L17 More on Markets

CS 295 Introduction to Algorithmic Game Theory
Ioannis Panageas
Recap

Definition (Market). A market consists of:

- A set \mathcal{B} of n *buyers/traders*.
- A set \mathcal{G} of m *goods*.
- Each buyer i has 1 *amount of $*$.
- One unit for each good.
- w_{ij} denotes the utility derived by i on obtaining a unit amount of good of j.
- Each good j is associated with a *price* p_j.

Definition (Fisher Market). A market so that the utilities are linear: Let x_{ij} be the amount of units buyer i gets of good j then

$$u_i = \sum_{j \in \mathcal{G}} x_{ij} w_{ij}.$$
Given an arbitrary vector of prices $p \geq 0$, from each buyer’s i perspective:

\begin{align*}
\text{max} & \quad \sum_{j=1}^{m} x_{ij} w_{ij} \\
\text{s.t} & \quad \sum_{j=1}^{m} p_{j} x_{ij} \leq 1 \\
& \quad x_{i} \geq 0
\end{align*}

Demand for good j.

From the perspective of good j:

$$\sum_{i=1}^{n} x_{ij} \leq 1$$

Supply for good j.

Can we find (x, p) s.t all are satisfied simultaneously?
Proportional Response Dynamics

Market dynamics:

Each time step the buyers face the same market parameters, (goods, budget constraint, utility function) while the buyers make their bidding decisions according to the previous market actions.
Proportional Response Dynamics

Market dynamics:

Each time step the buyers face the same market parameters, (goods, budget constraint, utility function) while the buyers make their bidding decisions according to the previous market actions.

Notation:

- $b_{ij}^{(t)}$ the bid of buyer i for good j at time t.
- $p_j^{(t)} = \sum_{i \in B} b_{ij}^{(t)}$ price for good j.
- Allocation $x_{ij}^{(t)} = \frac{b_{ij}^{(t)}}{p_j^{(t)}}$.
- Utility of agent i from good j is $u_{ij}^{(t)} = x_{ij}^{(t)} w_{ij}$.
- Utility $u_i^{(t)} = \sum_{j \in G} u_{ij}^{(t)}$. Bid $b_i^{(t)} = \sum_{j \in G} b_{ij}^{(t)}$.
Proportional Response Dynamics

- $b_{ij}^{(t)}$ the bid of buyer i for good j at time t.

- $p_j^{(t)} = \sum_i b_{ij}^{(t)}$ price for good j.

- Allocation $x_{ij}^{(t)} = \frac{b_{ij}^{(t)}}{p_j^{(t)}}$.

- Utility of agent i from good j is $u_{ij}^{(t)} = x_{ij}^{(t)} w_{ij}$.

- Utility $u_i^{(t)} = \sum_{j \in G} u_{ij}^{(t)}$. Bid $b_i^{(t)} = \sum_{j \in G} b_{ij}^{(t)}$.

For each agent i and good j set

\[
\begin{align*}
b_{ij}^{(t+1)} &= \frac{u_{ij}^{(t)}}{u_i^{(t)}}
\end{align*}
\]
For each agent i and good j set

$$b_{ij}^{(t+1)} = \frac{u_{ij}^{(t)}}{u_{i}^{(t)}}$$

Theorem (Convergence). The proportional response dynamics converges to a market equilibrium in the Fisher market with linear utility functions. For linear functions, it converges to an ϵ-market equilibrin in $O\left(\frac{1}{\epsilon^2}\right)$ iterations.
Proportional Response Dynamics

For each agent i and good j set

$$b_{ij}^{(t+1)} = \frac{u_{ij}^{(t)}}{u_i^{(t)}}$$

Theorem (Convergence). The proportional response dynamics converges to a market equilibrium in the Fisher market with linear utility functions. For linear functions, it converges to an ϵ-market equilibirum in $O\left(\frac{1}{\epsilon^2}\right)$ iterations.

Remark:

- The convergence result holds for CES utilities with a different rate.
- Similar rate to Multiplicative Weights Method (not a coincidence).
Proof. We will show only convergence (no rates). We need to come up with a potential function.
Proportional Response Dynamics: Proof of Convergence

Proof. We will show only convergence (no rates). We need to come up with a potential function.

Let \((x^*, p^*)\) be a market equilibrium (optimum for EG program). We set

\[b_{ij}^* = x_{ij}^* \cdot p_j^*. \]

The potential function will be

\[
\Phi(t) = \sum_{i \in B} \text{KL}(b_i^* || b_i^{(t)}).
\]
Proportional Response Dynamics: Proof of Convergence

Proof. We will show only convergence (no rates). We need to come up with a potential function.

Let \((x^*, p^*)\) be a market equilibrium (optimum for EG program). We set

\[b_{i,j}^* = x_{i,j}^* \cdot p_j^*. \]

The potential function will be

\[\Phi(t) = \sum_{i \in \mathcal{B}} \text{KL}(b_i^* || b_i(t)). \]

Remark:

- KL divergence \(\text{KL}(x||y) = \sum x_i \log \frac{x_i}{y_i}\) for distributions \(x, y\).
- \(\text{KL}(x||y) \geq 0\), pseudo-distance, symmetry not satisfied.
Proportional Response Dynamics: Proof of Convergence

Proof cont.

The potential function will be

$$\Phi(t) = \sum_{i \in B} \text{KL}(b_i^* \| b_i^{(t)}).$$

Recall the KKT-conditions:

$$\frac{w_{ij}}{u_i^*} - p_j^* = 0 \text{ if } x_{ij}^* > 0.$$

Therefore

$$b_{i,j}^* = p_j^* x_{i,j}^* = \frac{w_{ij} x_{i,j}^*}{u_i^*} = \frac{u_{i,j}^*}{u_i^*}.$$
Proportional Response Dynamics: Proof of Convergence

Proof cont.

The potential function will be

\[\Phi(t) = \sum_{i \in \mathcal{B}} \text{KL}(b_i^* || b_i^{(t)}). \]

Recall the KKT-conditions:

\[\frac{w_{ij}}{u_i^*} - p_j^* = 0 \text{ if } x_{ij}^* > 0, \]

Therefore

\[b_{ij}^* = p_j^* x_{ij}^* = \frac{w_{ij} x_{ij}^*}{u_i^*} = \frac{u_{ij}^*}{u_i^*}. \]

Observe now that

\[
\begin{align*}
 b_{ij}^* \ln \frac{b_{ij}^*}{b_{ij}^{(t+1)}} &= b_{ij}^* \ln \frac{b_{ij}^* u_i^{(t)}}{u_{ij}} \\
 &= b_{ij}^* \ln \frac{u_{ij}^* u_i^{(t)}}{u_i^* u_{ij}} = b_{ij}^* \ln \frac{u_{ij}^*}{u_{ij}} - b_{ij}^* \ln \frac{u_i^{(t)}}{u_i^*}
\end{align*}
\]

Intro to AGT
Proportional Response Dynamics: Proof of Convergence

Proof cont.

Moreover \(\frac{u_{i,j}^*}{u_{i,j}^{(t)}} = \frac{b_{i,j}^* p_{j}^{(t)}}{b_{i,j}^{(t)} p_{j}^*} \). Combining the above we get

\[
\frac{b_{i,j}^*}{b_{i,j}^{(t+1)}} \ln \frac{b_{i,j}^*}{b_{i,j}^{(t)}} = \frac{b_{i,j}^*}{b_{i,j}^{(t)}} \ln \frac{b_{i,j}^*}{b_{i,j}^{(t)}} - \frac{b_{i,j}^*}{b_{i,j}^{(t)}} \ln \frac{p_{j}^*}{p_{j}^{(t)}} - b_{i,j}^* \ln \frac{u_{i}^*}{u_{i}^{(t)}}
\]
Proportional Response Dynamics: Proof of Convergence

Proof cont.

Moreover \(\frac{u_{i,j}^*}{u_{i,j}^{(t)}} = \frac{b_{i,j}^* p_j^{(t)}}{b_{i,j}^{(t)} p_j^*} \). Combining the above we get

\[
b_{i,j}^* \ln \frac{b_{i,j}^*}{b_{i,j}^{(t+1)}} = b_{i,j}^* \ln \frac{b_{i,j}^*}{b_{i,j}^{(t)}} - b_{i,j}^* \ln \frac{p_j^*}{p_j^{(t)}} - b_{i,j}^* \ln \frac{u_i^*}{u_i^{(t)}}
\]

The potential function becomes

\[
\Phi^{(t+1)} = \sum_{i \in \mathcal{B}} \text{KL}(b_i^* \| b_i^{(t)}) = \sum_{i,j} b_{i,j}^* \ln \frac{b_{i,j}^*}{b_{i,j}^{(t)}} - b_{i,j}^* \ln \frac{p_j^*}{p_j^{(t)}} - b_{i,j}^* \ln \frac{u_i^*}{u_i^{(t)}}.
\]
Proportional Response Dynamics: Proof of Convergence

Proof cont.

Moreover \[\frac{u_{i,j}^*}{u_{i,j}^{(t)}} = \frac{b_{i,j}^* p_j^{(t)}}{b_{i,j}^{(t)} p_j^*} \]. Combining the above we get

\[b_{i,j}^* \ln \frac{b_{i,j}^*}{b_{i,j}^{(t+1)}} = b_{i,j}^* \ln \frac{b_{i,j}^*}{b_{i,j}^{(t)}} - b_{i,j}^* \ln \frac{p_j^*}{p_j^{(t)}} - b_{i,j}^* \ln \frac{u_i^*}{u_i^{(t)}} \]

The potential function becomes

\[\Phi^{(t+1)} = \sum_{i \in B} \text{KL}(b_i^* || b_i^{(t)}) = \sum_{i,j} b_{i,j}^* \ln \frac{b_{i,j}^*}{b_{i,j}^{(t)}} - b_{i,j}^* \ln \frac{p_j^*}{p_j^{(t)}} - b_{i,j}^* \ln \frac{u_i^*}{u_i^{(t)}}. \]

\[\Phi^{(t)} \]
Proportional Response Dynamics: Proof of Convergence

Proof cont.

Moreover \(\frac{u_{i,j}^*}{u_{i,j}^{(t)}} = \frac{b_{i,j}^* p_j^{(t)}}{b_{i,j}^{(t)} p_j^*} \). Combining the above we get

\[
b_{i,j}^* \ln \frac{b_{i,j}^*}{b_{i,j}^{(t+1)}} = b_{i,j}^* \ln \frac{b_{i,j}^*}{b_{i,j}^{(t)}} - b_{i,j}^* \ln \frac{p_j^*}{p_j^{(t)}} - b_{i,j}^* \ln \frac{u_i^*}{u_i^{(t)}}
\]

The potential function becomes

\[
\Phi^{(t+1)} = \sum_{i \in \mathcal{B}} \text{KL}(b_i^* || b_i^{(t)}) = \sum_{i,j} b_{i,j}^* \ln \frac{b_{i,j}^*}{b_{i,j}^{(t)}} - b_{i,j}^* \ln \frac{p_j^*}{p_j^{(t)}} - b_{i,j}^* \ln \frac{u_i^*}{u_i^{(t)}}.
\]

We finally get

\[
= \Phi^{(t)} - \text{KL}(p^* || p^{(t)}) - \sum_{i,j} b_{i,j}^* \ln \frac{u_i^*}{u_i^{(t)}}.
\]
Definitions

Definition (Exchange Market). An exchange market consists of:

- A set \mathcal{A} of n agents.
- A set \mathcal{G} of m divisible goods.
- Each agent i has an endowment $w_i = (w_{i1}, ..., w_{im})$, with w_{ij} capturing the amount of good j agent i has.
- u_{ij} denotes the utility derived by i on obtaining a unit amount of good of j.
- Each good j is associated with a price p_j.

Remark:

- Each agent first earns money by selling its endowment and then buys a utility maximizing (optimal) bundle of goods subject to budget constraints.
- Arrow-Debreu showed existence of a market equilibrium.
- PPAD-hard for $\rho = -\infty$, for $0 \leq \rho \leq 1$ is in P (e.g., DPSV)
Eisenberg-Gale Convex Program

x^* satisfies the KKT conditions.

\[
L(x, p) = \sum_{j=1}^{n} \ln u_i - \sum_{j=1}^{n} p_j \left(\sum_{i=1}^{n} x_{ij} - 1 \right)
\]

Remark: Langrangian involves objective and constraints!

KKT conditions: x are primal variables, p are dual variables.

Primal feasibility: $x_{ij} \geq 0$ for all $i \in \mathcal{B}, j \in \mathcal{G}$.

Dual feasibility: $p_j \geq 0$ for all $j \in \mathcal{G}$.

\[
\begin{align*}
\frac{\partial L(x,p)}{\partial x_{ij}} &= \frac{w_{ij}}{u_i} - p_j = 0 \text{ if } x_{ij} > 0. \\
\frac{\partial L(x,p)}{\partial x_{ij}} &= \frac{w_{ij}}{u_i} - p_j \leq 0 \text{ if } x_{ij} = 0.
\end{align*}
\]

\[
\begin{align*}
\frac{\partial L(x,p)}{\partial p_j} &= 1 - \sum_{i=1}^{n} x_{ij} = 0 \text{ if } p_j > 0. \\
\frac{\partial L(x,p)}{\partial p_j} &= 1 - \sum_{i=1}^{n} x_{ij} \geq 0 \text{ if } p_j = 0.
\end{align*}
\]

Intro to AGT
Other utility functions

CES (Constant elasticity of substitution) utility functions:

\[u_i(x) = \left(\sum_{j=1}^{m} u_{ij} x_{ij}^{\rho} \right)^{\frac{1}{\rho}}, \text{ for } -\infty < \rho \leq 1. \]

Remark:
• \(u_i(x) \) is concave function.
• If \(u_{ij} = 0 \), then the corresponding term in the utility function is always 0.
• If \(u_{ij} > 0, x_{ij} = 0, \) and \(\rho < 0 \) then \(u_i(x) = 0 \) no matter what the other \(x_{ij} \)'s are.

\[\rho = 1 \quad \rightarrow \quad \text{Linear utility form} \]

\[\rho \rightarrow -\infty \quad \rightarrow \quad \text{Leontief utility form} \]

\[\rho \rightarrow 0 \quad \rightarrow \quad \text{Cobb-Douglas form} \]

Elasticity of substitution \(\sigma = \frac{1}{1-\rho} \).