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Algorithms and Data Structures
q An algorithm is a step-by-step procedure for 

performing some task in a finite amount of 
time.
n Typically, an algorithm takes input data and 

produces an output based upon it.

q A data structure is a systematic way of 
organizing and accessing data.
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Analysis of Algorithms

Running Time
q Most algorithms transform 

input objects into output 
objects.

q The running time of an 
algorithm typically grows 
with the input size.

q Average case time is often 
difficult to determine.

q We focus primarily on the 
worst case running time.
n Easier to analyze
n Crucial to applications such as 

games, finance and robotics
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Analysis of Algorithms

Theoretical Analysis
q Uses a high-level description of the 

algorithm instead of an implementation
q Characterizes running time as a 

function of the input size, n
q Takes into account all possible inputs
q Allows us to evaluate the speed of an 

algorithm independent of the 
hardware/software environment
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Analysis of Algorithms

Pseudocode
q High-level description of an algorithm
q More structured than English prose
q Less detailed than a program
q Preferred notation for describing 

algorithms
q Hides program design issues
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Analysis of Algorithms

Pseudocode Details
q Control flow

n if … then … [else …]
n while … do …
n repeat … until …
n for … do …
n Indentation replaces braces 

q Method declaration
Algorithm method (arg [, arg…])

Input …
Output …

q Method call
method (arg [, arg…])

q Return value
return expression

q Expressions:
¬Assignment

= Equality testing

n2 Superscripts and other 
mathematical 
formatting allowed
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Analysis of Algorithms

Seven Important Functions
q Seven functions that 

often appear in algorithm 
analysis:
n Constant » 1
n Logarithmic » log n
n Linear » n
n N-Log-N » n log n
n Quadratic » n2

n Cubic » n3

n Exponential » 2n

q In a log-log chart, the 
slope of the line 
corresponds to the 
growth rate
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Functions Graphed 
Using “Normal” Scale
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g(n) = 2ng(n) = 1

g(n) = lg n

g(n) = n lg n

g(n) = n

g(n) = n2

g(n) = n3
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Analysis of Algorithms

Primitive Operations
q Basic computations

performed by an algorithm
q Identifiable in pseudocode
q Largely independent from the 

programming language
 important q Exact definition not 

q Examples:
n Evaluating an

expression
n Assigning a value 

to a variable
n Indexing into an 

array
n Calling a method
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Analysis of Algorithms

Counting Primitive Operations
q Example: By inspecting the pseudocode, we can 

determine the maximum number of primitive operations 
executed by an algorithm, as a function of the input size
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Analysis of Algorithms

Growth Rate of Running Time

q Changing the hardware/ software 
environment 
n Affects T(n) by a constant factor, but
n Does not alter the growth rate of T(n)

q The linear growth rate of the running 
time T(n) is an intrinsic property of 
algorithm arrayMax

© 2015 Goodrich and Tamassia



Why Growth Rate Matters
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Analysis of Algorithms

Constant Factors

q The growth rate is 
minimally affected by
n constant factors or 
n lower-order terms

q Examples
n 102n + 105 is a linear 

function
n 105n2 + 108n is a 
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Analysis of Algorithms

Asymptotic Algorithm Analysis
q The asymptotic analysis of an algorithm determines 

the running time in big-Oh notation
q To perform the asymptotic analysis

n We find the worst-case number of primitive operations 
executed as a function of the input size

n We express this function with big-Oh notation
q Example:

n We say that algorithm arrayMax “runs in O(n) time”
q Since constant factors and lower-order terms are 

eventually dropped anyhow, we can disregard them 
when counting primitive operations
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Analysis of Algorithms

Big-Oh Rules

q If is f(n) a polynomial of degree d, then f(n) is 
O(nd), i.e.,

1. Drop lower-order terms
2. Drop constant factors

q Use the smallest possible class of functions
n Say “2n is O(n)” instead of “2n is O(n2)”

q Use the simplest expression of the class
n Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”
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Analyzing Recursive Algorithms
q Use a function, T(n), to derive a recurrence 

relation that characterizes the running time of 
the algorithm in terms of smaller values of n.
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Analysis of Algorithms

Arithmetic Progression
q Assume the running

time of P is
O(1 + 2 + …+ n)

q The sum of the first n
integers is n(n + 1) / 2
n There is a simple visual 

proof of this fact
q Thus, algorithm

P runs in O(n2)
time 0
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Math you need to Review
q Properties of powers:

a(b+c) = aba c
abc = (ab)c

ab /ac = a(b-c)

b = a logab

bc = a c*logab

q Properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba = logxa/logxb

q Summations
q Powers
q Logarithms
q Proof techniques
q Basic probability

© 2015 Goodrich and Tamassia Analysis of Algorithms
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O (“big oh”)

Informally:

I g ∈ O(f ) if g is bounded above by a constant multiple of f
(for sufficiently large values of n).

I g ∈ O(f ) if “g grows no faster than (a constant multiple of)
f .”

I g ∈ O(f ) if the ratio g/f is bounded above by a constant (for
sufficiently values of n).
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O (“big oh”)

Formally:

I g ∈ O(f ) if and only if:

∃C>0 ∃n0>0 ∀n>n0 g(n) ≤ C · f (n).

I Equivalently: g ∈ O(f ) if and only if:

∃C>0 ∃n0>0 ∀n>n0

g(n)

f (n)
≤ C .

I Sometimes we write: g = O(f ) rather than g ∈ O(f )
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Examples of O-notation:

Example 1: f (n) = n, g(n) = 1000n: g ∈ O(f ).

Proof: Let C = 1000. Then g(n) ≤ C · f (n) for all n.
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Examples of O-notation:

Example 2: f (n) = n2, g(n) = n3/2: g ∈ O(f ).

Proof: limn→∞
g(n)
f (n) = 0.

Hence for any C > 0 the ratio is less than C as long as n is
sufficiently large.(Of course, how large n must be to be“sufficiently
large” depends on C ).

Alternate Proof: If n ≥ 1, n1/2 ≥ 1, so n3/2 ≤ n2.
Hence we can choose C = 1 and n0 = 1.
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Examples of O-notation:

Example 3: f (n) = n3, g(n) = n4: g /∈ O(f ).

Proof: limn→∞
g(n)
f (n) =∞.

Hence there is no C > 0 such that g(n) ≤ C · f (n) for sufficiently
large n.
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Examples of O-notation:

Example 4: f (n) = n2, g(n) = 5n2 + 23n + 2: g ∈ O(f ).

Proof: If n ≥ 1, then n ≤ n2 and 1 ≤ n2. Hence:

g(n) = 5n2 + 23n + 2

≤ 5n2 + 23n2 + 2n2

≤ 30n2

= 30f (n)

So we can take C = 30, n0 = 1.
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More asymptotic notation:
o (“little oh”), Ω (“big Omega”)

I o (‘little oh”):

g ∈ o(f ) if and only if lim
n→∞

g(n)

f (n)
= 0.

I Ω (“big Omega”) (or just “Omega”)

g ∈ Ω(f ) if and only if ∃C>0 ∃n0>0 ∀n>n0 g(n) ≥ C · f (n).

Equivalently:

g ∈ Ω(f ) if and only if ∃C>0 ∃n0>0 ∀n>n0

g(n)

f (n)
≥ C .
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One more definition:
Θ (“Theta”)

I g ∈ Θ(f ) if and only if:

g ∈ O(f ) and g ∈ Ω(f ).

I Equivalently, g ∈ Θ(f ) if and only if:

∃C1>0 ∃C2>0 ∃n0>0 ∀n>n0 C1 ≤
g(n)

f (n)
≤ C2.
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Examples of Asymptotic notation

Example 1: f (n) = n, g(n) = 1000n.

g ∈ Ω(f ), g ∈ Θ(f )

To see that g ∈ Ω(f ), we can take C = 1.

Then g(n) = 1000 · n > 1 · n = C · f (n).

To see that g ∈ Θ(f ), we could argue that g ∈ O(f ) (shown
earlier) and g ∈ Ω(f ) (shown above).

Or we can take C1 = 1, C2 = 1000. Then

C1 ≤
g(n)

f (n
≤ C2.
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Examples of Asymptotic notation

Example 2: f (n) = n2, g(n) = n3/2:

g ∈ o(f )

Because limn→∞
g(n)
f (n) = 0.
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Examples of Asymptotic notation

Example 3: f (n) = n3, g(n) = n4:

g ∈ Ω(f )

Because limn→∞
g(n)
f (n) =∞, so we can choose any C we want.
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Examples of Asymptotic notation

Example 4: f (n) = n2, g(n) = 5n2 − 23n + 2:

g ∈ Ω(f ).

Proof: If n ≥ 23, then 23n ≤ n2. Hence if n ≥ 23:

g(n) = 5n2 − 23n + 2

≥ 5n2 − n2

≥ 4n2

= 4f (n)

So we can take C = 4, n0 = 23.
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Another Example

Example 5: ln n = o(n)

Proof:

Examine the ratio ln n
n as n→∞.

If we try to evaluate the limit directly, we obtain the
“indeterminate form” ∞∞ .

We need to apply L’Hôpital’s rule (from calculus).

(Continued on next slide)
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Example 5, continued:
ln n = o(n)

L’Hôpital’s rule: If the ratio of limits

limn→∞ g(n)

limn→∞ f (n)

is an indeterminate form (i.e., ∞/∞ or 0/0), then

lim
n→∞

g(n)

f (n)
= lim

n→∞

g ′(n)

f ′(n)

where f ′ and g ′ are, respectively, the derivatives of f and g .
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Example 5, continued:
ln n = o(n)

Let f (n) = n, g(n) = ln n.

Then f ′(n) = 1, g ′(n) = 1/n.

By L’Hôpital’s rule:

lim
n→∞

g(n)

f (n)
= lim

n→∞

g ′(n)

f ′(n)

= lim
n→∞

1/n

1

= lim
n→∞

1

n

= 0.

Hence g(n) = o (f (n)).
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= lim
n→∞

1/n

1

= lim
n→∞

1

n

= 0.

Hence g(n) = o (f (n)).
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Math background

I Sums, Summations

I Logarithms, Exponents Floors, Ceilings, Harmonic Numbers

I Proof Techniques

I Basic Probability
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Sums, Summations

I Summation notation:

b∑
i=a

f (i) = f (a) + f (a + 1) + · · ·+ f (b).

I Special cases:
I What if a = b? f (a)
I What if a > b? 0

I If S = {s1, . . . , sn} is a finite set:∑
x∈S

f (x) = f (s1) + f (s2) + · · ·+ f (sn).
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Geometric sum

I Geometric sum:

n∑
i=0

ai = 1 + a1 + a2 + · · ·+ an =
1− an+1

1− a
,

provided that a 6= 1.

I Previous formula holds for a = 0 because a0 = 1 even when
a = 0.

I Special case of geometric sum:

n∑
i=0

2i = 1 + 2 + 4 + 8 + · · ·+ 2n = 2n+1 − 1.
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Infinite Geometric sum

I From the previous slide:

n∑
i=0

ai = 1 + a1 + a2 + · · ·+ an =
1− an+1

1− a
,

provided that a 6= 1.

I If |a| < 1, we can take the limit as n→∞:

∞∑
i=0

ai = 1 + a1 + a2 + · · · =
1

1− a
,

I Special case of infinite geometric sum:

∞∑
i=0

1

2i
= 1 +

1

2
+

1

4
+

1

8
+ · · · = 2.
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Other Summations

I Sum of first n integers

n∑
i=1

i = 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
= Θ

(
n2
)

I Sum of first n squares

n∑
i=1

i2 = 1 + 4 + 9 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
= Θ

(
n3
)

I In general, for any fixed positive integer k:

n∑
i=1

ik = 1 + 2k + 3k + · · ·+ nk = Θ
(
nk+1

)
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Logarithms

Definition: logb x = y if and only if by = x .

Some useful properties:

1. logb 1 = 0.

2. logb b
a = a.

3. logb(xy) = logb x + logb y .

4. logb(xa) = a logb x .

5. x logb y = y logb x .

6. logx b = 1
logb x

.

7. loga x = logb x
logb a

.

8. loga x = (logb x)(loga b).

Exercise: Prove the above properties.
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Floors and ceilings

I bxc = largest integer ≤ x . (Read as Floor of x)

I dxe= smallest integer ≥ x (Read as Ceiling of x)
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Factorials

I n! = 1 · 2 · · · n
I n! represents the number of distinct permutations of n objects.

1 2 3

1 3 2

2 1 3

2 3 1

3 1 2

3 2 1
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Combinations

(n
k

)
= The number of different ways of choosing k objects

from a collection of n objects. (Pronounced “n choose
k”.)

Example:
(5
2

)
= 10

{1, 2} {1, 3} {1, 4} {1, 5} {2, 3}
{2, 4} {2, 5} {3, 4} {3, 5} {4, 5}

Formula:
(n
k

)
= n!

k!(n−k)!

Special cases:
(n
0

)
= 1,

(n
1

)
= n,

(n
2

)
= n(n−1)

2
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Harmonic Numbers

The nth Harmonic number is the sum:

Hn =
n∑

i=1

1

i

These numbers go to infinity:

lim
n→∞

Hn =
∞∑
i=1

1

i
=∞
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Harmonic Numbers
The harmonic numbers are closely related to logs. Recall:

ln x =

∫ x

1

1

t
dt

1 x

y = 1
x

We will show that Hn = Θ(log n).
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Harmonic Numbers

y = 1
x

1 2 3 4 5

1
2 + 1

3 + . . .+ 1
n < ln n < 1 + 1

2 + . . .+ 1
n−1

Hn − 1 < ln n < Hn − 1
n

Hence ln n + 1
n < Hn < ln n + 1, so Hn = Θ(log n).
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Proof/Justification Techniques

I Proof by Example Can be used to prove
I A statement of the form “There exists. . . ” is true.
I A statement of the form “For all. . . ” is false.
I A statement of the form “If P then Q” is false.

I Illustration: Consider the statement:

All numbers of the form 2k − 1 are prime.

This statement is False: 24 − 1 = 15 = 3 · 5
I Note: The statement can be rewritten as:

If n is an integer of the form 2k − 1, then n is prime.
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Proof/Justification Techniques

I Suppose we want to prove a statement of the form “If P
then Q” is true.
There are three approaches:

1. Direct proof: Assume P is true. Show that Q must be true.
2. Indirect proof: Assume Q is false. Show that P must be

false.This is also known as a proof by contraposition.
3. Proof by contradiction: Assume P is true and Q is false. Show

that there is a contradiction.

See [GT] Section 1.3.3 for examples.
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Proof/Justification Techniques:
Induction

I A technique for proving theorems about the positive (or
nonnegative) integers.

I Let P(n) be a statement with an integer parameter, n.
Mathematical induction is a technique for proving that P(n) is
true for all integers ≥ some base value b.

I Usually, the base value is 0 or 1.
I To show P(n) holds for all n ≥ b, we must show two things:

1. Base Case: P(b) is true (where b is the base value).
2. Inductive step: If P(k) is true, then P(k + 1) is true.
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Induction Example

Example: Show that for all n ≥ 1

n∑
i=1

i · 2i = (n − 1) · 2(n+1) + 2

Base Case: (n = 1)

LHS =
1∑

i=1

i · 2i = 1 · 21 = 2.

RHS = (1− 1) · 21+1 + 2 = 0 + 2 = 2.

LHS = RHS X
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Induction Example, continued

Inductive Step:

Assume P(k) is true:

k∑
i=1

i · 2i = (k − 1) · 2(k+1) + 2.

Show P(k + 1) is true:

k+1∑
i=1

i · 2i = k · 2(k+2) + 2.
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Induction Example, continued

Assume:
k∑

i=1

i · 2i = (k − 1) · 2(k+1) + 2.

Show:
k+1∑
i=1

i · 2i = k · 2(k+2) + 2.

k+1∑
i=1

i · 2i =
k∑

i=1

i · 2i + (k + 1) · 2(k+1)

= (k − 1) · 2(k+1) + 2 + (k + 1) · 2(k+1)

= 2k · 2(k+1) + 2

= k · 2(k+2) + 2 QED
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Probability

I Defined in terms of a sample space, S .

I Sample space consists of a finite set of outcomes, also called
elementary events.

I An event is a subset of the sample space. (So an event is a
set of outcomes).

I Sample space can be infinite, even uncountable. In this
course, it will generally be finite.

Example: (2-coin example.) Flip two coins.

I Sample space S = {HH, HT, TH, TT}.
I The event “first coin is heads” is the subset {HH, HT}.
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Probability function

I A probability function is a function P(·) that maps events
(subsets of the sample space S) to real numbers such that:

1. P(∅) = 0.
2. P(S) = 1.

3. For every event A, 0 ≤ P(A) ≤ 1.
4. If A,B ⊆ S and A ∩ B = ∅, then P(A ∪ B) = P(A) + P(B).

I Note: Property 4 implies that if A ⊆ B then P(A) ≤ P(B).
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Probability function (continued)
For finite sample spaces, this can be simplified:

I Sample space S = {s1, . . . , sk},
I Each outcome Si is assigned a probability P(si ), with

k∑
i=1

P(si ) = 1.

I The probability of an event E ⊆ S is:

P(E ) =
∑
si∈E

P(si ).

Example: (2-coin example, continued). Define

P(HH) = P(HT) = P(TH) = P(TT) =
1

4
.

Then

P(first coin is heads) = P(HH) + P(HT) =
1

2
.
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Random variables

I Intuitive definition: a random variable is a variable whose
value depends on the outcome of some experiment.

I Formal definition: a random variable is a function that maps
outcomes in a sample space S to real numbers.

I Special case: An Indicator variable is a random variable that is
always either 0 or 1.
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Expectation

I The expected value, or expectation, of a random variable X
represents its “average value”.

I Formally: Let X be a random variable with a finite set of
possible values V = {x1, . . . , xk}. Then

E (X ) =
∑
x∈V

x · P(X = x).

Example: (2-coin example, continued). Let X be the number of heads when
two coins are thrown. Then

E(X ) = 0 · P(X = 0) + 1 · P(X = 1) + 2 · P(X = 2)

= 0 ·
(

1

4

)
+ 1 ·

(
1

2

)
+ 2 ·

(
1

4

)
= 1
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Expectation

Example: Throw a single six-sided die. Assume the die is fair, so
each possible throw has a probability of 1/6.

The expected value of the throw is:

1 · 1

6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
= 3.5
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Linearity of Expectation

I For any two random variables X and Y ,

E (X + Y ) = E (X ) + E (Y ).

I Proof: see [GT], 1.3.4

I Very useful, because usually it is easier to compute E (X ) and
E (Y ) and apply the formula than to compute E (X + Y )
directly.

Example 1: Throw two six-sided dice. Let X be the sum of the values. Then

E(X ) = E(X1 + X2) = E(X1) + E(X2) = 3.5 + 3.5 = 7,

where Xi is the value on die i (i = 1, 2).

Example 2: Throw 100 six-sided dice. Let Y be the sum of the values. Then

E(Y ) = 100 · 3.5 = 350.
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Independent events

I Two events A1 and A2 are independent iff

P(A1 ∩ A2) = P(A1) · P(A2).

Example: (2-coin example, continued). Let

A1 = coin 1 is heads = {HH, HT}
A2 = coin 2 is tails = {HT, TT}

Then P(A1) = 1
2
, P(A2) = 1

2
, and

P(A1 ∩ A2) = P(HT) =
1

4
= P(A1) · P(A2).

So A1 and A2 are independent.
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P(A1 ∩ A2) = P(A1) · P(A2).

Example: (2-coin example, continued). Let

A1 = coin 1 is heads = {HH, HT}
A2 = coin 2 is tails = {HT, TT}

Then P(A1) = 1
2
, P(A2) = 1

2
, and

P(A1 ∩ A2) = P(HT) =
1

4
= P(A1) · P(A2).

So A1 and A2 are independent.
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Independent events

A collection of n events C = {A1,A2, . . . ,An} is mutually
independent (or simply independent) if:

For every subset {Ai1 ,Ai2 , . . .Aik} ⊆ C:

P(Ai1 ∩ Ai2 ∩ . . . ∩ Aik ) = P(Ai1) · P(Ai2) · · ·P(Aik ).

Example: Suppose we flip 10 coins. Suppose the flips are fair
(P(H) = P(T) = 1/2) and independent. Then the probability of any
particular sequence of flips (e.g., HHTTTHTHTH) is 1/(210).
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Example: Probability and counting

Example: Suppose we flip a coin 10 times. Suppose the flips are fair and
independent. What is the probability of getting exactly 7 heads out of
the 10 flips?

Solution:

I The outcomes consist of the set of possible sequences of 10 flips
(e.g., HHTTTHTHTH).

I The probability of each outcome is 1/(210).

I The number of successful outcomes is
(
10
7

)
.

I Hence the probability of getting exactly 7 heads is:(
10
7

)
210

=
120

1024
= 0.117.
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An average-case result about finding the maximum

v = -∞
for i = 0 to n-1:

if A[i] > v:

v = A[i]

return v

I Worst-case number of comparisons is n.

I This can be reduced to n − 1
I How many times is the running maximum updated?

I In the worst case n.
I What about the average case? . . .
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Average number of updates to the running maximum
I Assume

I all possible orderings (permutations) of A are equally likely
I all n elements of A are distinct.

I The running maximum gets updated on iteration i of the loop iff
max{A[0], . . . ,A[i ]} = A[i ].

I The probability of this happening is 1/(i + 1).

I Define indicator variables Xi :

Xi =

{
1 if v gets updated on iteration #i

0 if v does not get updated on iteration #i

Then E (Xi ) = 1
i+1

I The total number of times that v gets updated is:

X =
n−1∑
i=0

Xi

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine



45

Average number of updates to the running maximum
I Assume

I all possible orderings (permutations) of A are equally likely
I all n elements of A are distinct.

I The running maximum gets updated on iteration i of the loop iff
max{A[0], . . . ,A[i ]} = A[i ].

I The probability of this happening is 1/(i + 1).

I Define indicator variables Xi :

Xi =

{
1 if v gets updated on iteration #i

0 if v does not get updated on iteration #i

Then E (Xi ) = 1
i+1

I The total number of times that v gets updated is:

X =
n−1∑
i=0

Xi

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine



45

Average number of updates to the running maximum
I Assume

I all possible orderings (permutations) of A are equally likely
I all n elements of A are distinct.

I The running maximum gets updated on iteration i of the loop iff
max{A[0], . . . ,A[i ]} = A[i ].

I The probability of this happening is 1/(i + 1).

I Define indicator variables Xi :

Xi =

{
1 if v gets updated on iteration #i

0 if v does not get updated on iteration #i

Then E (Xi ) = 1
i+1

I The total number of times that v gets updated is:

X =
n−1∑
i=0

Xi

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine



45

Average number of updates to the running maximum
I Assume

I all possible orderings (permutations) of A are equally likely
I all n elements of A are distinct.

I The running maximum gets updated on iteration i of the loop iff
max{A[0], . . . ,A[i ]} = A[i ].

I The probability of this happening is 1/(i + 1).

I Define indicator variables Xi :

Xi =

{
1 if v gets updated on iteration #i

0 if v does not get updated on iteration #i

Then E (Xi ) = 1
i+1

I The total number of times that v gets updated is:

X =
n−1∑
i=0

Xi

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine



45

Average number of updates to the running maximum
I Assume

I all possible orderings (permutations) of A are equally likely
I all n elements of A are distinct.

I The running maximum gets updated on iteration i of the loop iff
max{A[0], . . . ,A[i ]} = A[i ].

I The probability of this happening is 1/(i + 1).

I Define indicator variables Xi :

Xi =

{
1 if v gets updated on iteration #i

0 if v does not get updated on iteration #i

Then E (Xi ) = 1
i+1

I The total number of times that v gets updated is:

X =
n−1∑
i=0

Xi

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine



45

Average number of updates to the running maximum
I Assume

I all possible orderings (permutations) of A are equally likely
I all n elements of A are distinct.

I The running maximum gets updated on iteration i of the loop iff
max{A[0], . . . ,A[i ]} = A[i ].

I The probability of this happening is 1/(i + 1).

I Define indicator variables Xi :

Xi =

{
1 if v gets updated on iteration #i

0 if v does not get updated on iteration #i

Then E (Xi ) = 1
i+1

I The total number of times that v gets updated is:

X =
n−1∑
i=0

Xi

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine



46

Average number of updates to the running maximum
(continued)

The expected total number of times that v gets updated is:

E (X ) = E

(
n−1∑
i=0

Xi

)

=
n−1∑
i=0

E (Xi ) =
n−1∑
i=0

1

i + 1
=

n∑
i=1

1

i
= Hn = O(log n)

It can be shown that

Hn = ln n + γ + o(1), where γ = 0.5772157 . . .

If there are 30,000 elements in the list, the expected update count is
about 10.9

If there are 3,000,000,000 elements in the list, the expected update count
is about 22.4
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Average number of updates to the running maximum
(continued)
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Average number of updates to the running maximum
(continued)
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Average number of updates to the running maximum
(continued)
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Average number of updates to the running maximum
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Average number of updates to the running maximum
(continued)
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Average number of updates to the running maximum
(continued)
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Average number of updates to the running maximum
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The expected total number of times that v gets updated is:

E (X ) = E

(
n−1∑
i=0

Xi

)
=

n−1∑
i=0

E (Xi ) =
n−1∑
i=0

1

i + 1
=

n∑
i=1

1

i
= Hn = O(log n)

It can be shown that

Hn = ln n + γ + o(1), where γ = 0.5772157 . . .

If there are 30,000 elements in the list, the expected update count is
about 10.9

If there are 3,000,000,000 elements in the list, the expected update count
is about 22.4

CompSci 161—Spring 2021— c©M. B. Dillencourt—University of California, Irvine



46

Average number of updates to the running maximum
(continued)
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