L05 Computing NE in two player games

CS 295 Introduction to Algorithmic Game Theory
Ioannis Panageas
For known support

Question: Suppose we knew the **support** of the Nash for both players. Can we compute it?
For known support

Question: Suppose we knew the *support* of the Nash for both players. Can we compute it?

Answer: Yes, via *Linear Programming*!

Let R, C the payoff matrices of row, column players, of size $n \times m$.
For known support

Question: Suppose we knew the support of the Nash for both players. Can we compute it?

Answer: Yes, via Linear Programming!

Let R, C the payoff matrices of row, column players, of size $n \times m$.

Any Nash equilibrium with support S, T (x, y) must satisfy:

1a) $x_i \geq 0$ for all $i \in [n]$.
1b) $y_i \geq 0$ for all $i \in [m]$.
2a) $x_i = 0$ for all $i \notin S$.
2b) $y_i = 0$ for all $i \notin T$.
3a) $\sum_{i \in S} x_i = 1$.
3b) $\sum_{i \in T} y_i = 1$.

Intro to AGT
For known support

Question: Suppose we knew the support of the Nash for both players. Can we compute it?

Answer: Yes, via Linear Programming!

Let R, C the payoff matrices of row, column players, of size $n \times m$.

Any Nash equilibrium with support S, T (x, y) must satisfy:

1a) $x_i \geq 0$ for all $i \in [n]$.
1b) $y_i \geq 0$ for all $i \in [m]$.
2a) $x_i = 0$ for all $i \notin S$.
2b) $y_i = 0$ for all $i \notin T$.
3a) $\sum_{i \in S} x_i = 1$.
3b) $\sum_{i \in T} y_i = 1$.
4a) $(Ry)_i \geq (Ry)_j \ \forall i \in S, j \in [n]$.
4b) $(C^T x)_i \geq (C^T x)_j \ \forall i \in T, j \in [m]$.

Intro to AGT
A trivial algorithm

LP \((S, T)\)

\((C^\top x)_{i} \geq (C^\top x)_{j} \ \forall i \in T, j \in [m].\)

\((Ry)_{i} \geq (Ry)_{j} \ \forall i \in S, j \in [n].\)

\[\sum_{i \in S} x_{i} = 1.\]

\[\sum_{i \in T} y_{i} = 1.\]

\[x_{i} = 0 \text{ for all } i \notin S.\]

\[y_{i} = 0 \text{ for all } i \notin T.\]

\[x_{i} \geq 0 \text{ for all } i \in [n].\]

\[y_{i} \geq 0 \text{ for all } i \in [m].\]

Algorithm: For all index sets \(S, T\), check feasibility of \(LP \,(S, T)\). If a feasible solution \((x, y)\) is found, it is a Nash.
A trivial algorithm

LP \((S, T)\)

\((C^\top x)_i \geq (C^\top x)_j \ \forall i \in T, j \in [m].\)
\((Ry)_i \geq (Ry)_j \ \forall i \in S, j \in [n].\)
\(\sum_{i \in S} x_i = 1.\)

Running time \(2^{n+m} \cdot \text{poly}(n, m)!\)
Slow, not polynomial!
\(y_l \geq 0 \) for all \(l \in [m].\)

Algorithm: For all index sets \(S, T\), check feasibility of \(LP \ (S, T)\). If a feasible solution \((x, y)\) is found, it is a Nash.
Lemke-Howson Algorithm

Assumption: Matrices R, C have non-negative entries. No loss of generality, NE are invariant under shifting.

Basic idea: The Lemke-Howson algorithm maintains a single guess of the supports, and in each iteration we change the guess only a little bit.
Lemke-Howsonon Algorithm

Assumption: Matrices R, C have non-negative entries. No loss of generality, NE are invariant under shifting.

Basic idea: The Lemke-Howson algorithm maintains a single guess of the supports, and in each iteration we change the guess only a little bit.

\[P_1 = \{ x \in \mathbb{R}^n : \forall i \in [n] \ x_i \geq 0 \ & \& \forall j \in [m] \ (x^\top C)_j \leq 1 \}. \]
\[P_2 = \{ y \in \mathbb{R}^m : \forall i \in [m] \ y_i \geq 0 \ & \& \forall j \in [n] \ (Ry)_j \leq 1 \}. \]
\[\text{nrml}(x) = \left(\sum_{i \in [n]} x_i \right)^{-1} x \quad \text{nrml}(y) = \left(\sum_{i \in [m]} y_i \right)^{-1} y \]
Lemke-Howson Algorithm

Assumption: Matrices R, C have non-negative entries. No loss of generality, NE are invariant under shifting.

Basic idea: The Lemke-Howson algorithm maintains a single guess of the supports, and in each iteration we change the guess only a little bit.

$$P_1 = \{x \in \mathbb{R}^n : \forall i \in [n] \ x_i \geq 0 \ & \ \forall j \in [m] \ (x^\top C)_j \leq 1\}.$$ $$P_2 = \{y \in \mathbb{R}^m : \forall i \in [m] \ y_i \geq 0 \ & \ \forall j \in [n] \ (Ry)_j \leq 1\}.$$

$$\text{nrml}(x) = \left(\sum_{i \in [n]} x_i\right)^{-1} x \quad \text{nrml}(y) = \left(\sum_{i \in [m]} y_i\right)^{-1} y$$

Def. x has label i if $x_i = 0$ or $(x^\top C)_i = 1$. Same for j.

Intro to AGT
Lemke-Howsonon Algorithm

Assumption: Matrices \(R, C \) have non-negative entries. No loss of generality, NE are invariant under shifting.

Basic idea: The Lemke-Howson algorithm maintains a single guess of the supports, and in each iteration we change the guess only a little bit.

\[
P_1 = \{ x \in \mathbb{R}^n : \forall i \in [n] \; x_i \geq 0 \; \& \; \forall j \in [m] \; (x^\top C)_j \leq 1 \}. \\
P_2 = \{ y \in \mathbb{R}^m : \forall i \in [m] \; y_i \geq 0 \; \& \; \forall j \in [n] \; (Ry)_j \leq 1 \}.
\]

nrml\((x) = \left(\sum_{i \in [n]} x_i \right)^{-1} x \quad \text{nrml}(y) = \left(\sum_{i \in [m]} y_i \right)^{-1} y

Def. \(x \) has label \(i \) if \(x_i = 0 \) or \((x^\top C)_i = 1 \). Same for \(j \).

Lemma. Let \(x^* \in P_1, y^* \in P_2, x^* , y^* \) have all labels and assume \(x^* , y^* \) are not zero vectors. It holds that \((\text{nrml}(x^*), \text{nrml}(y^*))\) is a Nash equilibrium.
Lemke-Howsonson Algorithm

Lemma. Let $x^* \in P_1$, $y^* \in P_2$, x^*, y^* have all labels together and assume x^*, y^* are not zero vectors. It holds that $(\text{nrml}(x^*), \text{nrml}(y^*))$ is a Nash equilibrium.

Proof.

- For each $i \in [n]$, either $x_i^* = 0$ or $(Ry^*)_i = 1$ (i is best response of row player to $\text{nrml}(y^*)$).
- For each $j \in [m]$, either $y_j^* = 0$ or $(x^* \top C)_j = 1$ (j is best response of column player to $\text{nrml}(x^*)$).
Lemke-Howson Algorithm

Lemma. Let $x^* \in P_1$, $y^* \in P_2$, x^*, y^* have all labels together and assume x^*, y^* are not zero vectors. It holds that $(nrml(x^*), nrml(y^*))$ is a Nash equilibrium.

Proof.

- For each $i \in [n]$, either $x^*_i = 0$ or $(Ry^*)_i = 1$ (i is best response of row player to $nrml(y^*)$).

- For each $j \in [m]$, either $y^*_j = 0$ or $(x^* \top C)_j = 1$ (j is best response of column player to $nrml(x^*)$).

We conclude that

$$\text{if } x^*_i > 0 \Rightarrow (Ry^*)_i \geq (Ry^*)_j \quad \forall j \in [n]$$
$$\text{if } y^*_i > 0 \Rightarrow (x^* \top C)_i \geq (x^* \top C)_j \quad \forall j \in [m]$$
Lemke-Howson Algorithm

Lemma. Let $x^* \in P_1$, $y^* \in P_2$, x^*, y^* have all labels together and assume x^*, y^* are not zero vectors. It holds that $(\text{nrml}(x^*), \text{nrml}(y^*))$ is a Nash equilibrium.

Proof.

- For each $i \in [n]$, either $x_i^* = 0$ or $(Ry^*)_i = 1$ (i is best response of row player to $\text{nrml}(y^*)$).

- For each $j \in [m]$, either $y_j^* = 0$ or $(x^* \top C)_j = 1$ (j is best response of column player to $\text{nrml}(x^*)$).

We conclude that

\[
\begin{align*}
\text{if } x_i^* > 0 & \Rightarrow (Ry^*)_i \geq (Ry^*)_j \quad \forall j \in [n] \\
\text{if } y_i^* > 0 & \Rightarrow (x^* \top C)_i \geq (x^* \top C)_j \quad \forall j \in [m]
\end{align*}
\]

Hence same is true for $\text{nrml}(x^*), \text{nrml}(y^*)$.

Intro to AGT
Lemma. Let \(x^* \in P_1, y^* \in P_2 \), \(x^*, y^* \) have all labels together and assume \(x^*, y^* \) are not zero vectors. It holds that \((\text{nrml}(x^*), \text{nrml}(y^*)) \) is a Nash equilibrium.

Proof.

- For each row in the game, they satisfy LP\((\text{Supp}(x^*), \text{Supp}(y^*))\)!

- For each column in the game, response of row player to \(y^* \)

We conclude that

\[
\text{if } x^*_i > 0 \Rightarrow (Ry^*)_i \geq (Ry^*)_j \quad \forall j \in [n]
\]

\[
\text{if } y^*_i > 0 \Rightarrow (x^* \top C)_i \geq (x^* \top C)_j \quad \forall j \in [m]
\]

Hence same is true for \(\text{nrml}(x^*), \text{nrml}(y^*) \).
Lemke-Howson Algorithm

Definition (Vertex). A vertex of polytope P_1 is given by n linearly independent equalities (the rest constraints of P_1 are strict inequalities). A vertex for P_2 is given by m linearly independent equalities (the rest constraints of P_1 are strict inequalities). For $P_1 \cup P_2$ is $n + m$. This is the non-degenerate case.
Lemke-Howson Algorithm

Definition (Vertex). A vertex of polytope P_1 is given by n linearly independent equalities (the rest constraints of P_1 are strict inequalities). A vertex for P_2 is given by m linearly independent equalities (the rest constraints of P_1 are strict inequalities). For $P_1 \cup P_2$ is $n + m$. This is the non-degenerate case.

Algorithm (Lemke-Howson). We define the following algorithm:

1. Initialize $x = 0$ and $y = 0$.
2. $k = k_0 = 1$.
3. **Loop**
 4. In P_1 find the neighbor vertex x' of x with label k' instead of k. Remove label k and add label k'.
 5. **Set** $x = x'$.
 6. **If** $k' = 1$ **STOP**.
 7. In P_2 find the neighbor vertex y' of y with label k'' instead of k'. Remove label k' and add label k''.
 8. **Set** $y = y'$.
 9. **If** $k'' = 1$ **STOP**.
 10. **Set** $k = k''$.
Analysis of Lemke-Howson

Theorem. The Lemke-Howson algorithm outputs a Nash equilibrium.

Proof. Define a graph with vertices in $P_1 \cup P_2$. Each vertex (x, y) has:

- One **duplicate** label. This vertex is adjacent to exactly two other vertices, since we can remove the duplicate label from x and pivot in P_1, or remove the duplicate label from y and pivot in P_2.
Analysis of Lemke-Howson

Theorem. The Lemke-Howson algorithm outputs a Nash equilibrium.

Proof. Define a graph with vertices in $P_1 \cup P_2$. Each vertex (x, y) has:

- One **duplicate** label. This vertex is adjacent to exactly two other vertices, since we can remove the duplicate label from x and pivot in P_1, or remove the duplicate label from y and pivot in P_2.

- They have **all labels** exactly once. This vertex has only one neighbor (remove label 1 from whichever vector has it).
Theorem. The Lemke-Howson algorithm outputs a Nash equilibrium.

Proof. Define a graph with vertices in $P_1 \cup P_2$. Each vertex (x, y) has:

- One duplicate label. This vertex is adjacent to exactly two other vertices, since we can remove the duplicate label from x and pivot in P_1, or remove the duplicate label from y and pivot in P_2.

- They have all labels exactly once. This vertex has only one neighbor (remove label 1 from whichever vector has it).

\[
(x^\top C)_{k'} = 1 \quad \text{for } x_1 > 0 \quad (Ry)_{k''} = 1 \quad \text{for } y_{k'} > 0
\]
Analysis of Lemke-Howson

Proof cont. Since each vertex in the graph has degree 1 or 2, the graph is a union of cycles and paths!
Proof cont. Since each vertex in the graph has degree 1 or 2, the graph is a union of cycles and paths!

1. Lemke-Howson algorithm begins at the configuration \((0, 0)\).
2. \((0, 0)\) has all labels and is therefore an endpoint of a path component.
3. The algorithm will terminate at the other endpoint of the path.
4. The other point is not \((0, 0)\) and cannot be \((x, 0)\) or \((0, y)\).
Analysis of Lemke-Howson

Proof cont. Since each vertex in the graph has degree 1 or 2, the graph is a union of cycles and paths!

1. Lemke-Howson algorithm begins at the configuration \((0, 0)\).
2. \((0, 0)\) has all labels and is therefore an endpoint of a path component.
3. The algorithm will terminate at the other endpoint of the path.
4. The other point is not \((0, 0)\) and cannot be \((x, 0)\) or \((0, y)\).

From previous lemma, it must be a Nash equilibrium!
Other facts

Corollary *(Odd Number)*. *For non-degenerate games, the number of Nash equilibria is odd!*
Other facts

Corollary (Odd Number). For non-degenerate games, the number of Nash equilibria is odd!

Proof. In a graph, the number of vertices with degree odd is even since

\[\sum_v d_v = 2E. \]
Other facts

Corollary (Odd Number). For non-degenerate games, the number of Nash equilibria is odd!

Proof. In a graph, the number of vertices with degree odd is even since

$$\sum_{v} d_v = 2E.$$

Hence we have an even number of odd vertices. But \((0, 0)\) is an odd vertex and not a Nash equilibrium!
Other facts

Corollary (Odd Number). For non-degenerate games, the number of Nash equilibria is odd!

Proof. In a graph, the number of vertices with degree odd is even since

$$\sum_{v} d_{v} = 2E.$$

Hence we have an even number of odd vertices. But \((0, 0)\) is an odd vertex and not a Nash equilibrium!

Theorem (Savani, von Stengel’04). The Lemke-Howson algorithm runs in exponential time in worst-case.
Approximating a Nash eq.

Definition (*k*-uniform). A strategy x is called *k*-uniform when every coordinate x_i is a multiple of $1/k$.

Observation: A k-uniform strategy has support size at most k.
Approximating a Nash eq.

Definition (k-uniform). A strategy x is called k-uniform when every coordinate x_i is a multiple of $1/k$.

Observation: A k-uniform strategy has support size at most k.

Theorem (Approximate Nash with small support). Let $\varepsilon > 0$. For any two player game, there always exists a k-uniform ε-approximate Nash equilibrium for $k = \frac{12 \log n}{\varepsilon^2}$.
Approximating a Nash eq.

Definition (*k*-uniform). A strategy x is called k-uniform when every coordinate x_i is a multiple of $1/k$.

Observation: A k-uniform strategy has support size at most k.

Theorem (Approximate Nash with small support). Let $\epsilon > 0$. For any two player game, there always exists a k-uniform ϵ-approximate Nash equilibrium for $k = \frac{12 \log n}{\epsilon^2}$.

Remarks:

This was shown by Lipton, Markakis and Mehta using probabilistic method. It gives a $n^{O\left(\frac{\log n}{\epsilon^2}\right)}$ algorithm. It was shown by Rubinstein that this is tight!