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Linear Programming

Problem (Linear Program (Feasibility)). Suppose we are given a linear program
in the standard form

Ax <b
x > 0.

where A is of size n X m.
Goal: Find a feasible solution x* (if there is one).

Remark: We have n constraints and m variables.
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Problem (Linear Program (Feasibility)). Suppose we are given a linear program
in the standard form

Ax <b
x > 0.

where A is of size n X m.
Goal: Find a feasible solution x* (if there is one).

Remark: We have n constraints and m variables.

Problem (Linear Program (Optimization)). Suppose we are given a linear pro-

gram in the standard form
maxc ' x
s.t Ax < b

x > 0.

Goal: Find optimal or return infeasible.
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Linear Programming

Problem (Linear Program (Feasibility)). Suppose we are given a linear program
in the standard form

Ax <b
x > 0.

where A is of size n X m.
Goal: Find a feasible solution x* (if there is one).

Remark: We have n constraints and m variables.

Problem (Linear Program (Optimization)). Suppose we are given a linear pro-

gram in the standard form

max ch

st Ax <D
x > 0.

Goal: Find optimal or return infeasible.

Lemma (Equivalence). These two problems are polynomial time equivalent.
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Linear Programming

Problem (Primal Formulation). Suppose we are given a linear program in the
standard form

max ch

s.t Ax <b
x > 0.

Goal: Find optimal or return infeasible.

We can also define the dual formulation.

Problem (Dual Formulation).

miany
st ATy >c
y > 0.
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Linear Programming

Problem (Primal Formulation). Suppose we are given a linear program in the

standard form

max ch

s.t Ax <b
x > 0.

Goal: Find optimal or return infeasible.

We can also define the dual formulation.

Problem (Dual Formulation).

minb 'y
st ATy >c
y = 0.

Remark: We have m constraints and n variables!
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Linear Programming

Facts (Four possible cases).

1. Primal bounded and feasible = Dual bounded and feasible.
2. Primal unbounded and feasible = Dual infeasible.
3. Primal infeasible = Dual unbounded and feasible.

4. Primal infeasible = Dual infeasible.
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Linear Programming

Facts (Four possible cases).

1. Primal bounded and feasible = Dual bounded and feasible.
2. Primal unbounded and feasible = Dual infeasible.
3. Primal infeasible = Dual unbounded and feasible.

4. Primal infeasible = Dual infeasible.

Let’s focus on case 1.

Theorem (Weak duality). Assume that primal is feasible and bounded.

It holds that

maxc'x < minb'y

xeP yeD
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Linear Programming

Theorem (Weak duality). Assume that primal is feasible and bounded.
It holds that

maxc' x < minb'y
xeP yeD

Proof. Let x € P. We have that " ATy >z "ec.
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Linear Programming

Theorem (Weak duality). Assume that primal is feasible and bounded.

It holds that

maxc' x < minb'y
xeP yeD

Proof. Let x € P. We have that " ATy >z "ec.

Moreover, let € D. We have that y' Az < y'b.
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Linear Programming

Theorem (Weak duality). Assume that primal is feasible and bounded.

It holds that

maxc' x < minb'y
xeP yeD

Proof. Let x € P. We have that " ATy >z "ec.

Moreover, let € D. We have that y' Az < y'b.

Therefore, ¢z < y' Ax < y'b.

Since x, y were arbitrary it follows ma13< clx < miB bTy.
xe ye
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Linear Programming

Theorem (Strong duality). Assume that primal is feasible and bounded.

It actually holds that

maxc' x = minb'y

xeP yeD

Remark: The proof is much harder, it uses Farkas’ lemma.
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Linear Programming

Theorem (Strong duality). Assume that primal is feasible and bounded.
It actually holds that

maxc' x = minb'y

xeP yeD
Remark: The proof is much harder, it uses Farkas’ lemma.

Example.

Primal
max z

st3x;1 —2xp —z >0
—x1+x0—22>0
xX1+xp =1
xX1,x0 >0
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Linear Programming

Theorem (Strong duality). Assume that primal is feasible and bounded.

It actually holds that

maxc' x = minb'y

xeP yeD
Remark: The proof is much harder, it uses Farkas’ lemma.

Example.

Primal

max0-x1+0-x+1-z

st(_3 2 1) il <0

' 1 —1 1 2 —

x1+x2:1 “
x1,%2 2> 0
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Linear Programming

Theorem (Strong duality). Assume that primal is feasible and bounded.

It actually holds that

maxc
xeP

T

x=minb'y

yeD

Remark: The proof is much harder, it uses Farkas’ lemma.

Example.

Primal

Dual

max0-x1+0-x+1-z

St(—3 2 1>(§1

' 1 -1 1 2

X1+ x0 =1 z
xX1,Xxp > 0

) <

min0-y; +0-y2 +1-w
-3 1 1 !

y1+y2=1 @
y1,y2 = 0

|

>0
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Linear Programming

Theorem (Strong duality). Assume that primal is feasible and bounded.

It actually holds that

maxc
xeP

T

yeD

x=minb'y

Remark: The proof is much harder, it uses Farkas’ lemma.

Example.

Primal

max0-x7+0-

-3 2
s.t( 1 1

x1+x=1

x1,%2 2> 0

3]

X1
X2
Z

) <

Sol x1,x2 = (3,2),y1,¥2 = (5,3),w

They match, optimality!!
Yo +1-w

st (

—z

Ni—

-3 1 1
2 —1 1
nit+y2=1
Y1,Yy2 = 0

I

1

Y2
w

|

>0
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Linear Programming

Facts (polynomial time).

1. Solving Linear program is in P.
First polynomial time algorithm was ellipsoid method (proof by Khachiyan)

Most efficient methods nowadays are interior point methods.

L

Simplex runs in exponential time in worst case. On average runs faster
than the other methods!
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Back to zero-sum Games

Question: What do we care about LP? Recall the example was from last
week’s lecture (zero-sum game)!
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Back to zero-sum Games

Question: What do we care about LP? Recall the example was from last
week’s lecture (zero-sum game)!

Answer: We can formulate the problem of computing Nash in zero-sum
using LP!

Column player
chooses y € A,

Row gets = ' Ry.

Row player .
chooses x € A, RZ] — Column pays = ' Ry.

Intro to AGT



Zero-sum Games as LPs

Assume player x plays first and wants to get at least z. For all pure
strategies of y, x should get at least z. Formally:

tTR>z-1"
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Zero-sum Games as LPs

Assume player x plays first and wants to get at least z. For all pure
strategies of y, x should get at least z. Formally:

tTR>z-1"
or —x ' R+2-1" <0

Moreover, x should be a randomized strategy. Formally:

r'1=1
x>0
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Zero-sum Games as LPs

LP for player x:

max z
r'R>z-1
r'1=1
x>0

Remark: Notice that the maximum above is the same as

maXgea, MiNyea, T Ry
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Zero-sum Games as LPs

Consider the dual of the previous LP:
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Zero-sum Games as LPs

Consider the dual of the previous LP:

Set z”’ = —Z’ the above becomes
— max 2"

yT . (_R)T 2 Z" ) 1T
y'l1=1
y=>0
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Zero-sum Games as LPs

Consider the dual of the previous LP:

This is the LP as if y player would
play first with sign flipped!

Set z”’ = —Z’ the above becomes
— max 2"

yT . (_R)T 2 Z// . 1_|_
y'l1=1
y=>0

Intro to AGT



Nash equilibrium and LP

LE ek LP2  max2z”
rTR>z-1" y'(-R)" >2"-1"
r'l1=1 y'1=1
x>0 y >0

Theorem. Let (x*,z*) be optimal for LP1, and (y*,z""*) be optimal for LP2,
then (x*,y*) is a Nash equilibrium of the zero sum game with payoff matrix R.
The payoff of the row player is z and of the column player is 2/ = —z.
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Nash equilibrium and LP

LP1 max z
T R>z-1"
x'1=1
x>0

LP2

max 2"’

yT(_R)T ZZ”-lT
y'l=1

y=>0

Theorem. Let (x*,z*) be optimal for LP1, and (y*,z""*) be optimal for LP2,
then (x*,y*) is a Nash equilibrium of the zero sum game with payoff matrix R.
The payoff of the row player is z and of the column player is 2/ = —z.

Proof.

Since (z*, 2) is feasible we have 2* ' Ry* > 2.
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Nash equilibrium and LP

LP1 max z
T R>z-1"
x'1=1
x>0

LP2

max 2"’

yT(_R)T ZZ”-lT
y'l=1

y=>0

Theorem. Let (x*,z*) be optimal for LP1, and (y*,z""*) be optimal for LP2,
then (x*,y*) is a Nash equilibrium of the zero sum game with payoff matrix R.
The payoff of the row player is z and of the column player is 2/ = —z.

Proof.

Since (z*, 2) is feasible we have 2* ' Ry* > 2.
Since (y*, z"") is feasible we have —y* ' R' 2% > 2.

Intro to AGT




Nash equilibrium and LP

LP1 max z
T R>z-1"
x'1=1
x>0

LP2

max 2"’

yT(_R)T Zz”-lT
y'l=1

y=>0

Theorem. Let (x*,z*) be optimal for LP1, and (y*,z""*) be optimal for LP2,
then (x*,y*) is a Nash equilibrium of the zero sum game with payoff matrix R.
The payoff of the row player is z and of the column player is 2/ = —z.

Proof.

Since (z*, 2) is feasible we have 2* ' Ry* > 2.
Since (y*, z"") is feasible we have —y* ' R' 2% > 2.
Finally from strong duality we have 2"/ = —2!
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Nash equilibrium and LP

I P1 max z
T R>z-1"
x'1=1
x>0

LP?2

max 2"

yT(_R)T > P 1T
y'l=1

y >0

Theorem. Let (x*,z*) be optimal for LP1, and (y*,z""*) be optimal for LP2,
then (x*,y*) is a Nash equilibrium of the zero sum game with payoff matrix R.
The payoff of the row player is z and of the column player is z'" = —z.

Proof.

Since (z*, 2) is feasible we have 2* ' Ry* > 2.
Since (y*, z"") is feasible we have —y* ' R' 2% > 2.
Finally from strong duality we have 2"/ = —2!
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Nash equilibrium and LP

LP1 maxz LP2  max 2"
rTR>z-1" y'(-R)" >2"-1"
r'l1=1 y'1=1
x>0 y>0

Theorem. Let (x*,z*) be optimal for LP1, and (y*,z""*) be optimal for LP2,
then (x*,y*) is a Nash equilibrium of the zero sum game with payoff matrix R.
The payoff of the row player is z and of the column player is z'" = —z.

Proof.

No matter what y does if x chooses x*, y pays at least z.

No matter what x does if y chooses y*, x gets at most z.
Thus it is a Nash!
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Nash equilibrium and LP

L P1 max z
T R>z-1"
x'1=1
x>0

LP2

max 2"’

yT(_R)T szf_l"l'
y'l=1

y >0

Theorem. Let (x*,y*) be a Nash equilibrium and set z* = x* ' Ry*.
(x*,z*) is optimal solution for LP1, and (y*, —z*) is optimal solution for LP2.
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Nash equilibrium and LP

L P1 max z
T R>z-1"
x'1=1
x>0

LP2

max 2"’

yT(_R)T szf_l"l'
y'l=1

y >0

Theorem. Let (x*,y*) be a Nash equilibrium and set z* = x* ' Ry*.
(x*,z*) is optimal solution for LP1, and (y*, —z*) is optimal solution for LP2.

Proof. Homework!
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Corollaries

Theorem (Von Neuman minimax Theorem). It holds that

max min xTRy = min max xTRy
XEA, YEA, YEA, xXEA,
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Corollaries

Theorem (Von Neuman minimax Theorem). It holds that

max min x ' Ry = min max xTRy
XEA, YEA, YEA, xXEA,

Theorem (Uniqueness of payoffs). The payoff of the row player is equal in
all Nash equilibria of a zero-sum game. Same for the column player.
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Corollaries

Theorem (Von Neuman minimax Theorem). It holds that

max min x ' Ry = min max xTRy
XEA, YEA, YEA, xXEA,

Theorem (Uniqueness of payoffs). The payoff of the row player is equal in
all Nash equilibria of a zero-sum game. Same for the column player.

Theorem (Convexity of Nash Equilibria). The set of Nash equilibria in
a zero-sum game is convex.
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