L05 Computing NE in two player games

CS 295 Introduction to Algorithmic Game Theory Ioannis Panageas

Question: Suppose we knew the support of the Nash for both players. Can we compute it?

Question: Suppose we knew the support of the Nash for both players. Can we compute it?

Answer: Yes, via Linear Programming!

Let R, C the payoff matrices of row, column players, of size $n \times m$.

Question: Suppose we knew the support of the Nash for both players. Can we compute it?

Answer: Yes, via Linear Programming!

Let R, C the payoff matrices of row, column players, of size $n \times m$.

Any Nash equilibrium with support S, T(x, y) must satisfy:

1a)
$$x_i \ge 0$$
 for all $i \in [n]$.

2a)
$$x_i = 0$$
 for all $i \notin S$.

3a)
$$\sum_{i \in S} x_i = 1$$
.

1b)
$$y_i \ge 0$$
 for all $i \in [m]$.

2b)
$$y_i = 0$$
 for all $i \notin T$.

3b)
$$\sum_{i \in T} y_i = 1$$
.

Question: Suppose we knew the support of the Nash for both players. Can we compute it?

Answer: Yes, via Linear Programming!

Let R, C the payoff matrices of row, column players, of size $n \times m$.

Any Nash equilibrium with support S, T(x, y) must satisfy:

1a)
$$x_i \ge 0$$
 for all $i \in [n]$.

2a)
$$x_i = 0$$
 for all $i \notin S$.

3a)
$$\sum_{i \in S} x_i = 1$$
.

4a)
$$(Ry)_i \ge (Ry)_j \ \forall i \in S, j \in [n].$$

1b)
$$y_i \ge 0$$
 for all $i \in [m]$.

2b)
$$y_i = 0$$
 for all $i \notin T$.

3b)
$$\sum_{i \in T} y_i = 1$$
.

4b)
$$(C^{\top}x)_i \ge (C^{\top}x)_j \ \forall i \in T, j \in [m].$$

A trivial algorithm

LP(S,T)

$$(C^{\top}x)_i \geq (C^{\top}x)_j \ \forall i \in T, j \in [m].$$

 $(Ry)_i \geq (Ry)_j \ \forall i \in S, j \in [n].$
 $\sum_{i \in S} x_i = 1.$
 $\sum_{i \in T} y_i = 1.$
 $x_i = 0 \text{ for all } i \notin S.$
 $y_i = 0 \text{ for all } i \notin T.$
 $x_i \geq 0 \text{ for all } i \in [n].$
 $y_i \geq 0 \text{ for all } i \in [m].$

Algorithm: For all index sets S, T, check feasibility of LP(S, T). If a feasible solution (x, y) is found, it is a Nash.

A trivial algorithm

$$(C^{\top}x)_i \ge (C^{\top}x)_j \ \forall i \in T, j \in [m].$$

 $(Ry)_i \ge (Ry)_j \ \forall i \in S, j \in [n].$
 $\sum_{i \in S} x_i = 1.$

Running time $2^{n+m} \cdot \text{poly}(n, m)!$ Slow, not polynomial!

Algorithm: For all index sets S, T, check feasibility of LP(S, T). If a feasible solution (x, y) is found, it is a Nash.

Assumption: Matrices *R*, *C* have non-negative entries. No loss of generality, NE are invariant under shifting.

Basic idea: The Lemke-Howson algorithm maintains a single guess of the supports, and in each iteration we change the guess only a little bit.

Assumption: Matrices *R*, *C* have non-negative entries. No loss of generality, NE are invariant under shifting.

Basic idea: The Lemke-Howson algorithm maintains a single guess of the supports, and in each iteration we change the guess only a little bit.

$$P_{1} = \{x \in \mathbb{R}^{n} : \forall i \in [n] \ x_{i} \geq 0 \& \forall j \in [m] \ (x^{\top}C)_{j} \leq 1\}.$$

$$P_{2} = \{y \in \mathbb{R}^{m} : \forall i \in [m] \ y_{i} \geq 0 \& \forall j \in [n] \ (Ry)_{j} \leq 1\}.$$

$$\operatorname{nrml}(x) = \left(\sum_{i \in [n]} x_{i}\right)^{-1} x \qquad \operatorname{nrml}(y) = \left(\sum_{i \in [m]} y_{i}\right)^{-1} y$$

Assumption: Matrices *R*, *C* have non-negative entries. No loss of generality, NE are invariant under shifting.

Basic idea: The Lemke-Howson algorithm maintains a single guess of the supports, and in each iteration we change the guess only a little bit.

$$P_{1} = \{x \in \mathbb{R}^{n} : \forall i \in [n] \ x_{i} \geq 0 \& \forall j \in [m] \ (x^{\top}C)_{j} \leq 1\}.$$

$$P_{2} = \{y \in \mathbb{R}^{m} : \forall i \in [m] \ y_{i} \geq 0 \& \forall j \in [n] \ (Ry)_{j} \leq 1\}.$$

$$\operatorname{nrml}(x) = \left(\sum_{i \in [n]} x_{i}\right)^{-1} x \qquad \operatorname{nrml}(y) = \left(\sum_{i \in [m]} y_{i}\right)^{-1} y$$

Def. x has label i if $x_i = 0$ or $(x^T C)_i = 1$. Same for j.

Assumption: Matrices *R*, *C* have non-negative entries. No loss of generality, NE are invariant under shifting.

Basic idea: The Lemke-Howson algorithm maintains a single guess of the supports, and in each iteration we change the guess only a little bit.

$$P_1 = \{ x \in \mathbb{R}^n : \forall i \in [n] \ x_i \ge 0 \& \forall j \in [m] \ (x^\top C)_j \le 1 \}.$$

$$P_2 = \{ y \in \mathbb{R}^m : \forall i \in [m] \ y_i \ge 0 \& \forall j \in [n] \ (Ry)_j \le 1 \}.$$

$$\operatorname{nrml}(x) = \left(\sum_{i \in [n]} x_i\right)^{-1} x \qquad \operatorname{nrml}(y) = \left(\sum_{i \in [m]} y_i\right)^{-1} y$$

Def. x has label i if $x_i = 0$ or $(x^T C)_i = 1$. Same for j.

Lemma. Let $x^* \in P_1$, $y^* \in P_2$, x^* , y^* have all labels and assume x^* , y^* are not zero vectors. It holds that $(nrml(x^*), nrml(y^*))$ is a Nash equilibrium.

Lemma. Let $x^* \in P_1$, $y^* \in P_2$, x^* , y^* have all labels together and assume x^* , y^* are not zero vectors. It holds that $(nrml(x^*), nrml(y^*))$ is a Nash equilibrium.

Proof.

- For each $i \in [n]$, either $x_i^* = 0$ or $(Ry^*)_i = 1$ (i is best response of row player to $\operatorname{nrml}(y^*)$).
- For each $j \in [m]$, either $y_j^* = 0$ or $(x^* \top C)_j = 1$ (j is best response of column player to $\operatorname{nrml}(x^*)$).

Lemma. Let $x^* \in P_1$, $y^* \in P_2$, x^* , y^* have all labels together and assume x^* , y^* are not zero vectors. It holds that $(nrml(x^*), nrml(y^*))$ is a Nash equilibrium.

Proof.

- For each $i \in [n]$, either $x_i^* = 0$ or $(Ry^*)_i = 1$ (i is best response of row player to $\operatorname{nrml}(y^*)$).
- For each $j \in [m]$, either $y_j^* = 0$ or $(x^* \top C)_j = 1$ (j is best response of column player to $\operatorname{nrml}(x^*)$).

We conclude that

if
$$x_i^* > 0 \Rightarrow (Ry^*)_i \ge (Ry^*)_j \quad \forall j \in [n]$$

if $y_i^* > 0 \Rightarrow (x^* \top C)_i \ge (x^* \top C)_j \quad \forall j \in [m]$

Lemma. Let $x^* \in P_1$, $y^* \in P_2$, x^* , y^* have all labels together and assume x^* , y^* are not zero vectors. It holds that $(nrml(x^*), nrml(y^*))$ is a Nash equilibrium.

Proof.

- For each $i \in [n]$, either $x_i^* = 0$ or $(Ry^*)_i = 1$ (i is best response of row player to $\operatorname{nrml}(y^*)$).
- For each $j \in [m]$, either $y_j^* = 0$ or $(x^* \top C)_j = 1$ (j is best response of column player to $\operatorname{nrml}(x^*)$).

We conclude that

if
$$x_i^* > 0 \Rightarrow (Ry^*)_i \ge (Ry^*)_j \quad \forall j \in [n]$$

if $y_i^* > 0 \Rightarrow (x^* \top C)_i \ge (x^* \top C)_j \quad \forall j \in [m]$

Hence same is true for $\operatorname{nrml}(x^*), \operatorname{nrml}(y^*)$.

Lemma. Let $x^* \in P_1$, $y^* \in P_2$, x^* , y^* have all labels together and assume x^* , y^* are not zero vectors. It holds that $(nrml(x^*), nrml(y^*))$ is a Nash equilibrium.

Proof.

- For each player t
- They satisfy $LP(Supp(x^*), Supp(y^*))!$
- For eacl column

Inverse is also true!

esponse of

nse of row

We conclude that

if
$$x_i^* > 0 \Rightarrow (Ry^*)_i \ge (Ry^*)_j \quad \forall j \in [n]$$

if $y_i^* > 0 \Rightarrow (x^* \top C)_i \ge (x^* \top C)_i \quad \forall j \in [m]$

Hence same is true for $\operatorname{nrml}(x^*), \operatorname{nrml}(y^*)$.

Definition (Vertex). A vertex of polytope P_1 is given by n linearly independent equalities (the rest constraints of P_1 are strict inequalties). A vertex for P_2 is given by m linearly independent equalities (the rest constraints of P_1 are strict inequalties). For $P_1 \cup P_2$ is n + m. This is the non-degenerate case.

Definition (Vertex). A vertex of polytope P_1 is given by n linearly independent equalities (the rest constraints of P_1 are strict inequalties). A vertex for P_2 is given by m linearly independent equalities (the rest constraints of P_1 are strict inequalties). For $P_1 \cup P_2$ is n + m. This is the non-degenerate case.

Algorithm (Lemke-Howson). We define the following algorithm:

- 1. Initialize $x = \mathbf{0}$ and $y = \mathbf{0}$.
- 2. $k = k_0 = 1$.
- 3. Loop
- 4. In P_1 find the neighbor vertex x' of x with label k' instead of k. Remove label k and add label k'.
- 5. **Set** x = x'.
- 6. If k' = 1 **STOP**.
- 7. In P_2 find the neighbor vertex y' of y with label k'' instead of k'. Remove label k' and add label k''.
- 8. **Set** y = y'.
- 9. If k'' = 1 **STOP**.
- 10. **Set** k = k''.

Theorem. The Lemke-Howson algorithm outputs a Nash equilibrium.

Proof. Define a graph with vertices in $P_1 \cup P_2$. Each vertex (x, y) has:

• One duplicate label. This vertex is adjacent to exactly two other vertices, since we can remove the duplicate label from x and pivot in P_1 , or remove the duplicate label from y and pivot in P_2 .

Theorem. The Lemke-Howson algorithm outputs a Nash equilibrium.

Proof. Define a graph with vertices in $P_1 \cup P_2$. Each vertex (x, y) has:

- One duplicate label. This vertex is adjacent to exactly two other vertices, since we can remove the duplicate label from x and pivot in P_1 , or remove the duplicate label from y and pivot in P_2 .
- They have all labels exactly once. This vertex has only one neighbor (remove label 1 from whichever vector has it.

Theorem. The Lemke-Howson algorithm outputs a Nash equilibrium.

Proof. Define a graph with vertices in $P_1 \cup P_2$. Each vertex (x, y) has:

- One duplicate label. This vertex is adjacent to exactly two other vertices, since we can remove the duplicate label from x and pivot in P_1 , or remove the duplicate label from y and pivot in P_2 .
- They have all labels exactly once. This vertex has only one neighbor (remove label 1 from whichever vector has it.

Proof cont. Since each vertex in the graph has degree 1 or 2, the graph is a union of cycles and paths!

Proof cont. Since each vertex in the graph has degree 1 or 2, the graph is a union of cycles and paths!

- 1. Lemke-Howson algorithm begins at the configuration (0, 0).
- 2. (0,0) has all labels and is therefore an endpoint of a path component.
- 3. The algorithm will terminate at the other endpoint of the path.
- 4. The other point is not (0,0) and cannot be (x,0) or (0,y).

Proof cont. Since each vertex in the graph has degree 1 or 2, the graph is a union of cycles and paths!

- 1. Lemke-Howson algorithm begins at the configuration (0, 0).
- 2. (0,0) has all labels and is therefore an endpoint of a path component.
- 3. The algorithm will terminate at the other endpoint of the path.
- 4. The other point is not (0,0) and cannot be (x,0) or (0,y).

From previous lemma, it must be a Nash equilibrium!

Corollary (Odd Number). *For non-degenerate games, the number of Nash equilibria is odd!*

Corollary (Odd Number). For non-degenerate games, the number of Nash equilibria is odd!

Proof. In a graph, the number of vertices with degree odd is even since

$$\sum_{v} d_v = 2E.$$

Corollary (Odd Number). For non-degenerate games, the number of Nash equilibria is odd!

Proof. In a graph, the number of vertices with degree odd is even since

$$\sum_{v} d_v = 2E.$$

Hence we have an even number of odd vertices. But $(\mathbf{0}, \mathbf{0})$ is an odd vertex and not a Nash equilibrium!

Corollary (Odd Number). *For non-degenerate games, the number of Nash equilibria is odd!*

Proof. In a graph, the number of vertices with degree odd is even since

$$\sum_{v} d_v = 2E.$$

Hence we have an even number of odd vertices. But $(\mathbf{0}, \mathbf{0})$ is an odd vertex and not a Nash equilibrium!

Theorem (Savani, von Stengel'04). *The Lemke-Howson algorithm runs in exponential time in worst-case*

Approximating a Nash eq.

Definition (*k*-uniform). A strategy x is called k-uniform when every coordinate x_i is a multiple of 1/k.

Observation: A *k*-uniform strategy has support size at most *k*.

Approximating a Nash eq.

Definition (*k*-uniform). A strategy x is called k-uniform when every coordinate x_i is a multiple of 1/k.

Observation: A k-uniform strategy has support size at most k.

Theorem (Approximate Nash with small support). Let $\epsilon > 0$. For any two player game, there always exists a k-uniform ϵ -approximate Nash equilibrium for $k = \frac{12 \log n}{\epsilon^2}$.

Approximating a Nash eq.

Definition (*k*-uniform). A strategy x is called k-uniform when every coordinate x_i is a multiple of 1/k.

Observation: A k-uniform strategy has support size at most k.

Theorem (Approximate Nash with small support). Let $\epsilon > 0$. For any two player game, there always exists a k-uniform ϵ -approximate Nash equilibrium for $k = \frac{12 \log n}{\epsilon^2}$.

Remarks:

This was shown by Lipton, Markakis and Mehta using probabilistic method.

It gives a $n^{O(\frac{\log n}{\epsilon^2})}$ algorithm. It was shown by Rubinstein that this is tight!