L14 Social Choice Theory

CS 295 Introduction to Algorithmic Game Theory Ioannis Panageas

Definitions

Definition (Setting). *The social choice theory is defined by:*

- Set I of n voters.
- Set A of m candidates.
- *Each voter i has a set of preferences L (permutations of A).*

Definition (Social Choice function). A social choice function is defined by

 $f: L \times \ldots \times L \to A.$

We can also define social welfare function $f: L \times ... \times L \to L$.

Definitions

Definition (Setting). *The social choice theory is defined by:*

- Set I of n voters.
- Set A of m candidates.
- *Each voter i has a set of preferences L (permutations of A).*

Definition (Social Choice function). A social choice function is defined by

$$f: L \times \dots \times L \to A.$$

We can also define social welfare function $f: L \times ... \times L \to L$.

Example: Three candidates a, b, c. Three voters with preferences

1)
$$' >_1 ' := a > b > c$$

2) $' >_2 ' := b > c > a$
3) $' >_3 ' := c > a > b$

Further Definitions Two desirable properties

Definition (Unanimity). A social welfare function F satisfies unanimity if

$$F(>,\ldots,>) = >$$

for all $> \in L$.

Further Definitions Two desirable properties

Definition (Unanimity). A social welfare function F satisfies unanimity if

$$F(>,\ldots,>) = >$$

for all $> \in L$.

In words:

If all voters prefer *a* to *b*, then the social welfare should also prefer *a* to *b*.

Further Definitions Two desirable properties

Definition (Unanimity). A social welfare function F satisfies unanimity if

$$F(>,\ldots,>) = >$$

for all $> \in L$.

In words:

If all voters prefer *a* to *b*, then the social welfare should also prefer *a* to *b*.

Definition (Independence of irrelevant alternatives). A social welfare function *F* satisfies independence of irrelevant alternatives if for all $a, b \in A$ and $>_1, ..., >_n, \overline{>}_1, ..., \overline{>}_n$ with $> = F(>_1, ..., >_n)$ and $\overline{>} = F(\overline{>}_1, ..., \overline{>}_n)$

$$a <_i b \Leftrightarrow a \leq_i b$$
 for all $i \Rightarrow a < b \Leftrightarrow a \leq b$.

An Impossibility result

Definition (Dictatorship). A voter i is a dictator if

$$F(>,\ldots,>)=>_i$$

for all $> \in L$.

An Impossibility result

Definition (Dictatorship). A voter i is a dictator if

$$F(>,\ldots,>)=>_i$$

for all $> \in L$.

Theorem (Arrow). Every social welfare function over a set of more than 2 candidates ($|A| \ge 3$), that satisfies unanimity and independence of irrelevant alternatives is a dictatorship.

Example: This is a negative result!

Proof. Let F be a social welfare function that satisfies unanimity and independence of irrelevant alternatives. Consider $>_1, ..., >_n$ and $\overline{>}_1, ..., \overline{>}_n$, $F(>_1, ..., >_n) = >, F(\overline{>}_1, ..., \overline{>}_n) = \overline{>}$ and $a, b, c, d \in A$ so that

for all voters $i, a <_i b \Leftrightarrow c \overline{<}_i d$.

Proof. Let F be a social welfare function that satisfies unanimity and independence of irrelevant alternatives. Consider $>_1, ..., >_n$ and $\overline{>}_1, ..., \overline{>}_n$, $F(>_1, ..., >_n) = >, F(\overline{>}_1, ..., \overline{>}_n) = \overline{>}$ and $a, b, c, d \in A$ so that

for all voters $i, a <_i b \Leftrightarrow c \leq_i d$.

Claim: It must hold that

$$a < b \Leftrightarrow c \overline{<} d.$$

Proof. Let F be a social welfare function that satisfies unanimity and independence of irrelevant alternatives. Consider $>_1, ..., >_n$ and $\overline{>}_1, ..., \overline{>}_n$, $F(>_1, ..., >_n) = >, F(\overline{>}_1, ..., \overline{>}_n) = \overline{>}$ and $a, b, c, d \in A$ so that

for all voters $i, a <_i b \Leftrightarrow c \leq_i d$.

Claim: It must hold that

 $a < b \Leftrightarrow c \overline{<} d.$

Idea: Assume a < b and w.l.o.g $b \neq c$. Merge $<_i$ and $\overline{<}_i$ into $<_i$ by placing c just below a (unless c = a) and d above b (unless c = a) and preserve the internal order. Hence by unanimity we have

c < a and b < d which implies c < d.

Proof cont. Let $a \neq b$. Define a preference profile π^i for every $0 \leq i \leq n$ that the first *i* ranked players rank *a* above *b*, that is

 $a >_j b \Leftrightarrow j \le i.$

In π^0 we have a < b and π^n we have a > b. Let i^* be the pivoting index. We need to show that i^* is a dictator.

Proof cont. Let $a \neq b$. Define a preference profile π^i for every $0 \leq i \leq n$ that the first *i* ranked players rank *a* above *b*, that is

 $a >_j b \Leftrightarrow j \le i.$

In π^0 we have a < b and π^n we have a > b. Let i^* be the pivoting index. We need to show that i^* is a dictator.

Let $c \neq d$. Assume $c >_{i^*} d$. We will show that c > d where $> = F(>_1, \ldots, >_n)$, and the claim would follow. Consider $e \neq c, d$.

Proof cont. Let $a \neq b$. Define a preference profile π^i for every $0 \leq i \leq n$ that the first *i* ranked players rank *a* above *b*, that is

 $a >_j b \Leftrightarrow j \le i.$

In π^0 we have a < b and π^n we have a > b. Let i^* be the pivoting index. We need to show that i^* is a dictator.

Let $c \neq d$. Assume $c >_{i^*} d$. We will show that c > d where $> = F(>_1, \ldots, >_n)$, and the claim would follow. Consider $e \neq c, d$.

- For $i < i^*$ move e to the top in $>_i$.
- For $i > i^*$ move e to the bottom in $>_i$.
- For $i = i^*$ move e so that $c >_{i^*} e >_{i^*} d$.

Proof cont.

Let $c \neq d$. Assume $c >_{i^*} d$. We will show that c > d where $> = F(>_1, \ldots, >_n)$, and the claim would follow. Consider $e \neq c, d$.

- For $i < i^*$ move e to the top in $>_i$.
- For $i > i^*$ move e to the bottom in $>_i$.
- For $i = i^*$ move e so that $c >_{i^*} e >_{i^*} d$.

Using (IIA) we have not changed the social ranking between c, d. Note that players' preferences for c, e are identical to those for a, b in π^{i^*} , and players' preferences for e, d are identical to those for a, b in π^{i^*-1} .

Proof cont.

Let $c \neq d$. Assume $c >_{i^*} d$. We will show that c > d where $> = F(>_1, \ldots, >_n)$, and the claim would follow. Consider $e \neq c, d$.

- For $i < i^*$ move e to the top in $>_i$.
- For $i > i^*$ move e to the bottom in $>_i$.
- For $i = i^*$ move e so that $c >_{i^*} e >_{i^*} d$.

Using (IIA) we have not changed the social ranking between c, d. Note that players' preferences for c, e are identical to those for a, b in π^{i^*} , and players' preferences for e, d are identical to those for a, b in π^{i^*-1} .

Using Claim we conclude that c > e and e > d. Therefore by transitivity

$$c > d$$
.

Definition (Motonone). A social choice function f is monotone if $a = f(<_1, ..., <_i, ..., <_n)$ and $b = f(<_1, ..., <'_i, ..., <_n)$ implies

 $b <_i a$ and $a <'_i b$.

Remark:

A social choice function is incentive compatible if it cannot strategically be manipulated. A function is incentive compatible if and only if it is monotone.

Definition (Motonone). A social choice function f is monotone if $a = f(<_1, ..., <_i, ..., <_n)$ and $b = f(<_1, ..., <'_i, ..., <_n)$ implies

 $b <_i a$ and $a <'_i b$.

Remark:

A social choice function is incentive compatible if it cannot strategically be manipulated. A function is incentive compatible if and only if it is monotone.

Using Arrow's theorem, we can show another negative result:

Theorem (Gibbard-Satterthwaite). Let f be a monotone social choice function onto A with $|A| \ge 3$, then f is a dictatorship.

Theorem (Gibbard-Satterthwaite). Let f be a monotone social choice function onto A with $|A| \ge 3$, then f is a dictatorship.

Proof. Given a social choice f that is monotone and onto, we will construct a social welfare F.

Theorem (Gibbard-Satterthwaite). Let f be a monotone social choice function onto A with $|A| \ge 3$, then f is a dictatorship.

Proof. Given a social choice f that is monotone and onto, we will construct a social welfare F. Idea: To decide whether a > b for F, we will move a, b on the top and see what f chooses.

Theorem (Gibbard-Satterthwaite). Let f be a monotone social choice function onto A with $|A| \ge 3$, then f is a dictatorship.

Proof. Given a social choice f that is monotone and onto, we will construct a social welfare F. Idea: To decide whether a > b for F, we will move a, b on the top and see what f chooses.

Let S subset of the candidates and < a preference. We denote

 $<^S$,

the order by moving candidates in S to the top of <.

Theorem (Gibbard-Satterthwaite). Let f be a monotone social choice function onto A with $|A| \ge 3$, then f is a dictatorship.

Proof. Given a social choice f that is monotone and onto, we will construct a social welfare F. Idea: To decide whether a > b for F, we will move a, b on the top and see what f chooses.

Let S subset of the candidates and < a preference. We denote

 $<^S$,

the order by moving candidates in S to the top of <. Formally:

- If $a, b \in S$ then $a < b \Leftrightarrow a <^S b$.
- If $a, b \notin S$ then $a < b \Leftrightarrow a <^S b$.
- If $a \notin S$ and $b \in S$ then $a <^{S} b$.

Intro to AGT

Theorem (Gibbard-Satterthwaite). Let f be a monotone social choice function onto A with $|A| \ge 3$, then f is a dictatorship.

Proof cont. We define F as follows: For preferences $<_1, \ldots, <_n$ we have $< = F(<_1, \ldots, <_n)$ so that

$$a < b$$
 if and only if $b = f\left(<_{1}^{\{a,b\}}, \dots, <_{n}^{\{a,b\}}\right)$

Theorem (Gibbard-Satterthwaite). Let f be a monotone social choice function onto A with $|A| \ge 3$, then f is a dictatorship.

Proof cont. We define F as follows: For preferences $<_1, \ldots, <_n$ we have $< = F(<_1, \ldots, <_n)$ so that

$$a < b$$
 if and only if $b = f\left(<_{1}^{\{a,b\}}, \dots, <_{n}^{\{a,b\}}\right)$

F is an extension of f. We need to show that F is a social welfare function so that if f is monotone and onto then F satisfies unanimity and IIA.

Claim: For any S and $<_1, \ldots, <_n$ we have $f(<^S_1, \ldots, <^S_n) \in S$.

Theorem (Gibbard-Satterthwaite). Let f be a monotone social choice function onto A with $|A| \ge 3$, then f is a dictatorship.

Proof cont. We define F as follows: For preferences $<_1, \ldots, <_n$ we have $< = F(<_1, \ldots, <_n)$ so that

$$a < b$$
 if and only if $b = f\left(<_{1}^{\{a,b\}}, \dots, <_{n}^{\{a,b\}}\right)$

F is an extension of f. We need to show that F is a social welfare function so that if f is monotone and onto then F satisfies unanimity and IIA.

Claim: For any S and $<_1, \ldots, <_n$ we have $f(<^S_1, \ldots, <^S_n) \in S$.

Since f is onto, there is a preference profile $<'_1, \ldots, <'_n$ such that

$$f(<'_1,\ldots,<'_n)=a.$$

Intro to AGT

Theorem (Gibbard-Satterthwaite). Let f be a monotone social choice function onto A with $|A| \ge 3$, then f is a dictatorship.

Claim: For any S and $<_1, \ldots, <_n$ we have $f(<^S_1, \ldots, <^S_n) \in S$.

Since f is onto, there is a preference profile $<'_1, \ldots, <'_n$ such that

$$f(<'_1,\ldots,<'_n)=a.$$

Sequentially we change $<'_i$ to $<^S_i$ for i = 1, ..., n. Observe at no point, f will output a candidate $b \notin S$ since $b <^S a'$ for $a' \in S$ and a' being the previous outcome. Claim follows.

Theorem (Gibbard-Satterthwaite). Let f be a monotone social choice function onto A with $|A| \ge 3$, then f is a dictatorship.

Claim: For any S and $<_1, \ldots, <_n$ we have $f(<^S_1, \ldots, <^S_n) \in S$.

We need to prove that F satisfies the following:

- Antisymmetry: By Claim we have $f(<_1^{\{a,b\}}, \ldots, <_n^{\{a,b\}}) \in \{a,b\}$.
- Transitivity: Take $S = \{a, b, c\}$ and assume a < b, b < c and c < a. Use Claim to conclude that a > b (contradiction).

Theorem (Gibbard-Satterthwaite). Let f be a monotone social choice function onto A with $|A| \ge 3$, then f is a dictatorship.

Claim: For any S and $<_1, \ldots, <_n$ we have $f(<^S_1, \ldots, <^S_n) \in S$.

We need to prove that F satisfies the following:

- Antisymmetry: By Claim we have $f(<_1^{\{a,b\}}, \ldots, <_n^{\{a,b\}}) \in \{a,b\}$.
- Transitivity: Take $S = \{a, b, c\}$ and assume a < b, b < c and c < a. Use Claim to conclude that a > b (contradiction).
- Unanimity: If $b <_i a$ for all i then by Claim $f(<_1^{\{a,b\}}, \ldots, <_n^{\{a,b\}}) = a$.
- IIA: By monotonicity and Claim we have that if $b <_i a \Leftrightarrow b <'_i a$ then $f(<_1^{\{a,b\}}, \ldots, <_n^{\{a,b\}}) = f(<_1'^{\{a,b\}}, \ldots, <_n'^{\{a,b\}})$

Randomization and Positional scoringbased rules

Remark:

Due to negative result of Gibbard-Satterthwaite, we need to use randomization (toss coins).

Randomization and Positional scoringbased rules

Remark:

Due to negative result of Gibbard-Satterthwaite, we need to use randomization (toss coins).

Example:

Choose a voter at random and ask him/her to vote. How to we "measure" the performance of the mechanism? What are the guarantees?

Answer: Positional scoring-based rules.

Positional scoring-based rules

Definition (Positional score based rule). Let *n* be the number of voters and *m* the number of candidates. Each voter *i* has preference $>_i$. A positional scoring rule is defined by a vector of nonnegative real numbers $a = (a_1, ..., a_n)$ so that the score of candidate *x* is given by

$$sc(x, >) = \sum_{i=1}^{n} a_{>_i(x)}.$$

Examples:

• Plurality:
$$a = (1, 0, ..., 0)$$
.

- Borda: a = (m 1, m 2, ..., 0).
- Veto: a = (1, 1, ..., 1, 0).

Positional scoring-based rules

Definition (Positional score based rule). Let *n* be the number of voters and *m* the number of candidates. Each voter *i* has preference $>_i$. A positional scoring rule is defined by a vector of nonnegative real numbers $a = (a_1, ..., a_n)$ so that the score of candidate *x* is given by

$$sc(x, >) = \sum_{i=1}^{n} a_{>_i(x)}.$$

Examples:

• Plurality:
$$a = (1, 0, ..., 0)$$
.

- Borda: a = (m 1, m 2, ..., 0).
- Veto: a = (1, 1, ..., 1, 0).

Goal: Design positional scoring rules that are incentive compatible and close to deterministic score-based rules (winner is the candidate with maximum score).