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1. Lemke-Howson algorithm begins at the configuration (0, 0). 
2. (0, 0) has all labels and is therefore an endpoint of a path component.

3. The algorithm will terminate at the other endpoint of the path. 

4. The other point is not (0, 0) and cannot be (𝑥, 0) or 0, 𝑦 .
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Observation: A 𝑘-uniform strategy has support size at most 𝑘.

Remarks: 

This was shown by Lipton, Markakis and Mehta using probabilistic method.

It gives a algorithm. It was shown by Rubinstein that this is tight! 


