L15 Positional scored based
voting rules

CS 295 Introduction to Algorithmic Game Theory
loannis Panageas

Based on works of Ariel Procaccia



Recap

Theorem (Gibbard-Satterthwaite). Let f be a monotone social
choice function onto A with |A| > 3, then f is a dictatorship.
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Recap

Theorem (Gibbard-Satterthwaite). Let f be a monotone social
choice function onto A with |A| > 3, then f is a dictatorship.

Due to negative result of Gibbard-Satterthwaite, we need to use
randomization (toss coins).

Example:

Choose a voter at random and ask him/her to vote. How to we
“measure” the performance of the mechanism? What are the

guarantees?
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Recap

Theorem (Gibbard-Satterthwaite). Let f be a monotone social
choice function onto A with |A| > 3, then f is a dictatorship.

Due to negative result of Gibbard-Satterthwaite, we need to use
randomization (toss coins).

Example:

Choose a voter at random and ask him/her to vote. How to we
“measure” the performance of the mechanism? What are the

guarantees?

Answer: Positional scoring-based rules.
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Positional scoring-based rules

Definition (Positional score based rule). Let n be the number of voters
and m the number of candidates. Each voter i has preference >;. A positional
scoring rule is defined by a vector of nonnegative real numbers a = (aq, ..., an)
so that the score of candidate x is given by

SC(X, >) = Z a>i(x).
i=1

Examples:

* Plurality:a = (1,0,...,0).
* Borda:a = (m—1m-2,...,0).
e Veto:a = (1,1,...,1,0).
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Positional scoring-based rules

Definition (Positional score based rule). Let n be the number of voters
and m the number of candidates. Each voter i has preference >;. A positional
scoring rule is defined by a vector of nonnegative real numbers a = (aq, ..., an)
so that the score of candidate x is given by

SC(X, >) = Z a>i(x).
i=1

Examples:

* Plurality:a = (1,0,...,0).
* Borda:a = (m—1m-2,...,0).
e Veto:a = (1,1,...,1,0).

Goal: Design positional scoring rules that are incentive compatible
and close to deterministic score-based rules (winner is the
candidate with maximum score).
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First approach

Rule O: Select a candidate uniformly at random as the winner

Claim: Rule 0 is truthful but gives for PIuraIity%
approximation ratio. Why?

Intro to AGT



First approach

Rule O: Select a candidate uniformly at random as the winner
Claim: Rule 0 is truthful but gives for PIuraIity%
approximation ratio. Why?

Example: Assume all voters rank candidate b first. Score of b is

n but in expectation b gets %
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First approach

Rule O: Select a candidate uniformly at random as the winner

Claim: Rule 0 is truthful but gives for PIuraIity%
approximation ratio. Why?

Example: Assume all voters rank candidate b first. Score of b is

n but in expectation b gets %

Rule 1: Select a voter i uniformly at random. Elect the winner x
according to the following probability distribution
@>; (z)

Prichoose 7] = <.
j=1 2
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Better guarantees

Rule 1: Select a voter i uniformly at random. Elect the winner x
according to the following probability distribution

Pr{choose z| = S

Theorem (General Guarantee). Let f be a positional scoring rule with
parameters a. Then the approximation ratio of Rule 1 with respect to f is () (ﬁ) .
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Better guarantees

Rule 1: Select a voter i uniformly at random. Elect the winner x
according to the following probability distribution

Prchoose | = ==

Theorem (General Guarantee). Let f be a positional scoring rule with
parameters a. Then the approximation ratio of Rule 1 with respect to f is () (ﬁ) .

Proof. Assume > is a preference profile and a is the candidate with the maximum
score, 1.e.,

sc(a,>) = OPT.

Let SUM be the total score of all candidates, that is

SUM = > s8c(z,>) =n) ", aj.
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Better guarantees

Proof cont. sc(a,>) = OPT. SUM =) ca5¢(z,>) =n Z;n:1 2

Rule 1 chooses candidate x with probability

> e Prchoose voter i] x Pri chooses x| = %Zig Z“ii(m;j
j=1
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Better guarantees

Proof cont. sc(a,>) = OPT. SUM =) ca5¢(z,>) =n Z;n:1 2

Rule 1 chooses candidate x with probability

> e Prchoose voter i] x Pri chooses x| = %Zig Z‘lii(m;j
j=1

=Y ier o
i€l n Z?:l a;
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Better guarantees

Proof cont. sc(a,>) = OPT.

SUM = > 4 8c(z,>) =n) i, a;.

Rule 1 chooses candidate x with probability

> e Prchoose voter i] x Pri chooses x| = %Z as;(x)

el Z?:l a

= e
i€l n3 7 a;

__ sc(z,>)
SUM
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Better guarantees

Proof cont. sc(a,>) = OPT. SUM =) ca5¢(z,>) =n Z;n:1 g

Rule 1 chooses candidate x with probability

> e Prchoose voter i] x Pri chooses x| = %Zig Z“ii(m;j
j=1

A, (x)

- ZiEI n 2?21 a;

_ sc(x,>)
SUM

Hence, the expected score of the winner is

SCS(Sl\?) OPT + Zx#a rEA SCS(I?I\E) (33, >)'

We need to lower bound the above.
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Better guarantees

Proof cont. sc(a,>) = OPT. SUM =) ca5¢(z,>) =n Z;n:1 2
SCS(Si\?) ’ OPT + Zaf:;éa,,a:EA % | SC(:L‘, >)

Recall CS inequality that is

o)) o) -
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Better guarantees

Proof cont. sc(a,>) = OPT. SUM =} casc(z,>) =n Z;n:1 g
SCS(Si\;) ) OPT + Zaf:;éa,,a:EA % | SC(:L‘, >)

Recall CS inequality that is

o)) o) -
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Better guarantees

Proof cont. sc(a,>) = OPT. SUM =} casc(z,>) =n Z;n:1 g
SCS(Si\?) ) OPT + Zaf:;éa,,a:EA % | SC(:L‘, >)

Recall CS inequality that is

2

Z b? Z c? > Z bjc; hence
J J

J
2
(m —1) Z sc(x,>) > Z sc(x,>)
r#a, €A rx#a,xEA

Finally observe that

SUM — OPT = Z sc(x. >).
rF#a,tEA
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Better guarantees

Proof cont. sc(a,>) = OPT. SUM =) ca5¢(z,>) =n Z;n=1 2
SCS(SI\E) OPT + Za:;éa,a:GA %i\;) ) SC(:E’ >)‘

Therefore we conclude

oPT sc(x,>
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Better guarantees

Proof cont. sc(a,>) = OPT. SUM =} casc(z,>) =n Z;n:1 g
SCS(SI\;) OPT + Zaf:;éa,,a:EA % | SC(:L‘, >)

Therefore we conclude

SC\T _ 2
gé)ﬁ OPT + Zx#a rEA S(Ul\?) c(x,>) > gllj')l\T/I OPT T . —1 (SUMSUI\O/IPT)

2
: sttty S . ... :
The function f(z) = SM —Tm-1__SUM__ jg mpinimized for z = 2 and this
x vm
gives ~ \/Lﬁ approximation ratio.
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Better guarantees

Proof cont. sc(a,>) = OPT. SUM =) ca5¢(z,>) =n Z;n=1 2
SCS(SI\E) OPT + Zx;éa,a:EA %i\/? ‘ SC(:L', >)'

Therefore we conclude

oPT sc(x,>

1 (SUM - x)2

: S Tt e . e . :
The function f(x) = S —"m-1_SUM__ ig minimized for = 29X and this
T vm
2

gives ~ NG approximation ratio.

The winner will get expected score () (
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Further Approximations

Borda:a = (m—-—1,m-2,...,0).

Theorem (Borda Guarantee). Rule 1 givesa 1/2 4+ Q) (%) -approximation
with respect to Borda.
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Further Approximations

Borda:a = (m—-—1,m-2,...,0).

Theorem (Borda Guarantee). Rule 1 givesa 1/2 4+ Q) (%) -approximation
with respect to Borda.

Proof. If we assume Borda voting rule, we can get better approximation. Recall

sc(a,>) = OPT. SUM =3 casc(z,>) =n3 /" qy

(SUM - OPT)?

The winner gets expected score at least |[2EL . QOPT + — 1 - —

SUM
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Further Approximations

Borda:a = (m—-—1,m-2,...,0).

Theorem (Borda Guarantee). Rule 1 givesa 1/2 4+ Q) (%) -approximation
with respect to Borda.

Proof. If we assume Borda voting rule, we can get better approximation. Recall

sc(a,>) = OPT. SUM =3 casc(z,>) =n3 /" qy

1 (SUM - OPT)?

The winner gets expected score at least |[2EL.OQPT + —— SUM

SUM

The idea is that SUM = 2™7=1 and OPT < n(m — 1).

Intro to AGT



Further Approximations

Borda:a = (m—-—1,m-2,...,0).

Theorem (Borda Guarantee). Rule 1 givesa 1/2 4+ Q) (—)—approximation

sc(a,>) = OPT. SUM = > s8c(z,>) =n) ", aj.

The winner gets expected score at least _

The idea is that SUM = 2™7=1 and OPT < n(m — 1).
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Further Approximations

Borda:a = (m—1,m-—2,...,0).

Theorem (Borda Guarantee). Rule 1 givesa 1/2 4+ Q) (%) -approximation
with respect to Borda.

Proof cont. The idea is that SUM = “™=1 and OPT < n(m — 1).

2
) &gt 1 (SUM-x) . ) S
The function f(z) = =——"——""— subject to z < QS% is minimized for
25UM o11d this eives £ + () approximation ratio.
- gives ; pp

T = L
m
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Further Approximations

Veto:a = (1,1,...,1,0).

Theorem (Veto Guarantee). Rule 1 givesal — O (%)-approximation
with respect to Veto.
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Further Approximations

Veto:a = (1,1,...,1,0).

Theorem (Veto Guarantee). Rule 1 givesal — O (%)—approximation
with respect to Veto.

Proof. The idea is similar. Recall

The winner gets expected score at least _

Now we have that SUM = n(m — 1) and OPT < n.
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Further Approximations

Veto:a = (1,1,...,1,0).

Theorem (Veto Guarantee). Rule 1 givesal — O (%)-approximation
with respect to Veto.

Proof. The idea is similar. Recall

(SUM - OPT)?
-1 SUM

The winner gets expected score at least ggﬁ OPT + — -

Now we have that SUM = n(m — 1) and OPT < n.

2
. T_ ot 1_ (SUM - x) . . L
The function f(x) = = —m=—Lt SUM __ gybject to = < ?f—_M is minimized for

x 1
r = SU—M and this gives 1 — O (%) approximation ratio.
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Lower bounds

Theorem (Plurality). No truthful randomized voting rule can approximate

Plurality to a factor of w (ﬁ) :
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Lower bounds

Theorem (Plurality). No truthful randomized voting rule can approximate

Plurality to a factor of w (ﬁ) :

Remark:
 Rule 1 istight for Plurality!
 The proof uses Yao’s min-max principle:

Best randomized algorithm over worst deterministic input
same guarantees as worst distribution input of best
deterministic algorithm.
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Lower bounds

Theorem (Borda). No truthful randomized voting rule can approximate

Borda to a factor of + + w (ﬁ) :
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Lower bounds

Theorem (Borda). No truthful randomized voting rule can approximate

Borda to a factor of + + w (ﬁ) :

Remark:
 Rule 1is not tight for Plurality!
 The proof uses Yao’s min-max principle.
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Another rule

Rule 2: Choose a pair of alternatives uniformly at random.
If one is preferred to the other by a majority of agents
then it is the winner. Break ties at random.
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Another rule

Rule 2: Choose a pair of alternatives uniformly at random.
If one is preferred to the other by a majority of agents
then it is the winner. Break ties at random.

Remark:
e Rule 2 is truthful!

 Has better guarantees than Rule 1 for other voting rules
than mentioned.

e (Otherrules?
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Another rule

Rule 2: Choose a pair of alternatives uniformly at random.
If one is preferred to the other by a majority of agents
then it is the winner. Break ties at random.

Remark:
e Rule 2 is truthful!

 Has better guarantees than Rule 1 for other voting rules
than mentioned.

e (Otherrules?

Theorem (Gibbard). An truthful randomized voting rule is a probability
mixture over rules each of which is either dictatorship or duple.
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Another rule

Rule 2: Choose a pair of alternatives uniformly at random.
If one is preferred to the other by a majority of agents
then it is the winner. Break ties at random.

Remark:
e Rule 2 is truthful!

 Has better guarantees than Rule 1 for other voting rules
than mentioned.

RMUE D ple := voting rule of range at most 2.

Theorem (Gibbard). An truthful randomized voting rule is a probability
mixture over rules each of which is either dictatorship or duple.
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