LO3 LP Duality and zero-sum games

CS 295 Introduction to Algorithmic Game Theory Ioannis Panageas

Problem (Linear Program (Feasibility)). *Suppose we are given a linear program in the standard form*

 $Ax \le b$ $x \ge 0.$

where A is of size $n \times m$. Goal: Find a feasible solution x^* (if there is one).

Remark: We have *n* constraints and *m* variables.

Problem (Linear Program (Feasibility)). *Suppose we are given a linear program in the standard form*

 $\begin{array}{l} Ax \leq b \\ x \geq 0. \end{array}$

where A is of size $n \times m$. *Goal: Find a feasible solution* x^* *(if there is one).*

Remark: We have *n* constraints and *m* variables.

Problem (Linear Program (Optimization)). Suppose we are given a linear program in the standard form

 $\max c^{\top} x$
s.t $Ax \le b$
 $x \ge 0.$

Goal: Find optimal or return infeasible.

Problem (Linear Program (Feasibility)). *Suppose we are given a linear program in the standard form*

 $\begin{array}{l} Ax \leq b \\ x \geq 0. \end{array}$

where A is of size $n \times m$. Goal: Find a feasible solution x^* (if there is one).

Remark: We have *n* constraints and *m* variables.

Problem (Linear Program (Optimization)). Suppose we are given a linear program in the standard form

> $\max c^{\top} x$ s.t $Ax \le b$ $x \ge 0.$

Goal: Find optimal or return infeasible.

Lemma (Equivalence). *These two problems are polynomial time equivalent.*

Problem (Primal Formulation). Suppose we are given a linear program in the standard form

 $\max_{x \in a} c^{\top} x$ $s.t \ Ax \le b$ $x \ge 0.$

Goal: Find optimal or return infeasible.

We can also define the dual formulation.

Problem (Dual Formulation).

$$\min b^{\top} y \\ s.t \ A^{\top} y \ge c \\ y \ge 0.$$

Intro to AGT

Problem (Primal Formulation). Suppose we are given a linear program in the standard form

 $\max c^{\top} x$ s.t $Ax \le b$ $x \ge 0.$

Goal: Find optimal or return infeasible.

We can also define the dual formulation.

Problem (Dual Formulation).

$$\min_{\substack{b \\ s.t \ A^{\top}y \ge c}} \sup_{\substack{y \ge 0.}} w$$

Remark: We have *m* constraints and *n* variables!

Facts (Four possible cases).

- 1. Primal bounded and feasible \Rightarrow Dual bounded and feasible.
- 2. Primal unbounded and feasible \Rightarrow Dual infeasible.
- 3. Primal infeasible \Rightarrow Dual unbounded and feasible.
- 4. Primal infeasible \Rightarrow Dual infeasible.

Facts (Four possible cases).

- 1. Primal bounded and feasible \Rightarrow Dual bounded and feasible.
- 2. Primal unbounded and feasible \Rightarrow Dual infeasible.
- 3. Primal infeasible \Rightarrow Dual unbounded and feasible.
- 4. Primal infeasible \Rightarrow Dual infeasible.

Let's focus on case 1.

Theorem (Weak duality). *Assume that primal is feasible and bounded. It holds that*

$$\max_{x\in P} c^{\top}x \le \min_{y\in D} b^{\top}y$$

Theorem (Weak duality). *Assume that primal is feasible and bounded. It holds that*

$$\max_{x\in P} c^{\top} x \le \min_{y\in D} b^{\top} y$$

Proof. Let $x \in P$. We have that $x^{\top}A^{\top}y \ge x^{\top}c$.

Theorem (Weak duality). *Assume that primal is feasible and bounded. It holds that*

$$\max_{x \in P} c^{\top} x \le \min_{y \in D} b^{\top} y$$

Proof. Let $x \in P$. We have that $x^{\top}A^{\top}y \ge x^{\top}c$.

Moreover, let $x \in D$. We have that $y^{\top}Ax \leq y^{\top}b$.

Theorem (Weak duality). *Assume that primal is feasible and bounded. It holds that*

$$\max_{x\in P} c^{\top} x \le \min_{y\in D} b^{\top} y$$

Proof. Let $x \in P$. We have that $x^{\top}A^{\top}y \ge x^{\top}c$.

Moreover, let $x \in D$. We have that $y^{\top}Ax \leq y^{\top}b$.

Therefore,
$$c^{\top}x \leq y^{\top}Ax \leq y^{\top}b$$
.

Since *x*, *y* were arbitrary it follows
$$\max_{x \in P} c^{\top} x \le \min_{y \in D} b^{\top} y$$
.

Theorem (Strong duality). *Assume that primal is feasible and bounded. It actually holds that*

$$\max_{x \in P} c^{\top} x = \min_{y \in D} b^{\top} y$$

Remark: The proof is much harder, it uses Farkas' lemma.

Theorem (Strong duality). *Assume that primal is feasible and bounded. It actually holds that*

$$\max_{x \in P} c^{\top} x = \min_{y \in D} b^{\top} y$$

Remark: The proof is much harder, it uses Farkas' lemma.

Example.

Primal

$$\max z$$

s.t $3x_1 - 2x_2 - z \ge 0$
 $-x_1 + x_2 - z \ge 0$
 $x_1 + x_2 = 1$
 $x_1, x_2 \ge 0$

Theorem (Strong duality). *Assume that primal is feasible and bounded. It actually holds that*

$$\max_{x \in P} c^\top x = \min_{y \in D} b^\top y$$

Remark: The proof is much harder, it uses Farkas' lemma.

Example.

Primal

$$\max 0 \cdot x_{1} + 0 \cdot x_{2} + 1 \cdot z$$

s.t $\begin{pmatrix} -3 & 2 & 1 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ z \end{pmatrix} \leq 0$
 $x_{1} + x_{2} = 1$
 $x_{1}, x_{2} \geq 0$

Intro to AGT

Theorem (Strong duality). *Assume that primal is feasible and bounded. It actually holds that*

$$\max_{x \in P} c^\top x = \min_{y \in D} b^\top y$$

Remark: The proof is much harder, it uses Farkas' lemma.

Example.

Primal

Dual

$$\begin{array}{l} \max 0 \cdot x_{1} + 0 \cdot x_{2} + 1 \cdot z \\ \text{s.t} \left(\begin{array}{c} -3 & 2 & 1 \\ 1 & -1 & 1 \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{2} \\ z \end{array} \right) \leq 0 \\ x_{1} + x_{2} = 1 \\ x_{1}, x_{2} \geq 0 \end{array} \right) \leq 0 \\ \begin{array}{c} \min 0 \cdot y_{1} + 0 \cdot y_{2} + 1 \cdot w \\ \text{s.t} \left(\begin{array}{c} -3 & 1 & 1 \\ 2 & -1 & 1 \end{array} \right) \left(\begin{array}{c} y_{1} \\ y_{2} \\ w \end{array} \right) \geq 0 \\ y_{1} + y_{2} = 1 \\ y_{1}, y_{2} \geq 0 \end{array}$$

Theorem (Strong duality). *Assume that primal is feasible and bounded. It actually holds that*

$$\max_{x \in P} c^\top x = \min_{y \in D} b^\top y$$

Remark: The proof is much harder, it uses Farkas' lemma.

Example. Sol
$$x_1, x_2 = (\frac{3}{7}, \frac{4}{7}), y_1, y_2 = (\frac{2}{7}, \frac{5}{7}), w = z = \frac{1}{7}$$

Primal
max $0 \cdot x_1 + 0 \cdot$
s.t $\begin{pmatrix} -3 & 2 & 1 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ z \end{pmatrix} \le 0$
 $x_1 + x_2 = 1$
 $x_1, x_2 \ge 0$
Sol $x_1, x_2 = (\frac{3}{7}, \frac{4}{7}), y_1, y_2 = (\frac{2}{7}, \frac{5}{7}), w = z = \frac{1}{7}$
 $\cdot y_2 + 1 \cdot w$
s.t $\begin{pmatrix} -3 & 1 & 1 \\ 2 & -1 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ w \end{pmatrix} \ge 0$
 $y_1 + y_2 = 1$
 $y_1, y_2 \ge 0$

Facts (polynomial time).

- 1. Solving Linear program is in *P*.
- 2. First polynomial time algorithm was ellipsoid method (proof by Khachiyan)
- 3. Most efficient methods nowadays are interior point methods.
- 4. Simplex runs in exponential time in worst case. On average runs faster than the other methods!

Back to zero-sum Games

Question: What do we care about LP? Recall the example was from last week's lecture (zero-sum game)!

Back to zero-sum Games

Question: What do we care about LP? Recall the example was from last week's lecture (zero-sum game)!

Answer: We can formulate the problem of computing Nash in zero-sum using LP!

Assume player x plays first and wants to get at least z. For all pure strategies of y, x should get at least z. Formally:

 $x^{\top}R > z \cdot \mathbf{1}^{\top}$

Assume player x plays first and wants to get at least z. For all pure strategies of y, x should get at least z. Formally:

$$x^{\top}R \ge z \cdot \mathbf{1}^{\top}$$

or $-x^{\top}R + z \cdot \mathbf{1}^{\top} \le 0$

Moreover, *x* should be a randomized strategy. Formally:

$$x^{\top} \mathbf{1} = 1$$
$$x \ge \mathbf{0}$$

Intro to AGT

LP for player *x*:

 $\max z \\ x^\top R \ge z \cdot \mathbf{1}^\top \\ x^\top \mathbf{1} = 1 \\ x \ge \mathbf{0}$

Remark: Notice that the maximum above is the same as

$$\max_{x \in \Delta_n} \min_{y \in \Delta_m} x^\top R y$$

Intro to AGT

Consider the dual of the previous LP:

 $\min z'$ $-y^{\top}R^{\top} + z' \cdot \mathbf{1}^{\top} \ge 0$ $y^{\top}\mathbf{1} = 1$ $y \ge \mathbf{0}$

Consider the dual of the previous LP:

$$\min z' \\ -y^{\top}R^{\top} + z' \cdot \mathbf{1}^{\top} \ge 0 \\ y^{\top}\mathbf{1} = 1 \\ y \ge \mathbf{0}$$

Set z'' = -z' the above becomes $-\max z''$ $y^{\top} \cdot (-R)^{\top} \ge z'' \cdot \mathbf{1}^{\top}$ $y^{\top} \mathbf{1} = 1$ $y \ge \mathbf{0}$

Intro to AGT

Consider the dual of the previous LP:

Set z'' = -z' the above becomes $-\max z''$ $y^{\top} \cdot (-R)^{\top} \ge z'' \cdot \mathbf{1}^{\top}$ $y^{\top} \mathbf{1} = 1$ $y \ge \mathbf{0}$

Intro to AGT

Theorem. Let (x^*, z^*) be optimal for LP1, and (y^*, z''^*) be optimal for LP2, then (x^*, y^*) is a Nash equilibrium of the zero sum game with payoff matrix R. The payoff of the row player is z and of the column player is z'' = -z.

Theorem. Let (x^*, z^*) be optimal for LP1, and (y^*, z''^*) be optimal for LP2, then (x^*, y^*) is a Nash equilibrium of the zero sum game with payoff matrix R. The payoff of the row player is z and of the column player is z'' = -z. *Proof.*

Since (x^*, z) is feasible we have $x^* \top Ry^* \ge z$.

Theorem. Let (x^*, z^*) be optimal for LP1, and (y^*, z''^*) be optimal for LP2, then (x^*, y^*) is a Nash equilibrium of the zero sum game with payoff matrix R. The payoff of the row player is z and of the column player is z'' = -z. *Proof.*

> Since (x^*, z) is feasible we have $x^* {}^{\top}Ry^* \ge z$. Since (y^*, z'') is feasible we have $-y^* {}^{\top}R^{\top}x^* \ge z''$.

Theorem. Let (x^*, z^*) be optimal for LP1, and (y^*, z''^*) be optimal for LP2, then (x^*, y^*) is a Nash equilibrium of the zero sum game with payoff matrix R. The payoff of the row player is z and of the column player is z'' = -z. *Proof.*

> Since (x^*, z) is feasible we have $x^* \top Ry^* \ge z$. Since (y^*, z'') is feasible we have $-y^* \top R^\top x^* \ge z''$. Finally from strong duality we have z'' = -z!

Theorem. Let (x^*, z^*) be optimal for LP1, and (y^*, z''^*) be optimal for LP2, then (x^*, y^*) is a Nash equilibrium of the zero sum game with payoff matrix R. The payoff of the row player is z and of the column player is z'' = -z. *Proof.*

> Since (x^*, z) is feasible we have $x^* {}^{\top} R y^* \ge z$. Since (y^*, z'') is feasible we have $-y^* {}^{\top} R^{\top} x^* \ge z''$. Finally from strong duality we have z'' = -z!

$$x^* \,{}^\top R y^* = z!$$

Theorem. Let (x^*, z^*) be optimal for LP1, and (y^*, z''^*) be optimal for LP2, then (x^*, y^*) is a Nash equilibrium of the zero sum game with payoff matrix R. The payoff of the row player is z and of the column player is z'' = -z. *Proof.*

No matter what y does if x chooses x^* , y pays at least z. No matter what x does if y chooses y^* , x gets at most z. Thus it is a Nash!

Theorem. Let (x^*, y^*) be a Nash equilibrium and set $z^* = x^* \top Ry^*$. (x^*, z^*) is optimal solution for LP1, and $(y^*, -z^*)$ is optimal solution for LP2.

Theorem. Let (x^*, y^*) be a Nash equilibrium and set $z^* = x^* \top Ry^*$. (x^*, z^*) is optimal solution for LP1, and $(y^*, -z^*)$ is optimal solution for LP2. *Proof.* Homework!

Corollaries

Theorem (Von Neuman minimax Theorem). It holds that

$$\max_{x \in \Delta_n} \min_{y \in \Delta_m} x^\top R y = \min_{y \in \Delta_m} \max_{x \in \Delta_n} x^\top R y$$

Corollaries

Theorem (Von Neuman minimax Theorem). It holds that

$$\max_{x \in \Delta_n} \min_{y \in \Delta_m} x^\top R y = \min_{y \in \Delta_m} \max_{x \in \Delta_n} x^\top R y$$

Theorem (Uniqueness of payoffs). *The payoff of the row player is equal in all Nash equilibria of a zero-sum game. Same for the column player.*

Corollaries

Theorem (Von Neuman minimax Theorem). *It holds that*

$$\max_{x \in \Delta_n} \min_{y \in \Delta_m} x^\top R y = \min_{y \in \Delta_m} \max_{x \in \Delta_n} x^\top R y$$

Theorem (Uniqueness of payoffs). *The payoff of the row player is equal in all Nash equilibria of a zero-sum game. Same for the column player.*

Theorem (Convexity of Nash Equilibria). *The set of Nash equilibria in a zero-sum game is convex.*