L16 Introduction to Markets

CS 295 Introduction to Algorithmic Game Theory
Ioannis Panageas
Food Markets

Stock Markets

Matching Markets
Driven by a rule: Supply meets demand!

Food Markets

Stock Markets

Matching Markets
Definitions

Definition (Market). A market consists of:

- A set \mathcal{B} of n buyers/traders.
- A set \mathcal{G} of m goods.
- Each buyer i has e_i amount of $. W.l.o.g$ assume $e_i = 1$.
- b_j denotes the amount of each good. W.l.o.g $b_j = 1$.
- u_{ij} denotes the utility derived by i on obtaining a unit amount of good of j.
- Each good j is associated with a price p_j.

Intro to AGT
Definitions

Definition (Market). A market consists of:

- A set \mathcal{B} of n buyers/traders.
- A set \mathcal{G} of m goods.
- Each buyer i has e_i amount of $. W.l.o.g$ assume $e_i = 1$.
- b_j denotes the amount of each good. W.l.o.g $b_j = 1$.
- u_{ij} denotes the utility derived by i on obtaining a unit amount of good of j.
- Each good j is associated with a price p_j.

Definition (Fisher Market). A market so that the utilities are linear: Let x_{ij} be the amount of units buyer i gets of good j then

$$u_i = \sum_{j \in \mathcal{G}} x_{ij} u_{ij}.$$
Definitions

Definition (Market clearance). A vector of price \((x^*, p^*)\) is called market equilibrium if for given prices \(p^*\), each buyer is assigned an optimal basket of goods relative the prices and buyer’s budget and there is no surplus or deficiency of any of the goods.

Goal: Compute allocations and prices in polynomial time!
Definitions

Definition (Market clearance). A vector of price \((x^*, p^*)\) is called *market equilibrium* if for given prices \(p^*\), each buyer is assigned an optimal basket of goods relative the prices and buyer’s budget and there is *no surplus or deficiency* of any of the goods.

Goal: Compute allocations and prices in polynomial time!

Given an arbitrary vector of prices \(p \geq 0\), from each buyer’s \(i\) perspective:

\[
\max \sum_{j=1}^{m} x_{ij} u_{ij}
\]
Definitions

Definition (Market clearance). A vector of price \((x^*, p^*)\) is called market equilibrium if for given prices \(p^*\), each buyer is assigned an optimal basket of goods relative the prices and buyer’s budget and there is no surplus or deficiency of any of the goods.

Goal: Compute allocations and prices in polynomial time!

Given an arbitrary vector of prices \(p \geq 0\), from each buyer’s \(i\) perspective:

\[
\begin{align*}
\max_{x_i} & \sum_{j=1}^{m} x_{ij}u_{ij} \\
\text{subject to} & \sum_{j=1}^{m} p_jx_{ij} \leq 1 \\
& x_i \geq 0
\end{align*}
\]

Budget constraint.
Eisenberg-Gale Convex Program

Given an arbitrary vector of prices $p \geq 0$, from each buyer’s i perspective:

From the perspective of good j:

$$\max \sum_{j=1}^{m} x_{ij} u_{ij}$$

subject to:

$$\sum_{j=1}^{m} p_{j} x_{ij} \leq 1$$
$$x_{i} \geq 0$$

Budget constraint.

Demand for good j.

$$\sum_{i=1}^{n} x_{ij} \leq 1$$
$$p_{j} \geq 0$$

Supply for good j.

Intro to AGT
Eisenberg-Gale Convex Program

Given an arbitrary vector of prices \(p \geq 0 \), from each buyer’s \(i \) perspective:

From the perspective of good \(j \):

\[
\max \sum_{j=1}^{m} x_{ij} u_{ij}
\]
\[
\text{s.t } \sum_{j=1}^{m} p_j x_{ij} \leq 1
\]
\[
x_i \geq 0
\]

Budget constraint.

Demand for good \(j \).

\[
\sum_{i=1}^{n} x_{ij} \leq 1
\]
\[
p_j \geq 0
\]

Supply for good \(j \).

Can we find \((x, p)\) s.t all are satisfied simultaneously?
Eisenberg-Gale **Convex Program**

Consider the following **convex** program:

\[
\begin{align*}
\text{max } & \sum_{j=1}^{n} \ln u_i \\
\text{s.t } & u_i = \sum_{j=1}^{m} u_{ij} x_{ij} \text{ for all buyers } i \in \mathcal{B}, \\
& \sum_{i=1}^{n} x_{ij} \leq 1 \text{ for all goods } j \in \mathcal{G}, \\
& x_{ij} \geq 0 \text{ for all } i \in \mathcal{B}, j \in \mathcal{G}.
\end{align*}
\]
Eisenberg-Gale **Convex** Program

Consider the following **convex** program:

\[
\begin{align*}
\text{max} & \sum_{j=1}^{n} \ln u_i \\
\text{s.t} & \quad u_i = \sum_{j=1}^{m} u_{ij} x_{ij} \text{ for all buyers } i \in \mathcal{B}, \\
& \quad \sum_{i=1}^{n} x_{ij} \leq 1 \text{ for all goods } j \in \mathcal{G}, \\
& \quad x_{ij} \geq 0 \text{ for all } i \in \mathcal{B}, j \in \mathcal{G}.
\end{align*}
\]

Remark:

- The domain above is **compact** hence there is an optimal solution \(x^* \).
Eisenberg-Gale **Convex** Program

Consider the following *convex* program:

$$\begin{align*}
\text{max} \sum_{j=1}^{n} \ln u_i \\
\text{s.t} \ u_i &= \sum_{j=1}^{m} u_{ij} x_{ij} \text{ for all buyers } i \in \mathcal{B}, \\
\sum_{i=1}^{n} x_{ij} &\leq 1 \text{ for all goods } j \in \mathcal{G}, \\
x_{ij} &\geq 0 \text{ for all } i \in \mathcal{B}, j \in \mathcal{G}.
\end{align*}$$

Remark:

- The domain above is *compact* hence there is an optimal solution x^*.
- Note that there are no budget constraints!
Eisenberg-Gale Convex Program

Consider the following convex program:

\[
\begin{align*}
\text{max} \sum_{j=1}^{n} \ln u_i \\
\text{s.t} \quad & u_i = \sum_{j=1}^{m} u_{ij} x_{ij} \text{ for all buyers } i \in B, \\
& \sum_{i=1}^{n} x_{ij} \leq 1 \text{ for all goods } j \in G, \\
& x_{ij} \geq 0 \text{ for all } i \in B, j \in G.
\end{align*}
\]

Remark:

- The domain above is compact hence there is an optimal solution \(x^* \).
- Note that there are no budget constraints!
- Maximizing a concave function is a convex program and can be solved in poly-time for affine constraints!
Eisenberg-Gale **Convex** Program

Consider the following **convex** program:

\[
\begin{align*}
\text{max} & \quad \sum_{j=1}^{n} \ln u_i \\
\text{s.t} & \quad u_i = \sum_{j=1}^{n} u_{ij} x_{ij} \quad \text{for all buyers } i \in B, \\
& \quad \sum_{i=1}^{n} x_{ij} \leq 1 \quad \text{for all goods } j \in G, \\
& \quad x_{ij} \geq 0 \quad \text{for all } i \in B, j \in G.
\end{align*}
\]

Remark:

- The domain above is **compact** hence there is an optimal solution \(x^* \).
- Note that there are no budget constraints!
- **Maximizing a concave** function is a convex program and can be solved in **poly-time** for **affine** constraints!

Is \(x^* \) an equilibrium? What are the prices?
Eisenberg-Gale **Convex** Program

x^* satisfies the **KKT conditions**.

KKT are **first-order conditions for constrained Optimization**
\[L(x, p) = \sum_{j=1}^{n} \ln u_i - \sum_{j=1}^{m} p_j \left(\sum_{i=1}^{n} x_{ij} - 1 \right) \]

Remark: Langrangian involves objective and constraints!
Eisenberg-Gale Convex Program

x^* satisfies the KKT conditions.

KKT are first-order conditions for constrained Optimization

\[
L(x, p) = \sum_{j=1}^{n} \ln u_i - \sum_{j=1}^{m} p_j \left(\sum_{i=1}^{n} x_{ij} - 1 \right)
\]

Remark: Langrangian involves objective and constraints!

KKT conditions: x are primal variables, p are dual variables.

Primal feasibility:
$x_{ij} \geq 0$ for all $i \in B, j \in G$.

Dual feasibility:
$p_j \geq 0$ for all $j \in G$.

Intro to AGT
Eisenberg-Gale Convex Program

x^* satisfies the KKT conditions.

$$L(x, p) = \sum_{j=1}^{n} \ln u_i - \sum_{j=1}^{m} p_j \left(\sum_{i=1}^{n} x_{ij} - 1 \right)$$

- **objective**
- **constraint for good j**

Remark: Langrangian involves objective and constraints!

KKT conditions: x are primal variables, p are dual variables.

Primal feasibility: $x_{ij} \geq 0$ for all $i \in B$, $j \in G$.

Dual feasibility: $p_j \geq 0$ for all $j \in G$.

\[
\begin{aligned}
\frac{\partial L(x,p)}{\partial x_{ij}} &= \frac{u_{ij}}{u_i} - p_j = 0 \text{ if } x_{ij} > 0. \\
\frac{\partial L(x,p)}{\partial x_{ij}} &= \frac{u_{ij}}{u_i} - p_j \leq 0 \text{ if } x_{ij} = 0.
\end{aligned}
\]

Complementary Slackness

\[
\begin{aligned}
\frac{\partial L(x,p)}{\partial p_j} &= 1 - \sum_{i=1}^{n} x_{ij} = 0 \text{ if } p_j > 0. \\
\frac{\partial L(x,p)}{\partial p_j} &= 1 - \sum_{i=1}^{n} x_{ij} \geq 0 \text{ if } p_j = 0.
\end{aligned}
\]

Intro to AGT
Eisenberg-Gale Convex Program

Let \((x^*, p^*)\) satisfy the KKT conditions. Then \((x^*, p^*)\) solves

$$\min_{p \geq 0} \max_{x \geq 0} L(x, p) = \max_{x \geq 0} \min_{p \geq 0} L(x, p)$$

since it is convex – concave,

where \(L(x, p) = \sum_{j=1}^{n} \ln u_i - \sum_{j=1}^{m} p_j (\sum_{i=1}^{n} x_{ij} - 1)\).
Let \((x^*, p^*)\) satisfy the KKT conditions. Then \((x^*, p^*)\) solves

\[
\min_{p \geq 0} \max_{x \geq 0} L(x, p) = \max_{x \geq 0} \min_{p \geq 0} L(x, p)
\]
since it is \textit{convex} – \textit{concave},

where \(L(x, p) = \sum_{i=1}^{n} \ln u_i - \sum_{j=1}^{m} p_j (\sum_{i=1}^{n} x_{ij} - 1)\).

\textbf{Remark:} Observe that dual variables \(p\) \textit{penalize if a constraint is violated.}
Eisenberg-Gale Convex Program

Let \((x^*, p^*)\) satisfy the **KKT conditions**. Then \((x^*, p^*)\) solves

\[
\min_{p \geq 0} \max_{x \geq 0} L(x, p) = \max_{x \geq 0} \min_{p \geq 0} L(x, p)
\]

since it is **convex — concave**, where

\[
L(x, p) = \sum_{j=1}^{n} \ln u_i - \sum_{j=1}^{m} p_j (\sum_{i=1}^{n} x_{ij} - 1).
\]

Remark: Observe that dual variables \(p\) penalize if a constraint is violated.

Theorem (Fisher Market). For the linear case of Fisher Market and assuming that for each good \(j\), there exists a buyer \(i\) with \(u_{ij} > 0\) then:

- The set of equilibrium allocations is convex.
- Equilibrium utilities and prices are unique.
- If all \(u_{ij}\)'s are rational then allocations and prices are rational.
Theorem (Fisher Market). For the linear case of Fisher Market and assuming that for each good \(j \), there exists a buyer \(i \) with \(u_{ij} > 0 \) then:

- The set of equilibrium allocations is convex.
- Equilibrium utilities and prices are unique.
- If all \(u_{ij} \)'s are rational then allocations and prices are rational.

Proof. Let \(x^* \) be an optimum of EG program and let \(p^* \) be the dual variables so that \((x^*, p^*) \) satisfy the KKT constraints. We shall show that \((x^*, p^*) \) is a market equilibrium.
Eisenberg-Gale Convex Program

Theorem (Fisher Market). For the linear case of Fisher Market and assuming that for each good j, there exists a buyer i with $u_{ij} > 0$ then:

- The set of equilibrium allocations is convex.
- Equilibrium utilities and prices are unique.
- If all u_{ij}’s are rational then allocations and prices are rational.

Proof. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

By assumption we have $p_j^* > 0$ for all $j \in \mathcal{G}$ (why?)
Theorem (Fisher Market). For the linear case of Fisher Market and assuming that for each good j, there exists a buyer i with $u_{ij} > 0$ then:

- The set of equilibrium allocations is convex.
- Equilibrium utilities and prices are unique.
- If all u_{ij}'s are rational then allocations and prices are rational.

Proof. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

By assumption we have $p_{j}^* > 0$ for all $j \in \mathcal{G}$ (why?)

By KKT we have there exists buyer i so that $u_{ij} > 0$. We conclude from KKT $p_{j}^* \geq \sum_{j' = 1}^{m} \frac{u_{ij}}{u_{ij'}} x_{ij'}^* > 0$.

Intro to AGT
Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

1) We showed that $p_j^* > 0$ for all $j \in G$.

Positive prices \implies

By complementary slackness we have $\sum_{i=1}^{n} x_{ij}^* = 1$.
Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

1) We showed that $p^*_j > 0$ for all $j \in \mathcal{G}$. \hspace{4cm} \text{Positive prices}

2) We showed that $\sum_{i=1}^{n} x^*_{ij} = 1$ for all $j \in \mathcal{G}$. \hspace{4cm} \text{Goods sold out}
Eisenberg-Gale Convex Program

Proof cont. Let \(x^* \) be an optimum of EG program and let \(p^* \) be the dual variables so that \((x^*, p^*)\) satisfy the KKT constraints. We shall show that \((x^*, p^*)\) is a market equilibrium.

1) We showed that \(p^*_j > 0 \) for all \(j \in \mathcal{G} \). \textbf{Positive prices}

2) We showed that \(\sum_{i=1}^{n} x^*_{ij} = 1 \) for all \(j \in \mathcal{G} \). \textbf{Goods sold out}

Using KKT conditions for fixed buyer \(i \) we also have for \(x^*_{ij} > 0 \)

\[
\frac{u_{ij}}{\sum_{j'=1}^{m} x^*_{ij'} u_{ij'}} = p^*_j \Rightarrow \frac{u_{ij} x^*_{ij}}{\sum_{j'=1}^{m} x^*_{ij'} u_{ij'}} = x^*_i p^*_j
\]
Eisenberg-Gale Convex Program

Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

1) We showed that $p^*_j > 0$ for all $j \in G$. Positive prices

2) We showed that $\sum_{i=1}^{n} x^*_{ij} = 1$ for all $j \in G$. Goods sold out

Using KKT conditions for fixed buyer i we also have for $x^*_{ij} > 0$

$$\frac{u_{ij}}{\sum_{j'=1}^{m} x^*_{ij'} u_{ij'}} = p^*_j \Rightarrow \frac{u_{ij} x^*_{ij}}{\sum_{j'=1}^{m} x^*_{ij'} u_{ij'}} = x^*_{ij} p^*_j$$

Summing over all goods $j \in G$ the above we have

$$1 = \frac{\sum_{j=1}^{m} u_{ij} x^*_{ij}}{\sum_{j'=1}^{m} x^*_{ij'} u_{ij'}} = \sum_{j=1}^{m} x^*_{ij} p^*_j$$
Eisenberg-Gale Convex Program

Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

1) We showed that $p^*_j > 0$ for all $j \in G$.
Positive prices

2) We showed that $\sum_{i=1}^{n} x^*_{ij} = 1$ for all $j \in G$.
Goods sold out

3) We showed that $\sum_{j=1}^{m} x^*_{ij} p^*_j = 1$ for all $i \in B$.
Buyers spent all their money
Eisenberg-Gale Convex Program

Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

1) We showed that $p^*_j > 0$ for all $j \in \mathcal{G}$.
Positive prices

2) We showed that $\sum_{i=1}^{n} x_{ij}^* = 1$ for all $j \in \mathcal{G}$.
Goods sold out

3) We showed that $\sum_{j=1}^{m} x_{ij}^* p^*_j = 1$ for all $i \in \mathcal{B}$.
Buyers spent all their money

Hence (x^*, p^*) is a market equilibrium. Since EG is a convex program, the set x^* of optimal solutions to EG is a convex set.
Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

1) We showed that $p^*_j > 0$ for all $j \in G$.
Positive prices

2) We showed that $\sum_{i=1}^{n} x^*_{i,j} = 1$ for all $j \in G$.
Goods sold out

3) We showed that $\sum_{j=1}^{m} x^*_{i,j} p^*_j = 1$ for all $i \in B$.
Buyers spent all their money

Hence (x^*, p^*) is a market equilibrium. Since EG is a convex program, the set x^* of optimal solutions to EG is a convex set.

Uniqueness of utilities is derived since ln is a strictly concave function.
Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

1) We showed that $p^*_j > 0$ for all $j \in G$. Positive prices

2) We showed that $\sum_{i=1}^{n} x^*_{i,j} = 1$ for all $j \in G$. Goods sold out

3) We showed that $\sum_{j=1}^{m} x^*_{i,j} p^*_j = 1$ for all $i \in B$. Buyers spent all their money

Hence (x^*, p^*) is a market equilibrium. Since EG is a convex program, the set x^* of optimal solutions to EG is a convex set.

Uniqueness of utilities is derived since \ln is a strictly concave function.

By doing the transformation $q_j = \frac{1}{p_j}$ the prices should satisfy a linear system (by KKT conditions) with rational coefficients.
Other utility functions

CES (Constant elasticity of substitution) utility functions:

\[u_i(x) = \left(\sum_{j=1}^{m} u_{ij}x_{ij}^\rho \right)^{\frac{1}{\rho}}, \text{ for } -\infty < \rho \leq 1. \]

Remark:
• \(u_i(x) \) is concave function.
• If \(u_{ij} = 0 \), then the corresponding term in the utility function is always 0.
• If \(u_{ij} > 0, x_{ij} = 0 \), and \(\rho < 0 \) then \(u_i(x) = 0 \) no matter what the other \(x_{ij} \)'s are.
Other utility functions

CES (Constant elasticity of substitution) utility functions:

\[
u_i(x) = \left(\sum_{j=1}^{m} u_{ij} x_{ij}^\rho \right)^{\frac{1}{\rho}}, \text{ for } -\infty < \rho \leq 1.
\]

Remark:
- \(u_i(x)\) is concave function.
- If \(u_{ij} = 0\), then the corresponding term in the utility function is always 0.
- If \(u_{ij} > 0, x_{ij} = 0,\) and \(\rho < 0\) then \(u_i(x) = 0\) no matter what the other \(x_{ij}\)'s are.

\[
\rho = 1 \quad \text{ Linear utility form}
\]

\[
\rho \to -\infty \quad \text{ Leontief utility form}
\]

\[
\rho \to 0 \quad \text{ Cobb-Douglas form}
\]

Elasticity of substitution \(\sigma = \frac{1}{1-\rho}\).