LO5 Computing NE in two player
games

CS 295 Introduction to Algorithmic Game Theory

loannis Panageas

For known support

Question: Suppose we knew the support of the Nash for both players. Can
we compute it?

Intro to AGT

For known support

Question: Suppose we knew the support of the Nash for both players. Can
we compute it?

Answer: Yes, via Linear Programming!

Let R, C the payoff matrices of row, column players, of size n X m.

Intro to AGT

For known support

Question: Suppose we knew the support of the Nash for both players. Can
we compute it?

Answer: Yes, via Linear Programming!

Let R, C the payoff matrices of row, column players, of size n X m.

Any Nash equilibrium with support S, T (x,y) must satisfy:

la) x; > 0 for all i € [n]. 1b) y; > 0 for all i € |[m].
2a) x; = 0foralli & S. 2b)y; =0foralli & T.
3a) Yicsxi = 1. 3b) Yieryi=1.

Intro to AGT

For known support

Question: Suppose we knew the support of the Nash for both players. Can
we compute it?

Answer: Yes, via Linear Programming!

Let R, C the payoff matrices of row, column players, of size n X m.

Any Nash equilibrium with support S, T (x,y) must satisfy:

la) x; > 0 for all i € [n]. 1b) y; > 0 for all i € |[m].
2a) x; = 0foralli & S. 2b)y; =0foralli & T.
3a) Yiesxi = 1. 3b) Yieryi=1.

4a) (Ry); > (Ry); Vi € S,j € [n]. 4b) (C'x); > (C'x);Vie T,j € [m].

Intro to AGT

A trivial algorithm

LP (S, T)
(C'x); > (C'x);VieT,je m].
(Ry); > (Ry); Vi€ S,j € [n].
Y icsXxi = 1.
YieTYi = L

x; =0 foralli & S.
y;=0foralli & T.

x;i > 0foralli e [n].
y; > 0 for all i € [m].

Algorithm: For all index sets S, T, check feasibility of LP (S, T). If a
feasible solution (x, y) is found, it is a Nash.

Intro to AGT

A trivial algorithm

LP (S, T)
(C'x); > (C'x);VieT,je m].
(Ry)i = (Ry)j Vie S,j € [n].

Running time 2" - poly(n,m)!

Slow, not polynomial!

Algorithm: For all index sets S, T, check feasibility of LP (S, T). If a
feasible solution (x, y) is found, it is a Nash.

Intro to AGT

Lemke-Howson Algorithm

Assumption: Matrices R, C have non-negative entries. No loss of generality,
NE are invariant under shifting.

Basic idea: The Lemke-Howson algorithm maintains a single guess of the
supports, and in each iteration we change the guess only a little bit.

Intro to AGT

Lemke-Howson Algorithm

Assumption: Matrices R, C have non-negative entries. No loss of generality,
NE are invariant under shifting.

Basic idea: The Lemke-Howson algorithm maintains a single guess of the
supports, and in each iteration we change the guess only a little bit.

Pp={xeR":Vie[n x,>0&Vje[m (x'C); <1}.

Pp={yeR":Vie[ml y; >0&Vje [n (Ry); <1}

nrml(x) = (Zie[n] xi) - X nrml(y) = (Zig[m] yi) - Yy

Intro to AGT

Lemke-Howson Algorithm

Assumption: Matrices R, C have non-negative entries. No loss of generality,
NE are invariant under shifting.

Basic idea: The Lemke-Howson algorithm maintains a single guess of the
supports, and in each iteration we change the guess only a little bit.

Pp={xeR":Vie[n x,>0&Vje[m (x'C); <1}.

Pp={yeR":Vie[ml y; >0&Vje [n (Ry); <1}

—1 —1
nml(x) = (Siep xi) x neml(y) = (Sie vi) ¥
Def. x has label i if x; = 0 or (x' C); = 1. Same for ;.

Intro to AGT

Lemke-Howson Algorithm

Assumption: Matrices R, C have non-negative entries. No loss of generality,
NE are invariant under shifting.

Basic idea: The Lemke-Howson algorithm maintains a single guess of the
supports, and in each iteration we change the guess only a little bit.

Pp={xeR":Vie[n x,>0&Vje[m (x'C); <1}.

Pp={yeR":Vie[ml y; >0&Vje [n (Ry); <1}

~1
nrml(x) = (Zze[n] xz') x nrml(y) = (Zfe[m] yi) Y
Def. x has label i if x; = 0 or (x' C); = 1. Same for j.

Lemma. Let x* € Py, y* € P, x*,y* have all labels and

assume x*,y* are not zero vectors. It holds that (nrml(x*), nrml(y*)) is
a Nash equilibrium.

Intro to AGT

Lemke-Howson Algorithm

Lemma. Let x* € Py, y* € P, x*,y* have all labels together and
assume x*,y* are not zero vectors. It holds that (nrml(x*), nrml(y*)) is
a Nash equilibrium.

Proof.

e For each i € [n], either f = 0 or (Ry*); = 1 (¢ is best response of row
player to nrml(y*)).

e For each j € [m], either y; = 0 or (z~ "C); = 1 (j is best response of
column player to nrml(z*)).

Intro to AGT

Lemke-Howson Algorithm

Lemma. Let x* € Py, y* € P, x*,y* have all labels together and
assume x*,y* are not zero vectors. It holds that (nrml(x*), nrml(y*)) is
a Nash equilibrium.

Proof.

e For each i € [n], either f = 0 or (Ry*); = 1 (¢ is best response of row
player to nrml(y*)).

e For each j € [m], either y; = 0 or (z~ "C); = 1 (j is best response of
column player to nrml(z*)).

We conclude that

if 27 > 0= (Ry"); > (Ry"); Vj € [n]
if yf > 0= (z*'C); > (z* ' C); Vj € [m]

Intro to AGT

Lemke-Howson Algorithm

Lemma. Let x* € Py, y* € P, x*,y* have all labels together and
assume x*,y* are not zero vectors. It holds that (nrml(x*), nrml(y*)) is
a Nash equilibrium.

Proof.

e For each i € [n], either f = 0 or (Ry*); = 1 (¢ is best response of row
player to nrml(y*)).

e For each j € [m], either y; = 0 or (z~ "C); = 1 (j is best response of
column player to nrml(z*)).

We conclude that

if 27 > 0= (Ry"); > (Ry"); Vj € [n]
if yf > 0= (z*'C); > (z* ' C); Vj € [m]

Hence same is true for nrml(z*), nrml(y*).

Intro to AGT

Lemke-Howson Algorithm

Lemma. Let x* € Py, y* € P, x*,y* have all labels together and
assume x*,y* are not zero vectors. It holds that (nrml(x*), nrml(y*)) is
a Nash equilibrium.

Proof.

e Lor cac Inverse is also true! esponse of
column

We conclude that

if 7 > 0= (Ry"); > (Ry"); Vj € [n]
if yf >0= (z*"'C); > (2% 'C); Vj € [m]

Hence same is true for nrml(z*), nrml(y*).

Intro to AGT

Lemke-Howson Algorithm

Definition (Vertex). A wvertex of polytope Pp is given by n linearly independent
equalities (the rest constraints of Py are strict inequalties). A vertex for P, is given
by m linearly independent equalities (the rest constraints of Py are strict inequalties).
For Py U P, is n + m. This is the non-degenerate case.

Intro to AGT

Lemke-Howson Algorithm

Definition (Vertex). A wvertex of polytope Pp is given by n linearly independent
equalities (the rest constraints of Py are strict inequalties). A vertex for P, is given
by m linearly independent equalities (the rest constraints of Py are strict inequalties).
For Py U P, is n + m. This is the non-degenerate case.

Algorithm (Lemke-Howson). We define the following algorithm:

1. Initialize x = 0 and y = 0.
2. k=ky=1.
3. Loop

4. In P; find the neighbor vertex z’ of x with label k' instead of k. Remove
label k& and add label k.

5 Set x==z'.
6. If ¥’ =1 STOP.

7. In P, find the neighbor vertex y’ of y with label k" instead of k'.
Remove label &’ and add label £”.

e

Set y = v/'.
9. If £ =1 STOP.
10. Set k = k".

Intro to AGT

Analysis of Lemke-Howson

Theorem. The Lemke-Howson algorithm outputs a Nash equilibrium.

Proof. Define a graph with vertices in P; U P. Each vertex (z,y) has:

e One duplicate label. This vertex is adjacent to exactly two other vertices,
since we can remove the duplicate label from x and pivot in P;, or remove
the duplicate label from y and pivot in Ps.

Intro to AGT

Analysis of Lemke-Howson

Theorem. The Lemke-Howson algorithm outputs a Nash equilibrium.

Proof. Define a graph with vertices in P; U P. Each vertex (z,y) has:

e One duplicate label. This vertex is adjacent to exactly two other vertices,
since we can remove the duplicate label from x and pivot in P;, or remove
the duplicate label from y and pivot in Ps.

e They have all labels exactly once. This vertex has only one neighbor
(remove label 1 from whichever vector has it.

Intro to AGT

Analysis of Lemke-Howson

Theorem. The Lemke-Howson algorithm outputs a Nash equilibrium.

Proof. Define a graph with vertices in P; U P. Each vertex (z,y) has:

e One duplicate label. This vertex is adjacent to exactly two other vertices,
since we can remove the duplicate label from x and pivot in P;, or remove
the duplicate label from y and pivot in Ps.

e They have all labels exactly once. This vertex has only one neighbor
(remove label 1 from whichever vector has it.

- l
-
-
-

Intro to AGT

Analysis of Lemke-Howson

Proof cont. Since each vertex in the graph has degree 1 or 2, the graph is a
union of cycles and paths!

Intro to AGT

Analysis of Lemke-Howson

Proof cont. Since each vertex in the graph has degree 1 or 2, the graph is a
union of cycles and paths!

1. Lemke-Howson algorithm begins at the configuration (0, 0).

2. (0,0) has all labels and is therefore an endpoint of a path component.
3. The algorithm will terminate at the other endpoint of the path.

4. The other point is not (0, 0) and cannot be (x, 0) or (0, y).

Intro to AGT

Analysis of Lemke-Howson

Proof cont. Since each vertex in the graph has degree 1 or 2, the graph is a
union of cycles and paths!

Lemke-Howson algorithm begins at the configuration (0, 0).

(0,0) has all labels and is therefore an endpoint of a path component.
The algorithm will terminate at the other endpoint of the path.

The other point is not (0, 0) and cannot be (x, 0) or (0, y).

BN

From previous lemma, it

must be a Nash equilibrium!

Intro to AGT

Other facts

Corollary (Odd Number). For non-degenerate games, the number of
Nash equilibria is odd!

Intro to AGT

Other facts

Corollary (Odd Number). For non-degenerate games, the number of
Nash equilibria is odd!

Proof. In a graph, the number of vertices with degree odd is even since

Zdv —2F.

v

Intro to AGT

Other facts

Corollary (Odd Number). For non-degenerate games, the number of
Nash equilibria is odd!

Proof. In a graph, the number of vertices with degree odd is even since
> d, =2E.

Hence we have an even number of odd vertices. But (0,0) is an odd vertex and
not a Nash equilibrium!

Intro to AGT

Other facts

Corollary (Odd Number). For non-degenerate games, the number of
Nash equilibria is odd!

Proof. In a graph, the number of vertices with degree odd is even since
> d, =2E.

Hence we have an even number of odd vertices. But (0,0) is an odd vertex and
not a Nash equilibrium!

Theorem (Savani, von Stengel’04). The Lemke-Howson algorithm runs
in exponential time in worst-case

Intro to AGT

Approximating a Nash eq.

Definition (k-uniform). A strategy x is called k-uniform when every
coordinate x; is a multiple of 1/k.

Observation: A k-uniform strategy has support size at most k.

Intro to AGT

Approximating a Nash eq.

Definition (k-uniform). A strategy x is called k-uniform when every
coordinate x; is a multiple of 1/k.

Observation: A k-uniform strategy has support size at most k.

Theorem (Approximate Nash with small support). Let € > 0.

For any two player game, there always exists a k-uniform e-approximate

Nash equilibrium for k = 1216(?”.

Intro to AGT

Approximating a Nash eq.

Definition (k-uniform). A strategy x is called k-uniform when every
coordinate x; is a multiple of 1/k.

Observation: A k-uniform strategy has support size at most k.

Theorem (Approximate Nash with small support). Let € > 0.

For any two player game, there always exists a k-uniform e-approximate

Nash equilibrium for k = 12};?”.

Remarks:

This was shown by Lipton, Markakis and Mehta using probabilistic method.

logn

It gives a no(&2) algorithm. It was shown by Rubinstein that this is tight!

Intro to AGT

