair, so
each possible throw has a probability of 1/6.

The expected value of the throw is:

1 · 1

6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
= 3.5
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Linearity of Expectation

I For any two random variables X and Y ,

E (X + Y ) = E (X ) + E (Y ).

I Proof: see [GT], 1.3.4

I Very useful, because usually it is easier to compute E (X ) and
E (Y ) and apply the formula than to compute E (X + Y )
directly.

Example 1: Throw two six-sided dice. Let X be the sum of the values. Then

E(X ) = E(X1 + X2) = E(X1) + E(X2) = 3.5 + 3.5 = 7,

where Xi is the value on die i (i = 1, 2).

Example 2: Throw 100 six-sided dice. Let Y be the sum of the values. Then

E(Y ) = 100 · 3.5 = 350.
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Independent events

I Two events A1 and A2 are independent iff

P(A1 ∩ A2) = P(A1) · P(A2).

Example: (2-coin example, continued). Let

A1 = coin 1 is heads = {HH, HT}
A2 = coin 2 is tails = {HT, TT}

Then P(A1) = 1
2
, P(A2) = 1

2
, and

P(A1 ∩ A2) = P(HT) =
1

4
= P(A1) · P(A2).

So A1 and A2 are independent.
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Independent events

A collection of n events C = {A1,A2, . . . ,An} is mutually
independent (or simply independent) if:

For every subset {Ai1 ,Ai2 , . . .Aik} ⊆ C:

P(Ai1 ∩ Ai2 ∩ . . . ∩ Aik ) = P(Ai1) · P(Ai2) · · ·P(Aik ).

Example: Suppose we flip 10 coins. Suppose the flips are fair
(P(H) = P(T) = 1/2) and independent. Then the probability of any
particular sequence of flips (e.g., HHTTTHTHTH) is 1/(210).
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Example: Probability and counting

Example: Suppose we flip a coin 10 times. Suppose the flips are fair and
independent. What is the probability of getting exactly 7 heads out of
the 10 flips?

Solution:

I The outcomes consist of the set of possible sequences of 10 flips
(e.g., HHTTTHTHTH).

I The probability of each outcome is 1/(210).

I The number of successful outcomes is
(
10
7

)
.

I Hence the probability of getting exactly 7 heads is:(
10
7

)
210

=
120

1024
= 0.117.
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An average-case result about finding the maximum

v = -∞
for i = 0 to n-1:

if A[i] > v:

v = A[i]

return v

I Worst-case number of comparisons is n.

I This can be reduced to n − 1
I How many times is the running maximum updated?

I In the worst case n.
I What about the average case? . . .
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Average number of updates to the running maximum
I Assume

I all possible orderings (permutations) of A are equally likely
I all n elements of A are distinct.

I The running maximum gets updated on iteration i of the loop iff
max{A[0], . . . ,A[i ]} = A[i ].

I The probability of this happening is 1/(i + 1).

I Define indicator variables Xi :

Xi =

{
1 if v gets updated on iteration #i

0 if v does not get updated on iteration #i

Then E (Xi ) = 1
i+1

I The total number of times that v gets updated is:

X =
n−1∑
i=0

Xi
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Average number of updates to the running maximum
(continued)

The expected total number of times that v gets updated is:

E (X ) = E

(
n−1∑
i=0

Xi

)
=

n−1∑
i=0

E (Xi ) =
n−1∑
i=0

1

i + 1
=

n∑
i=1

1

i
= Hn = O(log n)

It can be shown that

Hn = ln n + γ + o(1), where γ = 0.5772157 . . .

If there are 30,000 elements in the list, the expected update count is
about 10.9

If there are 3,000,000,000 elements in the list, the expected update count
is about 22.4
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