

Lecture 2 Math overview

CS 161 Design and Analysis of Algorithms
Ioannis Panageas

Algorithms and Data Structures

- An algorithm is a step-by-step procedure for performing some task in a finite amount of time.
 - Typically, an algorithm takes input data and produces an output based upon it.

 A data structure is a systematic way of organizing and accessing data.

Running Time

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus primarily on the worst case running time.
 - Easier to analyze
 - Crucial to applications such as games, finance and robotics

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n
- □ Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Pseudocode

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Pseudocode Details

- Control flow
 - if ... then ... [else ...]
 - while ... do ...
 - repeat ... until ...
 - for ... do ...
 - Indentation replaces braces
- Method declaration

```
Algorithm method (arg [, arg...])
```

Input ...

Output ...

- Method call
 method (arg [, arg...])
- Return value return expression
- Expressions:
 - ← Assignment
 - = Equality testing
 - n² Superscripts and other mathematical formatting allowed

Seven Important Functions

- Seven functions that
 often appear in algorithm 1E+30
 analysis:
 - Constant ≈ 1
 - Logarithmic $\approx \log n$
 - Linear $\approx n$
 - N-Log-N $\approx n \log n$
 - Quadratic $\approx n^2$
 - Cubic $\approx n^3$
 - Exponential $\approx 2^n$
- In a log-log chart, the slope of the line corresponds to the growth rate

Functions Graphed Using "Normal" Scale

Slide by Matt Stallmann included with permission.

Analysis of Algorithms

Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important

Examples:

- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method

Counting Primitive Operations

Example: By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

```
Algorithm arrayMax(A, n):
```

Input: An array A storing $n \ge 1$ integers.

Output: The maximum element in A.

 $\mathit{currentMax} \leftarrow A[0]$

for $i \leftarrow 1$ to n-1 do

if currentMax < A[i] then

 $currentMax \leftarrow A[i]$

return currentMax

Growth Rate of Running Time

- Changing the hardware/ software environment
 - \blacksquare Affects T(n) by a constant factor, but
 - Does not alter the growth rate of T(n)
- The linear growth rate of the running time T(n) is an intrinsic property of algorithm arrayMax

Slide by Matt Stallmann included with permission.

Why Growth Rate Matters

if runtime	time for n + 1	time for 2 n	time for 4 n
c lg n	c lg (n + 1)	c (lg n + 1)	c(lg n + 2)
c n	c (n + 1)	2c n	4c n
c n lg n	~ c n lg n + c n	2c n lg n + 2cn	4c n lg n + 4cn
c n²	~ c n ² + 2c n	4c n ²	16c n ²
c n³	~ c n ³ + 3c n ²	8c n ³	64c n ³
c 2 ⁿ	c 2 ⁿ⁺¹	c 2 ²ⁿ	c 2 ⁴ⁿ

runtime quadruples → when problem size doubles

Constant Factors

- The growth rate is minimally affected by
 - constant factors or
 - lower-order terms
- Examples
 - 10^2 **n** + 10^5 is a linear function
 - $10^5 n^2 + 10^8 n$ is a quadratic function

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
 - We find the worst-case number of primitive operations executed as a function of the input size
 - We express this function with big-Oh notation
- Example:
 - We say that algorithm arrayMax "runs in O(n) time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Big-Oh Rules

- □ If is f(n) a polynomial of degree d, then f(n) is $O(n^d)$, i.e.,
 - Drop lower-order terms
 - 2. Drop constant factors
- Use the smallest possible class of functions
 - Say "2n is O(n)" instead of "2n is $O(n^2)$ "
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Analyzing Recursive Algorithms

Use a function, T(n), to derive a recurrence
 relation that characterizes the running time of the algorithm in terms of smaller values of n.

Algorithm recursive Max(A, n):

Input: An array A storing $n \ge 1$ integers.

Output: The maximum element in A.

 $\begin{array}{l} \textbf{if } n=1 \textbf{ then} \\ \textbf{return } A[0] \\ \textbf{return } \max\{ \texttt{recursiveMax}(A,n-1), \ A[n-1] \} \end{array}$

$$T(n) = \begin{cases} 3 & \text{if } n = 1 \\ T(n-1) + 7 & \text{otherwise,} \end{cases}$$

Arithmetic Progression

- □ Assume the running time of \mathbf{P} is $\mathbf{O}(1+2+...+\mathbf{n})$
- □ The sum of the first n integers is n(n + 1)/2
 - There is a simple visual proof of this fact
- Thus, algorithm
 P runs in O(n²)
 time

Math you need to Review

- Summations
- Powers
- Logarithms
- Proof techniques
- Basic probability

Properties of powers:

$$a^{(b+c)} = a^b a^c$$
 $a^{bc} = (a^b)^c$
 $a^b / a^c = a^{(b-c)}$
 $b = a^{\log_a b}$
 $b^c = a^{c*\log_a b}$

Properties of logarithms:

$$log_b(xy) = log_bx + log_by$$

 $log_b(x/y) = log_bx - log_by$
 $log_bxa = alog_bx$
 $log_ba = log_xa/log_xb$

O ("big oh")

Informally:

- ▶ $g \in O(f)$ if g is bounded above by a constant multiple of f (for sufficiently large values of n).
- ▶ $g \in O(f)$ if "g grows no faster than (a constant multiple of) f."
- ▶ $g \in O(f)$ if the ratio g/f is bounded above by a constant (for sufficiently values of n).

O ("big oh")

Formally:

▶ $g \in O(f)$ if and only if:

$$\exists_{C>0}\ \exists_{n_0>0}\ \forall_{n>n_0}\ g(n)\leq C\cdot f(n).$$

▶ Equivalently: $g \in O(f)$ if and only if:

$$\exists_{C>0}\ \exists_{n_0>0}\ \forall_{n>n_0}\ \frac{g(n)}{f(n)}\leq C.$$

▶ Sometimes we write: g = O(f) rather than $g \in O(f)$

Example 1: f(n) = n, g(n) = 1000n: $g \in O(f)$.

Example 1: f(n) = n, g(n) = 1000n: $g \in O(f)$.

Proof: Let C = 1000. Then $g(n) \le C \cdot f(n)$ for all n.

Example 2:
$$f(n) = n^2$$
, $g(n) = n^{3/2}$: $g \in O(f)$.

Example 2:
$$f(n) = n^2$$
, $g(n) = n^{3/2}$: $g \in O(f)$.

Proof: $\lim_{n\to\infty} \frac{g(n)}{f(n)} = 0$.

Hence for any C > 0 the ratio is less than C as long as n is sufficiently large. (Of course, how large n must be to be "sufficiently large" depends on C).

Example 2:
$$f(n) = n^2$$
, $g(n) = n^{3/2}$: $g \in O(f)$.

Proof: $\lim_{n\to\infty}\frac{g(n)}{f(n)}=0$. Hence for any C>0 the ratio is less than C as long as n is sufficiently large. (Of course, how large n must be to be "sufficiently large" depends on C).

Alternate Proof: If $n \ge 1$, $n^{1/2} \ge 1$, so $n^{3/2} \le n^2$. Hence we can choose C = 1 and $n_0 = 1$.

Example 3:
$$f(n) = n^3$$
, $g(n) = n^4$: $g \notin O(f)$.

Example 3:
$$f(n) = n^3$$
, $g(n) = n^4$: $g \notin O(f)$.

Proof: $\lim_{n\to\infty} \frac{g(n)}{f(n)} = \infty$.

Hence there is no C > 0 such that $g(n) \le C \cdot f(n)$ for sufficiently large n.

Example 4:
$$f(n) = n^2$$
, $g(n) = 5n^2 + 23n + 2$: $g \in O(f)$.

Example 4: $f(n) = n^2$, $g(n) = 5n^2 + 23n + 2$: $g \in O(f)$.

Example 4:
$$f(n) = n^2$$
, $g(n) = 5n^2 + 23n + 2$: $g \in O(f)$.

$$g(n) = 5n^2 + 23n + 2$$

Example 4:
$$f(n) = n^2$$
, $g(n) = 5n^2 + 23n + 2$: $g \in O(f)$.

$$g(n) = 5n^2 + 23n + 2$$

$$\leq 5n^2 + 23n^2 + 2n^2$$

Example 4:
$$f(n) = n^2$$
, $g(n) = 5n^2 + 23n + 2$: $g \in O(f)$.

$$g(n) = 5n^{2} + 23n + 2$$

$$\leq 5n^{2} + 23n^{2} + 2n^{2}$$

$$\leq 30n^{2}$$

Example 4:
$$f(n) = n^2$$
, $g(n) = 5n^2 + 23n + 2$: $g \in O(f)$.

Proof: If $n \ge 1$, then $n \le n^2$ and $1 \le n^2$. Hence:

$$g(n) = 5n^{2} + 23n + 2$$

$$\leq 5n^{2} + 23n^{2} + 2n^{2}$$

$$\leq 30n^{2}$$

$$= 30f(n)$$

So we can take C = 30, $n_0 = 1$.

More asymptotic notation:

- o ("little oh"), Ω ("big Omega")
 - ▶ *o* ('little oh"):

$$g \in o(f)$$
 if and only if $\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$.

More asymptotic notation: o ("little oh"), Ω ("big Omega")

▶ *o* ('little oh"):

$$g \in o(f)$$
 if and only if $\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$.

 $\triangleright \Omega$ ("big Omega") (or just "Omega")

$$g \in \Omega(f)$$
 if and only if $\exists_{C>0} \exists_{n_0>0} \forall_{n>n_0} g(n) \geq C \cdot f(n)$.

More asymptotic notation: o ("little oh"), Ω ("big Omega")

▶ *o* ('little oh"):

$$g \in o(f)$$
 if and only if $\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$.

 \triangleright Ω ("big Omega") (or just "Omega")

$$g \in \Omega(f)$$
 if and only if $\exists_{C>0} \exists_{n_0>0} \forall_{n>n_0} g(n) \geq C \cdot f(n)$.

Equivalently:

$$g \in \Omega(f)$$
 if and only if $\exists_{C>0} \exists_{n_0>0} \forall_{n>n_0} \frac{g(n)}{f(n)} \geq C$.

One more definition:

$$\Theta$$
 ("Theta")

▶ $g \in \Theta(f)$ if and only if:

$$g \in O(f)$$
 and $g \in \Omega(f)$.

▶ Equivalently, $g \in \Theta(f)$ if and only if:

$$\exists_{C_1>0}\ \exists_{C_2>0}\ \exists_{n_0>0}\ \forall_{n>n_0}\ C_1\leq \frac{g(n)}{f(n)}\leq C_2.$$

Example 1: f(n) = n, g(n) = 1000n.

Example 1: f(n) = n, g(n) = 1000n.

$$g \in \Omega(f)$$
, $g \in \Theta(f)$

Example 1: f(n) = n, g(n) = 1000n.

$$g \in \Omega(f)$$
, $g \in \Theta(f)$

To see that $g \in \Omega(f)$, we can take C = 1.

Then $g(n) = 1000 \cdot n > 1 \cdot n = C \cdot f(n)$.

Example 1: f(n) = n, g(n) = 1000n.

$$g \in \Omega(f)$$
, $g \in \Theta(f)$

To see that $g \in \Omega(f)$, we can take C = 1.

Then
$$g(n) = 1000 \cdot n > 1 \cdot n = C \cdot f(n)$$
.

To see that $g \in \Theta(f)$, we could argue that $g \in O(f)$ (shown earlier) and $g \in \Omega(f)$ (shown above).

Or we can take $C_1 = 1$, $C_2 = 1000$. Then

$$C_1 \leq \frac{g(n)}{f(n)} \leq C_2.$$

Example 2:
$$f(n) = n^2$$
, $g(n) = n^{3/2}$:

Example 2:
$$f(n) = n^2$$
, $g(n) = n^{3/2}$:

$$g \in o(f)$$

Because $\lim_{n\to\infty} \frac{g(n)}{f(n)} = 0$.

Example 3:
$$f(n) = n^3$$
, $g(n) = n^4$:

Example 3:
$$f(n) = n^3$$
, $g(n) = n^4$:

$$g \in \Omega(f)$$

Because $\lim_{n\to\infty} \frac{g(n)}{f(n)} = \infty$, so we can choose any C we want.

Example 4:
$$f(n) = n^2$$
, $g(n) = 5n^2 - 23n + 2$:

$$g \in \Omega(f)$$
.

Example 4:
$$f(n) = n^2$$
, $g(n) = 5n^2 - 23n + 2$:

$$g \in \Omega(f)$$
.

Proof: If $n \ge 23$, then $23n \le n^2$. Hence if $n \ge 23$:

$$g(n) = 5n^2 - 23n + 2$$

Example 4:
$$f(n) = n^2$$
, $g(n) = 5n^2 - 23n + 2$:

$$g \in \Omega(f)$$
.

Proof: If $n \ge 23$, then $23n \le n^2$. Hence if $n \ge 23$:

$$g(n) = 5n^2 - 23n + 2$$

 $\geq 5n^2 - n^2$

Example 4:
$$f(n) = n^2$$
, $g(n) = 5n^2 - 23n + 2$:

$$g \in \Omega(f)$$
.

Proof: If $n \ge 23$, then $23n \le n^2$. Hence if $n \ge 23$:

$$g(n) = 5n^2 - 23n + 2$$

$$\geq 5n^2 - n^2$$

$$\geq 4n^2$$

Example 4:
$$f(n) = n^2$$
, $g(n) = 5n^2 - 23n + 2$: $g \in \Omega(f)$.

Proof: If $n \ge 23$, then $23n \le n^2$. Hence if $n \ge 23$:

$$g(n) = 5n^2 - 23n + 2$$

$$\geq 5n^2 - n^2$$

$$\geq 4n^2$$

$$= 4f(n)$$

So we can take C = 4, $n_0 = 23$.

Another Example

Example 5: $\ln n = o(n)$

Another Example

Example 5: $\ln n = o(n)$

Proof:

Examine the ratio $\frac{\ln n}{n}$ as $n \to \infty$.

If we try to evaluate the limit directly, we obtain the "indeterminate form" $\frac{\infty}{\infty}$.

Another Example

Example 5: $\ln n = o(n)$

Proof:

Examine the ratio $\frac{\ln n}{n}$ as $n \to \infty$.

If we try to evaluate the limit directly, we obtain the "indeterminate form" $\frac{\infty}{\infty}$.

We need to apply L'Hôpital's rule (from calculus).

Example 5, continued: $\ln n = o(n)$

L'Hôpital's rule: If the ratio of limits

$$\frac{\lim_{n\to\infty}g(n)}{\lim_{n\to\infty}f(n)}$$

is an indeterminate form (i.e., ∞/∞ or 0/0), then

$$\lim_{n\to\infty}\frac{g(n)}{f(n)}=\lim_{n\to\infty}\frac{g'(n)}{f'(n)}$$

where f' and g' are, respectively, the derivatives of f and g.

$$\ln n = o(n)$$

Let f(n) = n, $g(n) = \ln n$.

$$\ln n = o(n)$$

Let
$$f(n) = n$$
, $g(n) = \ln n$.

Then f'(n) = 1, g'(n) = 1/n.

$$\ln n = o(n)$$

Let f(n) = n, $g(n) = \ln n$.

Then f'(n) = 1, g'(n) = 1/n.

By L'Hôpital's rule:

$$\ln n = o(n)$$

Let
$$f(n) = n$$
, $g(n) = \ln n$.

Then
$$f'(n) = 1$$
, $g'(n) = 1/n$.

By L'Hôpital's rule:

$$\lim_{n\to\infty}\frac{g(n)}{f(n)} = \lim_{n\to\infty}\frac{g'(n)}{f'(n)}$$

$$\ln n = o(n)$$

Let
$$f(n) = n$$
, $g(n) = \ln n$.

Then
$$f'(n) = 1$$
, $g'(n) = 1/n$.

By L'Hôpital's rule:

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{g'(n)}{f'(n)}$$
$$= \lim_{n \to \infty} \frac{1/n}{1}$$

$$ln n = o(n)$$

Let
$$f(n) = n$$
, $g(n) = \ln n$.

Then
$$f'(n) = 1$$
, $g'(n) = 1/n$.

By L'Hôpital's rule:

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{g'(n)}{f'(n)}$$

$$= \lim_{n \to \infty} \frac{1/n}{1}$$

$$= \lim_{n \to \infty} \frac{1}{n}$$

$$= 0$$

Hence g(n) = o(f(n)).

Math background

Math background

- Sums. Summations
- ► Logarithms, Exponents Floors, Ceilings, Harmonic Numbers
- Proof Techniques
- Basic Probability

$$\sum_{i=a}^{b} f(i) = f(a) + f(a+1) + \cdots + f(b).$$

Summation notation:

$$\sum_{i=a}^{b} f(i) = f(a) + f(a+1) + \cdots + f(b).$$

Special cases:

$$\sum_{i=a}^{b} f(i) = f(a) + f(a+1) + \cdots + f(b).$$

- Special cases:
 - ▶ What if a = b?

$$\sum_{i=a}^{b} f(i) = f(a) + f(a+1) + \cdots + f(b).$$

- Special cases:
 - ▶ What if a = b? f(a)

$$\sum_{i=a}^{b} f(i) = f(a) + f(a+1) + \cdots + f(b).$$

- Special cases:
 - ▶ What if a = b? f(a)
 - ▶ What if a > b?

$$\sum_{i=a}^{b} f(i) = f(a) + f(a+1) + \cdots + f(b).$$

- Special cases:
 - ▶ What if a = b? f(a)
 - What if a > b?

$$\sum_{i=a}^{b} f(i) = f(a) + f(a+1) + \cdots + f(b).$$

- Special cases:
 - ▶ What if a = b? f(a)
 - What if a > b?
- ▶ If $S = \{s_1, ..., s_n\}$ is a finite set:

$$\sum_{i=a}^{b} f(i) = f(a) + f(a+1) + \cdots + f(b).$$

- Special cases:
 - ▶ What if a = b? f(a)
 - What if a > b? 0
- ▶ If $S = \{s_1, \ldots, s_n\}$ is a finite set:

$$\sum_{x \in S} f(x) = f(s_1) + f(s_2) + \cdots + f(s_n).$$

Geometric sum

► Geometric sum:

$$\sum_{i=0}^{n} a^{i} = 1 + a^{1} + a^{2} + \dots + a^{n} = \frac{1 - a^{n+1}}{1 - a},$$

provided that $a \neq 1$.

Geometric sum

Geometric sum:

$$\sum_{i=0}^{n} a^{i} = 1 + a^{1} + a^{2} + \dots + a^{n} = \frac{1 - a^{n+1}}{1 - a},$$

provided that $a \neq 1$.

▶ Previous formula holds for a = 0 because $a^0 = 1$ even when a = 0.

Geometric sum

Geometric sum:

$$\sum_{i=0}^{n} a^{i} = 1 + a^{1} + a^{2} + \dots + a^{n} = \frac{1 - a^{n+1}}{1 - a},$$

provided that $a \neq 1$.

- ▶ Previous formula holds for a = 0 because $a^0 = 1$ even when a = 0.
- Special case of geometric sum:

$$\sum_{i=0}^{n} 2^{i} = 1 + 2 + 4 + 8 + \dots + 2^{n} = 2^{n+1} - 1.$$

Infinite Geometric sum

► From the previous slide:

$$\sum_{i=0}^{n} a^{i} = 1 + a^{1} + a^{2} + \dots + a^{n} = \frac{1 - a^{n+1}}{1 - a},$$

provided that $a \neq 1$.

Infinite Geometric sum

From the previous slide:

$$\sum_{i=0}^{n} a^{i} = 1 + a^{1} + a^{2} + \dots + a^{n} = \frac{1 - a^{n+1}}{1 - a},$$

provided that $a \neq 1$.

▶ If |a| < 1, we can take the limit as $n \to \infty$:

$$\sum_{i=0}^{\infty} a^i = 1 + a^1 + a^2 + \dots = \frac{1}{1-a},$$

Infinite Geometric sum

From the previous slide:

$$\sum_{i=0}^{n} a^{i} = 1 + a^{1} + a^{2} + \dots + a^{n} = \frac{1 - a^{n+1}}{1 - a},$$

provided that $a \neq 1$.

▶ If |a| < 1, we can take the limit as $n \to \infty$:

$$\sum_{i=0}^{\infty} a^i = 1 + a^1 + a^2 + \dots = \frac{1}{1-a},$$

► Special case of infinite geometric sum:

$$\sum_{i=1}^{\infty} \frac{1}{2^i} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 2.$$

Other Summations

▶ Sum of first *n* integers

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2} = \Theta(n^{2})$$

Other Summations

Sum of first n integers

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2} = \Theta(n^{2})$$

Sum of first n squares

$$\sum_{i=1}^{n} i^2 = 1 + 4 + 9 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6} = \Theta(n^3)$$

Other Summations

Sum of first n integers

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2} = \Theta(n^{2})$$

► Sum of first *n* squares

$$\sum_{i=1}^{n} i^2 = 1 + 4 + 9 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6} = \Theta(n^3)$$

▶ In general, for any fixed positive integer k:

$$\sum_{i=1}^{n} i^{k} = 1 + 2^{k} + 3^{k} + \dots + n^{k} = \Theta\left(n^{k+1}\right)$$

Logarithms

Definition: $\log_b x = y$ if and only if $b^y = x$.

Some useful properties:

1.
$$\log_b 1 = 0$$
.

$$2. \log_b b^a = a.$$

3.
$$\log_b(xy) = \log_b x + \log_b y.$$

$$4. \log_b(x^a) = a \log_b x.$$

$$5. x^{\log_b y} = y^{\log_b x}.$$

6.
$$\log_x b = \frac{1}{\log_b x}$$
.

7.
$$\log_a x = \frac{\log_b x}{\log_b a}$$
.

8.
$$\log_a x = (\log_b x)(\log_a b)$$
.

Floors and ceilings

- ▶ $|x| = \text{largest integer} \le x$. (Read as Floor of x)
- [x] = smallest integer $\geq x$ (Read as Ceiling of x)

Factorials

- $n! = 1 \cdot 2 \cdot \cdot \cdot n$
- ▶ *n*! represents the number of distinct permutations of *n* objects.

Factorials

- $n! = 1 \cdot 2 \cdot \cdot \cdot n$
- ▶ *n*! represents the number of distinct permutations of *n* objects.

 - 2 3 1

 - 3 1 2

 $\binom{n}{k}$ = The number of different ways of choosing k objects from a collection of n objects. (Pronounced "n choose k".)

Example: $\binom{5}{2} = 10$

 $\binom{n}{k} =$ The number of different ways of choosing k objects from a collection of n objects. (Pronounced "n choose k".)

Example: $\binom{5}{2} = 10$

 $\binom{n}{k}$ = The number of different ways of choosing k objects from a collection of n objects. (Pronounced "n choose k".)

Example: $\binom{5}{2} = 10$

Formula:
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

 $\binom{n}{k}$ = The number of different ways of choosing k objects from a collection of n objects. (Pronounced "n choose k".)

Example:
$$\binom{5}{2} = 10$$

Formula:
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Special cases:
$$\binom{n}{0} = 1$$
, $\binom{n}{1} = n$, $\binom{n}{2} = \frac{n(n-1)}{2}$

The *n*th Harmonic number is the sum:

$$H_n = \sum_{i=1}^n \frac{1}{i}$$

These numbers go to infinity:

$$\lim_{n\to\infty} H_n = \sum_{i=1}^{\infty} \frac{1}{i} = \infty$$

The harmonic numbers are closely related to logs. Recall:

$$\ln x = \int_{1}^{x} \frac{1}{t} dt$$

We will show that $H_n = \Theta(\log n)$.

$$\frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} < \ln n < 1 + \frac{1}{2} + \ldots + \frac{1}{n-1}$$

$$\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < \ln n < 1 + \frac{1}{2} + \dots + \frac{1}{n-1}$$

$$H_n - 1 < \ln n < H_n - \frac{1}{n}$$

$$\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < \ln n < 1 + \frac{1}{2} + \dots + \frac{1}{n-1}$$

$$H_n - 1 < \ln n < H_n - \frac{1}{n}$$

Hence $\ln n + \frac{1}{n} < H_n < \ln n + 1$, so $H_n = \Theta(\log n)$.

- Proof by Example Can be used to prove
 - ▶ A statement of the form "There exists..." is true.
 - ▶ A statement of the form "For all..." is false.
 - A statement of the form "If P then Q" is false.

- Proof by Example Can be used to prove
 - ▶ A statement of the form "There exists..." is true.
 - ▶ A statement of the form "For all..." is false.
 - A statement of the form "If P then Q" is false.
- ▶ Illustration: Consider the statement:

All numbers of the form $2^k - 1$ are prime.

This statement is False: $2^4 - 1 = 15 = 3 \cdot 5$

- Proof by Example Can be used to prove
 - ▶ A statement of the form "There exists..." is true.
 - ► A statement of the form "For all..." is false.
 - A statement of the form "If P then Q" is false.
- ▶ Illustration: Consider the statement:

All numbers of the form $2^k - 1$ are prime.

This statement is False: $2^4 - 1 = 15 = 3 \cdot 5$

Note: The statement can be rewritten as:

If n is an integer of the form $2^k - 1$, then n is prime.

Suppose we want to prove a statement of the form "If P then Q" is true.

There are three approaches:

Suppose we want to prove a statement of the form "If P then Q" is true.

There are three approaches:

1. Direct proof: Assume P is true. Show that Q must be true.

Suppose we want to prove a statement of the form "If P then Q" is true.

There are three approaches:

- 1. Direct proof: Assume P is true. Show that Q must be true.
- Indirect proof: Assume Q is false. Show that P must be false.

Suppose we want to prove a statement of the form "If P then Q" is true.

There are three approaches:

- 1. Direct proof: Assume P is true. Show that Q must be true.
- 2. Indirect proof: Assume Q is false. Show that P must be false. This is also known as a proof by contraposition.
- 3. Proof by contradiction: Assume P is true and Q is false. Show that there is a contradiction.

Suppose we want to prove a statement of the form "If P then Q" is true.

There are three approaches:

- 1. Direct proof: Assume P is true. Show that Q must be true.
- 2. Indirect proof: Assume Q is false. Show that P must be false. This is also known as a proof by contraposition.
- 3. Proof by contradiction: Assume P is true and Q is false. Show that there is a contradiction.

See [GT] Section 1.3.3 for examples.

A technique for proving theorems about the positive (or nonnegative) integers.

- A technique for proving theorems about the positive (or nonnegative) integers.
- Let P(n) be a statement with an integer parameter, n. Mathematical induction is a technique for proving that P(n) is true for all integers \geq some base value b.

- A technique for proving theorems about the positive (or nonnegative) integers.
- Let P(n) be a statement with an integer parameter, n. Mathematical induction is a technique for proving that P(n) is true for all integers \geq some base value b.
- ▶ Usually, the base value is 0 or 1.

- A technique for proving theorems about the positive (or nonnegative) integers.
- Let P(n) be a statement with an integer parameter, n. Mathematical induction is a technique for proving that P(n) is true for all integers \geq some base value b.
- ▶ Usually, the base value is 0 or 1.
- ▶ To show P(n) holds for all $n \ge b$, we must show two things:

- A technique for proving theorems about the positive (or nonnegative) integers.
- Let P(n) be a statement with an integer parameter, n. Mathematical induction is a technique for proving that P(n) is true for all integers \geq some base value b.
- ▶ Usually, the base value is 0 or 1.
- ▶ To show P(n) holds for all $n \ge b$, we must show two things:
 - 1. Base Case: P(b) is true (where b is the base value).

- A technique for proving theorems about the positive (or nonnegative) integers.
- Let P(n) be a statement with an integer parameter, n. Mathematical induction is a technique for proving that P(n) is true for all integers \geq some base value b.
- Usually, the base value is 0 or 1.
- ▶ To show P(n) holds for all $n \ge b$, we must show two things:
 - 1. Base Case: P(b) is true (where b is the base value).
 - 2. Inductive step: If P(k) is true, then P(k+1) is true.

Example: Show that for all $n \ge 1$

$$\sum_{i=1}^{n} i \cdot 2^{i} = (n-1) \cdot 2^{(n+1)} + 2$$

Example: Show that for all $n \ge 1$

$$\sum_{i=1}^{n} i \cdot 2^{i} = (n-1) \cdot 2^{(n+1)} + 2$$

Example: Show that for all n > 1

$$\sum_{i=1}^{n} i \cdot 2^{i} = (n-1) \cdot 2^{(n+1)} + 2$$

LHS =
$$\sum_{i=1}^{1} i \cdot 2^{i} = 1 \cdot 2^{1} = 2.$$

Example: Show that for all $n \ge 1$

$$\sum_{i=1}^{n} i \cdot 2^{i} = (n-1) \cdot 2^{(n+1)} + 2$$

LHS =
$$\sum_{i=1}^{1} i \cdot 2^{i} = 1 \cdot 2^{1} = 2$$
.

RHS =
$$(1-1) \cdot 2^{1+1} + 2 = 0 + 2 = 2$$
.

Example: Show that for all $n \ge 1$

$$\sum_{i=1}^{n} i \cdot 2^{i} = (n-1) \cdot 2^{(n+1)} + 2$$

LHS =
$$\sum_{i=1}^{1} i \cdot 2^{i} = 1 \cdot 2^{1} = 2.$$

RHS =
$$(1-1) \cdot 2^{1+1} + 2 = 0 + 2 = 2$$
.

Inductive Step:

Inductive Step:

Assume P(k) is true:

$$\sum_{i=1}^{k} i \cdot 2^{i} = (k-1) \cdot 2^{(k+1)} + 2.$$

Inductive Step:

Assume P(k) is true:

$$\sum_{i=1}^{k} i \cdot 2^{i} = (k-1) \cdot 2^{(k+1)} + 2.$$

Show P(k+1) is true:

$$\sum_{i=1}^{k+1} i \cdot 2^i = k \cdot 2^{(k+2)} + 2.$$

Assume:
$$\sum_{i=1}^{k} i \cdot 2^{i} = (k-1) \cdot 2^{(k+1)} + 2$$
.
Show: $\sum_{i=1}^{k+1} i \cdot 2^{i} = k \cdot 2^{(k+2)} + 2$.

Assume:
$$\sum_{i=1}^{k} i \cdot 2^{i} = (k-1) \cdot 2^{(k+1)} + 2$$
.
Show: $\sum_{i=1}^{k+1} i \cdot 2^{i} = k \cdot 2^{(k+2)} + 2$.

$$\sum_{i=1}^{k+1} i \cdot 2^i$$

Assume:
$$\sum_{i=1}^{k} i \cdot 2^{i} = (k-1) \cdot 2^{(k+1)} + 2$$
.
Show: $\sum_{i=1}^{k+1} i \cdot 2^{i} = k \cdot 2^{(k+2)} + 2$.

$$\sum_{i=1}^{k+1} i \cdot 2^{i} = \sum_{i=1}^{k} i \cdot 2^{i} + (k+1) \cdot 2^{(k+1)}$$

Assume:
$$\sum_{i=1}^{k} i \cdot 2^{i} = (k-1) \cdot 2^{(k+1)} + 2.$$

$$\text{Show:} \quad \sum_{i=1}^{k+1} i \cdot 2^{i} = k \cdot 2^{(k+2)} + 2.$$

$$\sum_{i=1}^{k+1} i \cdot 2^{i} = \sum_{i=1}^{k} i \cdot 2^{i} + (k+1) \cdot 2^{(k+1)}$$

$$= (k-1) \cdot 2^{(k+1)} + 2 + (k+1) \cdot 2^{(k+1)}$$

Assume:
$$\sum_{i=1}^{k} i \cdot 2^{i} = (k-1) \cdot 2^{(k+1)} + 2.$$
Show:
$$\sum_{i=1}^{k+1} i \cdot 2^{i} = k \cdot 2^{(k+2)} + 2.$$

$$\sum_{i=1}^{k+1} i \cdot 2^{i} = \sum_{i=1}^{k} i \cdot 2^{i} + (k+1) \cdot 2^{(k+1)}$$

$$= (k-1) \cdot 2^{(k+1)} + 2 + (k+1) \cdot 2^{(k+1)}$$

 $= 2k \cdot 2^{(k+1)} + 2$

Assume:
$$\sum_{i=1}^{k} i \cdot 2^{i} = (k-1) \cdot 2^{(k+1)} + 2.$$
Show:
$$\sum_{i=1}^{k+1} i \cdot 2^{i} = k \cdot 2^{(k+2)} + 2.$$

$$\sum_{i=1}^{k+1} i \cdot 2^{i} = \sum_{i=1}^{k} i \cdot 2^{i} + (k+1) \cdot 2^{(k+1)}$$

$$= (k-1) \cdot 2^{(k+1)} + 2 + (k+1) \cdot 2^{(k+1)}$$

 $= 2k \cdot 2^{(k+1)} + 2$ $= k \cdot 2^{(k+2)} + 2$

▶ Defined in terms of a sample space, S.

- ▶ Defined in terms of a sample space, S.
- ► Sample space consists of a finite set of outcomes, also called elementary events.

- Defined in terms of a sample space, S.
- Sample space consists of a finite set of outcomes, also called elementary events.
- ► An event is a subset of the sample space. (So an event is a set of outcomes).

- Defined in terms of a sample space, S.
- Sample space consists of a finite set of outcomes, also called elementary events.
- ► An event is a subset of the sample space. (So an event is a set of outcomes).
- ► Sample space can be infinite, even uncountable. In this course, it will generally be finite.

- Defined in terms of a sample space, S.
- Sample space consists of a finite set of outcomes, also called elementary events.
- ► An event is a subset of the sample space. (So an event is a set of outcomes).
- ► Sample space can be infinite, even uncountable. In this course, it will generally be finite.

Example: (2-coin example.) Flip two coins.

- Defined in terms of a sample space, S.
- Sample space consists of a finite set of outcomes, also called elementary events.
- An event is a subset of the sample space. (So an event is a set of outcomes).
- Sample space can be infinite, even uncountable. In this course, it will generally be finite.

Example: (2-coin example.) Flip two coins.

► Sample space $S = \{HH, HT, TH, TT\}$.

- Defined in terms of a sample space, S.
- Sample space consists of a finite set of outcomes, also called elementary events.
- An event is a subset of the sample space. (So an event is a set of outcomes).
- Sample space can be infinite, even uncountable. In this course, it will generally be finite.

Example: (2-coin example.) Flip two coins.

- ► Sample space $S = \{HH, HT, TH, TT\}$.
- ► The event "first coin is heads" is the subset {HH, HT}.

- A probability function is a function $P(\cdot)$ that maps events (subsets of the sample space S) to real numbers such that:
 - 1. $P(\emptyset) = 0$.
 - 2. P(S) = 1.

- A probability function is a function $P(\cdot)$ that maps events (subsets of the sample space S) to real numbers such that:
 - 1. $P(\emptyset) = 0$.
 - 2. P(S) = 1.
 - 3. For every event A, $0 \le P(A) \le 1$.

- A probability function is a function $P(\cdot)$ that maps events (subsets of the sample space S) to real numbers such that:
 - 1. $P(\emptyset) = 0$.
 - 2. P(S) = 1.
 - 3. For every event A, $0 \le P(A) \le 1$.
 - 4. If $A, B \subseteq S$ and $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$.

- A probability function is a function $P(\cdot)$ that maps events (subsets of the sample space S) to real numbers such that:
 - 1. $P(\emptyset) = 0$.
 - 2. P(S) = 1.
 - 3. For every event A, $0 \le P(A) \le 1$.
 - 4. If $A, B \subseteq S$ and $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$.
- ▶ Note: Property 4 implies that if $A \subseteq B$ then $P(A) \le P(B)$.

Probability function (continued)

For finite sample spaces, this can be simplified:

- ▶ Sample space $S = \{s_1, \ldots, s_k\}$,
- ▶ Each outcome S_i is assigned a probability $P(s_i)$, with

$$\sum_{i=1}^{\kappa} P(s_i) = 1.$$

Probability function (continued)

For finite sample spaces, this can be simplified:

- ▶ Sample space $S = \{s_1, \ldots, s_k\}$,
- ▶ Each outcome S_i is assigned a probability $P(s_i)$, with

$$\sum_{i=1}^k P(s_i) = 1.$$

▶ The probability of an event $E \subseteq S$ is:

$$P(E) = \sum_{s_i \in E} P(s_i).$$

Probability function (continued)

For finite sample spaces, this can be simplified:

- ▶ Sample space $S = \{s_1, \ldots, s_k\}$,
- ▶ Each outcome S_i is assigned a probability $P(s_i)$, with

$$\sum_{i=1}^k P(s_i) = 1.$$

▶ The probability of an event $E \subseteq S$ is:

$$P(E) = \sum_{s_i \in E} P(s_i).$$

Example: (2-coin example, continued). Define

$$P(HH) = P(HT) = P(TH) = P(TT) = \frac{1}{4}$$

Random variables

▶ Intuitive definition: a random variable is a variable whose value depends on the outcome of some experiment.

Random variables

- ▶ Intuitive definition: a random variable is a variable whose value depends on the outcome of some experiment.
- ► Formal definition: a random variable is a function that maps outcomes in a sample space *S* to real numbers.

Random variables

- ▶ Intuitive definition: a random variable is a variable whose value depends on the outcome of some experiment.
- ► Formal definition: a random variable is a function that maps outcomes in a sample space *S* to real numbers.
- ► Special case: An Indicator variable is a random variable that is always either 0 or 1.

- ► The expected value, or expectation, of a random variable *X* represents its "average value".
- ▶ Formally: Let X be a random variable with a finite set of possible values $V = \{x_1, \dots, x_k\}$. Then

$$E(X) = \sum_{x \in V} x \cdot P(X = x).$$

- ► The expected value, or expectation, of a random variable *X* represents its "average value".
- ▶ Formally: Let X be a random variable with a finite set of possible values $V = \{x_1, \dots, x_k\}$. Then

$$E(X) = \sum_{x \in V} x \cdot P(X = x).$$

Example: (2-coin example, continued). Let X be the number of heads when two coins are thrown. Then

$$E(X) = 0 \cdot P(X=0) + 1 \cdot P(X=1) + 2 \cdot P(X=2)$$

$$= 0 \cdot \left(\frac{1}{4}\right) + 1 \cdot \left(\frac{1}{2}\right) + 2 \cdot \left(\frac{1}{4}\right)$$

$$= 1$$

Example: Throw a single six-sided die. Assume the die is fair, so each possible throw has a probability of 1/6.

Example: Throw a single six-sided die. Assume the die is fair, so each possible throw has a probability of 1/6.

The expected value of the throw is:

$$1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5$$

Linearity of Expectation

► For any two random variables X and Y,

$$E(X + Y) = E(X) + E(Y).$$

Linearity of Expectation

► For any two random variables X and Y,

$$E(X + Y) = E(X) + E(Y).$$

- ▶ Proof: see [GT], 1.3.4
- ▶ Very useful, because usually it is easier to compute E(X) and E(Y) and apply the formula than to compute E(X + Y) directly.

Linearity of Expectation

► For any two random variables X and Y,

$$E(X + Y) = E(X) + E(Y).$$

- Proof: see [GT], 1.3.4
- ▶ Very useful, because usually it is easier to compute E(X) and E(Y) and apply the formula than to compute E(X + Y) directly.

Example 1: Throw two six-sided dice. Let X be the sum of the values. Then

$$E(X) = E(X_1 + X_2) = E(X_1) + E(X_2) = 3.5 + 3.5 = 7,$$

where X_i is the value on die i (i = 1, 2).

Linearity of Expectation

► For any two random variables X and Y,

$$E(X + Y) = E(X) + E(Y).$$

- Proof: see [GT], 1.3.4
- ▶ Very useful, because usually it is easier to compute E(X) and E(Y) and apply the formula than to compute E(X + Y) directly.

Example 1: Throw two six-sided dice. Let X be the sum of the values. Then

$$E(X) = E(X_1 + X_2) = E(X_1) + E(X_2) = 3.5 + 3.5 = 7,$$

where X_i is the value on die i (i = 1, 2).

Example 2: Throw 100 six-sided dice. Let Y be the sum of the values. Then

$$E(Y) = 100 \cdot 3.5 = 350.$$

▶ Two events A_1 and A_2 are independent iff

$$P(A_1 \cap A_2) = P(A_1) \cdot P(A_2).$$

Example: (2-coin example, continued).

▶ Two events A_1 and A_2 are independent iff

$$P(A_1 \cap A_2) = P(A_1) \cdot P(A_2).$$

Example: (2-coin example, continued). Let

$$A_1$$
 = coin 1 is heads = {HH, HT}
 A_2 = coin 2 is tails = {HT, TT}

ightharpoonup Two events A_1 and A_2 are independent iff

$$P(A_1 \cap A_2) = P(A_1) \cdot P(A_2).$$

Example: (2-coin example, continued). Let

$$A_1$$
 = coin 1 is heads = {HH, HT}
 A_2 = coin 2 is tails = {HT, TT}

Then
$$P(A_1) = \frac{1}{2}$$
, $P(A_2) = \frac{1}{2}$, and

$$P(A_1 \cap A_2) = P(HT) = \frac{1}{4} = P(A_1) \cdot P(A_2).$$

So A_1 and A_2 are independent.

A collection of n events $C = \{A_1, A_2, ..., A_n\}$ is mutually independent (or simply independent) if:

For every subset $\{A_{i_1}, A_{i_2}, \dots A_{i_k}\} \subseteq C$:

$$P(A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_k}) = P(A_{i_1}) \cdot P(A_{i_2}) \cdots P(A_{i_k}).$$

A collection of n events $C = \{A_1, A_2, ..., A_n\}$ is mutually independent (or simply independent) if:

For every subset $\{A_{i_1}, A_{i_2}, \dots A_{i_k}\} \subseteq C$:

$$P(A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_k}) = P(A_{i_1}) \cdot P(A_{i_2}) \cdots P(A_{i_k}).$$

Example: Suppose we flip 10 coins. Suppose the flips are fair (P(H) = P(T) = 1/2) and independent. Then the probability of any particular sequence of flips (e.g., HHTTTHTHTH) is $1/(2^{10})$.

Example: Suppose we flip a coin 10 times. Suppose the flips are fair and independent. What is the probability of getting exactly 7 heads out of the 10 flips?

Example: Suppose we flip a coin 10 times. Suppose the flips are fair and independent. What is the probability of getting exactly 7 heads out of the 10 flips?

Solution:

► The outcomes consist of the set of possible sequences of 10 flips (e.g., HHTTTHTHTH).

Example: Suppose we flip a coin 10 times. Suppose the flips are fair and independent. What is the probability of getting exactly 7 heads out of the 10 flips?

Solution:

- ► The outcomes consist of the set of possible sequences of 10 flips (e.g., HHTTTHTHTH).
- ▶ The probability of each outcome is $1/(2^{10})$.

Example: Suppose we flip a coin 10 times. Suppose the flips are fair and independent. What is the probability of getting exactly 7 heads out of the 10 flips?

Solution:

- ► The outcomes consist of the set of possible sequences of 10 flips (e.g., HHTTTHTHTH).
- ▶ The probability of each outcome is $1/(2^{10})$.
- ▶ The number of successful outcomes is $\binom{10}{7}$.

Example: Suppose we flip a coin 10 times. Suppose the flips are fair and independent. What is the probability of getting exactly 7 heads out of the 10 flips?

Solution:

- ► The outcomes consist of the set of possible sequences of 10 flips (e.g., HHTTTHTHTH).
- ▶ The probability of each outcome is $1/(2^{10})$.
- ▶ The number of successful outcomes is $\binom{10}{7}$.
- ▶ Hence the probability of getting exactly 7 heads is:

$$\frac{\binom{10}{7}}{2^{10}} = \frac{120}{1024} = 0.117.$$

```
v = -\infty
for i = 0 to n-1:
    if A[i] > v:
    v = A[i]
return v
```

```
v = -∞
for i = 0 to n-1:
    if A[i] > v:
       v = A[i]
return v
```

▶ Worst-case number of comparisons is *n*.

- ▶ Worst-case number of comparisons is *n*.
- ▶ This can be reduced to n-1

```
v = -∞
for i = 0 to n-1:
    if A[i] > v:
       v = A[i]
return v
```

- ▶ Worst-case number of comparisons is *n*.
- ▶ This can be reduced to n-1
- ▶ How many times is the running maximum updated?

```
v = -∞
for i = 0 to n-1:
    if A[i] > v:
       v = A[i]
return v
```

- ▶ Worst-case number of comparisons is *n*.
- ▶ This can be reduced to n-1
- How many times is the running maximum updated?
 - ▶ In the worst case n.

```
v = -∞
for i = 0 to n-1:
    if A[i] > v:
       v = A[i]
return v
```

- ▶ Worst-case number of comparisons is *n*.
- ▶ This can be reduced to n-1
- How many times is the running maximum updated?
 - ▶ In the worst case n.
 - What about the average case? . . .

- Assume
 - ▶ all possible orderings (permutations) of A are equally likely
 - ▶ all *n* elements of *A* are distinct.

- Assume
 - ▶ all possible orderings (permutations) of A are equally likely
 - all n elements of A are distinct.
- ▶ The running maximum gets updated on iteration i of the loop iff $\max\{A[0], \ldots, A[i]\} = A[i]$.

- Assume
 - ▶ all possible orderings (permutations) of A are equally likely
 - all n elements of A are distinct.
- ▶ The running maximum gets updated on iteration i of the loop iff $\max\{A[0], \ldots, A[i]\} = A[i]$.
- ▶ The probability of this happening is 1/(i+1).

- Assume
 - ▶ all possible orderings (permutations) of A are equally likely
 - all n elements of A are distinct.
- ▶ The running maximum gets updated on iteration i of the loop iff $\max\{A[0], \ldots, A[i]\} = A[i]$.
- ▶ The probability of this happening is 1/(i+1).
- ▶ Define indicator variables X_i:

$$X_i = \begin{cases} 1 & \text{if } v \text{ gets updated on iteration } \#i \\ 0 & \text{if } v \text{ does not get updated on iteration } \#i \end{cases}$$

- Assume
 - ▶ all possible orderings (permutations) of A are equally likely
 - all n elements of A are distinct.
- ▶ The running maximum gets updated on iteration i of the loop iff $\max\{A[0], \ldots, A[i]\} = A[i]$.
- ▶ The probability of this happening is 1/(i+1).
- ▶ Define indicator variables X_i:

$$X_i = \begin{cases} 1 & \text{if } v \text{ gets updated on iteration } \#i \\ 0 & \text{if } v \text{ does not get updated on iteration } \#i \end{cases}$$

Then
$$E(X_i) = \frac{1}{i+1}$$

- Assume
 - ▶ all possible orderings (permutations) of A are equally likely
 - all n elements of A are distinct.
- ▶ The running maximum gets updated on iteration i of the loop iff $\max\{A[0], \ldots, A[i]\} = A[i]$.
- ▶ The probability of this happening is 1/(i+1).
- Define indicator variables X_i:

$$X_i = \begin{cases} 1 & \text{if } v \text{ gets updated on iteration } \#i \\ 0 & \text{if } v \text{ does not get updated on iteration } \#i \end{cases}$$

Then
$$E(X_i) = \frac{1}{i+1}$$

▶ The total number of times that v gets updated is:

$$X = \sum_{i=0}^{n-1} X_i$$

$$E(X) = E\left(\sum_{i=0}^{n-1} X_i\right)$$

$$E(X) = E\left(\sum_{i=0}^{n-1} X_i\right) = \sum_{i=0}^{n-1} E(X_i)$$

$$E(X) = E\left(\sum_{i=0}^{n-1} X_i\right) = \sum_{i=0}^{n-1} E(X_i) = \sum_{i=0}^{n-1} \frac{1}{i+1}$$

$$E(X) = E\left(\sum_{i=0}^{n-1} X_i\right) = \sum_{i=0}^{n-1} E\left(X_i\right) = \sum_{i=0}^{n-1} \frac{1}{i+1} = \sum_{i=1}^{n} \frac{1}{i}$$

$$E(X) = E\left(\sum_{i=0}^{n-1} X_i\right) = \sum_{i=0}^{n-1} E(X_i) = \sum_{i=0}^{n-1} \frac{1}{i+1} = \sum_{i=1}^{n} \frac{1}{i} = H_n$$

$$E(X) = E\left(\sum_{i=0}^{n-1} X_i\right) = \sum_{i=0}^{n-1} E\left(X_i\right) = \sum_{i=0}^{n-1} \frac{1}{i+1} = \sum_{i=1}^{n} \frac{1}{i} = H_n = O(\log n)$$

The expected total number of times that v gets updated is:

$$E(X) = E\left(\sum_{i=0}^{n-1} X_i\right) = \sum_{i=0}^{n-1} E\left(X_i\right) = \sum_{i=0}^{n-1} \frac{1}{i+1} = \sum_{i=1}^{n} \frac{1}{i} = H_n = O(\log n)$$

It can be shown that

$$H_n = \ln n + \gamma + o(1)$$
, where $\gamma = 0.5772157...$

The expected total number of times that v gets updated is:

$$E(X) = E\left(\sum_{i=0}^{n-1} X_i\right) = \sum_{i=0}^{n-1} E\left(X_i\right) = \sum_{i=0}^{n-1} \frac{1}{i+1} = \sum_{i=1}^{n} \frac{1}{i} = H_n = O(\log n)$$

It can be shown that

$$H_n = \ln n + \gamma + o(1)$$
, where $\gamma = 0.5772157...$

If there are 30,000 elements in the list, the expected update count is about 10.9

The expected total number of times that v gets updated is:

$$E(X) = E\left(\sum_{i=0}^{n-1} X_i\right) = \sum_{i=0}^{n-1} E(X_i) = \sum_{i=0}^{n-1} \frac{1}{i+1} = \sum_{i=1}^{n} \frac{1}{i} = H_n = O(\log n)$$

It can be shown that

$$H_n = \ln n + \gamma + o(1)$$
, where $\gamma = 0.5772157...$

If there are 30,000 elements in the list, the expected update count is about 10.9

If there are 3,000,000,000 elements in the list, the expected update count is about 22.4