
CS295 Introduction to Algorithmic Game Theory

Instructor: Ioannis Panageas Scribed by: Saeed, Farhan and Chakraborty, Vishal

Lecture 7. Price of Anarchy / Lecture 8. Complexity Classes (half)

1 Introduction

1.1 Definition of Price of Anarchy

Price of Anarchy can be described as the performance of a system when agents choose the worst

decision. This can be described in the formula shown in the introduction lecture:

PoA =
Performance of worst case Nash Equilibrium

Optimal performance if the agents don’t decide on their own

The price of anarchy is basically a percentage of how worse a system can get at it’s worst Nash

equilibrium. It is based off of Braess’s paradox in which adding more roads may not improve flow

in certain scenarios.

2 Price of Anarchy between different routes

2.1 Finding Nash equilibrium between two routes

Figure 1: Truck route from A to B

Suppose 100 drivers commute from point A to B. There is a difference between the two paths

where going up would give you x
100 hours of travel time on the first node whereas the bottom middle

node has a travel time that is a constant of 1 hour. Between these middle nodes, they switch in

the time it takes from the parent node A. The nash equilibrium that can be achieved in this case is

50 drivers go on top and 50 drivers go on the bottom route. This brings us a 1.5 hour travel time

as our Nash equilibrium.
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Figure 2: Truck route from A to B with a portal to take you from one route to the other

2.2 A magical portal appears

Adding a fast link to a problem is not always the solution. This is the case when we add a portal

that takes you from one route to the other. We end up with a worst case Nash Equilibrium of

everyone going to the top route initially, then going to the bottom. We end up using more time

due to everyone going the same route! This is an example of Braess’s paradox, where adding more

roads doesn’t always benefit the agents.

In this case, the performance of the worst case Nash Equilibrium is 2 hours. The optimal per-

formance if the agents don’t get to choose what routes to take on their own is 1.5 hours. When we

plug these values into the Price of Anarchy equation that was introduced last section, we will get
4
3 .

3 Non-atomic selfish routing

3.1 A simple example

Figure 3: Pigou network graph

In this example, we have a graph that is called a pigou network, and you can take either vertices

to go to B. One vertex has a constant cost of 1 while the other has a cost of x. The optimized cost

is for half the population to go to the bottom and top vertices, which gives us 3
4 . The worst case

Nash equilibrium is the cost of 1 if 100% use the top route. The Price of Anarchy in this situation

is the same as the last example, 4
3 .
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3.2 Why is there a pattern?

This is what a non-atomic selfish routing game is! It is defined as a graph G(v, e) with source

destination pairs (s1, t1), ..., (sk, tk). We route traffic ri from si → ti. The cost of each edge e is

continuous and non-decreasing, ce(.) ≥ 0. Flow is an equilibrium in the game if all traffic is routed

to the cheapest path.

Cost of path: cp(f) =
∑
e∈p

ce(f)

Social cost :=
∑
p

fpcp(f)

The cost of path is simply the cost of an edge between two vertices while Social cost is the sum of

all the path costs. Note: Equilibrium flow exists and is unique!

Definition 3.1 Linear costs

Linear costs are of the form ce(x) = ae ∗ x+ be.

This definition applies to all Nash costs. This definition will apply to the following theorem:

Theorem 3.1 Roughgarden-Tardos 00’, PoA for linear costs

For every network with linear costs:

Cost of Nash Flow ≤ 4

3
∗ Cost of Optimal Flow

No matter how the graph looks like or the number of sources or sinks, the cost of the Nash flow is

at most 4
3 multiplied by the cost of optimal flow.

Proof: Let us prove the previous theorem. Let f∗ be a Nash flow and f be another flow. We first

show and prove the Variational Inequality:∑
e

f∗ce(f
∗
e ) ≤

∑
e

fece(f
∗
e )

First, observe that f∗ is an equilibrium flow. The strategies are the paths. So, if a path p has a

flow positive, then people are choosing the path. Otherwise the flow is deviated.

f∗ =⇒ if f∗
p > 0 then cp(f

∗) ≤ cp′ (f
∗) for all p

′

The Nash equilibrium flow has a property that every flow you’re using should effectively have the

same cost. It is an analog that every strategy you play should give you the same payoff in a normal

game play set. Therefore all paths p that have a positive flow, f∗
p > 0, will have the same cost L.

Hence: ∑
p

f∗
p cp(f

∗) = L ∗ F where F =
∑
p

f∗
p is the total flow
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F is defined as the total flow, which can be thought of as population/agent that goes through the

flow.

cp ≥ L

For every path, the cost of a path in the Nash flow is at least L.

We can conclude that: ∑
p

fpcp(f
∗) ≥ L

∑
p

fp = L ∗ F

the sum of all path multiplied by the flow of the path will be at least the Nash Flow multiplied by

the total flow. To put it all together:∑
e

fece(f
∗
e ) =

∑
p

fpcp(f
∗) ≥ L ∗ F =

∑
p

f∗
p cp(f

∗) =
∑
e

f∗
e ce(f

∗)

Now that we have proved the inequality, let us prove Theorem 3.1.

We get that: ∑
e

f∗ce(f
∗) ≤

∑
e

fece(f) +
∑
e

fe(ce(f
∗)− ce(f))

Let f be the minimum flow. From this inequality, the right hand side is the same. The left hand

side we need to change the f∗ to f . We also have that:∑
e

fe(ce(f
∗)− ce(f)) ≤

1

4

∑
e

f∗
e ce(f

∗)

The right hand side of the inequality we started with is bounded to the right hand side from the

same inequality times 1
4 . Now we’re going to use that we have linear costs.

• Case where ce(f
∗) < ce(f) which trivially is the last equation.

• The opposite case where ce(f
∗) ≥ ce(f) =⇒ f∗

e ≥ fe. Linear costs implies that, LHS =

aefe(f
∗
e − fe) and RHS ≥ 1

4aef
∗2
e . In other words, we are comparing two numbers: (f∗

e − fe)

and f∗2
e .

Because xy − y2 ≤ x2

4 it implies that LHS ≤ RHS.

We can conclude that: ∑
e

f∗ce(f
∗) ≤

∑
e

fece(f) +
∑
e

f∗ce(f
∗)

is equivalent to: ∑
e

f∗ce(f
∗) ≤ 4

3

∑
e

fece(f)

Theorem 3.2 Roughgarden-Tardos 02’, PoA for polynomial costs

For every network with polynomial costs with degree d:

Cost of Nash Flow ≤ θ(
d

log d
) ∗ Cost of Optimal Flow

Pigou is tight as we have shown in two previous examples.
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4 Price of Anarchy in Congestion Games

4.1 What is a congestion game?

A congestion game is a game with n sets of players and E sets of edges, facilities and bins. Each

player i has set of strategies Si ⊂ 2E . Every cost function of edge e is defined as ce : {1, 2, ..., n} →
R+.

Figure 4: Example of a congestion game

Theorem 4.1 Christodoulou-Koutsoupias, PoA for linear costs

For every network with linear costs:

Cost of Nash Flow ≤ 5

2
∗ Cost of Optimal welfare

The proof with this theorem is similar to the last one where we will start with a variational

inequality.

Proof: Let l∗ be a Nash equilibrium in which i uses Pi and assume i deviates to P̃i. It holds:∑
e∈Pi

ce(l
∗
e) ≤

∑
e∈Pi∩P̃i

ce(l
∗
e) +

∑
e∈P̃i\P−i

ce(l
∗
e + 1)

Because the right hand side is non-decreasing, we can set the right side to:

≤
∑

e∈Pi∩P̃i

ce(l
∗
e + 1) +

∑
e∈P̃i\P−i

ce(l
∗
e + 1) =

∑
e∈P̃i

ce(l
∗
e + 1)

Here we bounded the cost of the player i at the Nash with the cost of the player i if they deviate.

Consider any configuration l̃ where each agent j uses path P̃j . Summing for all agents i:∑
i∈[n]

∑
e∈Pi

ce(l
∗
e) ≤

∑
i∈[n]

∑
e∈P̃i

ce(l
∗
e + 1)

This inequality is similar to the last inequality. Now, we need to change this l∗ to the social cost

of l̃. We can remove the first summation by multiplying the cost of every edge by the number of

people using this edge, which is the load of the edge l̃e..

=
∑
e∈P̃i

l̃ece(l
∗
e + 1)
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Now we need to break the sum by using the fact that the cost function is linear.∑
e∈P̃i

ae l̃e(l
∗
e + 1) + be l̃e

Because y(z + 1) ≤ 5
3y

2 + 1
3z

2 for natural y, z, we can say that:

≤
∑
e∈P̃i

ae(
5

3
l̃2e +

1

3
l∗

2

e ) + be l̃e

Observe that:

5

3
C(l̃) =

5

3

∑
i∈[n]

∑
e∈P̃i

ce(l
∗
e) =

∑
e∈P̃i

5

3
ae l̃

2
e +

5

3
be l̃e ≥

∑
e∈P̃i

5

3
ae l̃

2
e + be l̃e

Therefore:

C(l∗) ≤ 5

3
C(l̃) +

1

3

∑
e

ael
∗2
e

≤ 5

3
C(l̃) +

1

3
C(l∗)

C(l∗) ≤ 5

2
C(l̃)

This is tightly bounded and applies for polynomial cost functions that the PoA is exponential in d.

5 Price of Anarchy and Balls & Bins

5.1 Definition

Consider a set of n balls and n bins e1, ..., en. Each ball i chooses a bin j and pays the load of the

bin j. We define the social cost as the maximum load, or the maximum balls that can be in the

bin.

Figure 5: Balls and Bins visually

Theorem 5.1 Koutsoupias-Papadimitriou, PoA for Balls & Bins

PoA = Ω( lnn
ln lnn)
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Proof: We will use the second moment method. First, we set every ball in a different bin. Hence,

the optimal social cost is 1. The Nash equilibrium ends up to be ( 1n , ...,
1
n) which is symmetric.

With high probability, we show that uniform gives max load of Ω( lnn
ln lnn) which implies that the

expected max load is Ω( lnn
ln lnn).

• Claim 1: Bin i has k << n balls with probability at least:(
n

k

)
1

nk
(1− 1

n
)n−k ≥ 1

nk

(
n

k

)k 1

e
=

1

ekk

Choosing k = lnn
3 ln lnn we have kk ≤ (lnn)k = (lnn) lnn

3 ln lnn = n
1
3 Claim 1: Thus bin i has at least

lnn
3 ln lnn balls with probability at least 1

en1/3
. Let Xi be the indicator that bin i has at least lnn

3 ln lnn

balls and X will be the expected as the number of all bins with at least lnn
3 ln lnn balls.

X =
∑
i

Xi ⇒ E[X] =
∑
i

E[Xi]

Observe that E[X] ≥ n
2
3

e >> 1 but this does not imply X ≥ 1 with high probability. We need to

argue about the variance. Chebyshev’s inequality gives us Pr[|X −E[X]| ≥ tE[X]] ≤ Var[X]
t2E2[X]

, thus

Pr[X = 0] ≤ Pr[|X − E[X]| ≥ tE[X]] ≤ Var[X]
t2E2[X]

Pr[X = 0] ≤ Pr[|X − E[X]| ≥ tE[X]]

From negative correlation we have that Var[X] ≤
∑

iVar[Xi]. Moreover Var[Xi] = E[X2
i ] −

E2[Xi] ≤ E[X2
i ] = E[Xi] ≤ 1. We can conclude that Pr[X = 0] ≤ n

e2n
4
3
=

n− 1
3

e2

Therefore:

Pr[X ≥ 1] = 1−Pr[X = 0] ≥ 1−
n− 1

3

e2
→ 1

End Lecture 7 notes

6 Section 8 start

7 Standard Complexity Classes

P (polynomial) is a set of decision problems for which some algorithm can provide an answer for in

polynomial time. NP (non deterministic polynomial) is a set of all decision problems where if the

answer is ”yes”, then we can verify that the answer is correct in polynomial time. co-NP is similar

to NP but we can verify if the answer ”no” is correct in polynomial time instead of ”yes”.

7



7.1 Problems in P

Examples of problems in P include:

• Decision version of shortest path (yes or no)

• Decision version of finding the maximum number in a list (yes or no)

• is n a prime number (yes or no)

7.2 Problems in NP

Problems in NP include problems where ”yes” can be verified in polynomial time. One famous

problem in NP is called the travelling salesman problem (TSP), where we are given a weighted

graph and have to find the shortest route that visits every vertex once and returns to where we

started.

7.3 Equilibrium Computation

Computing Nash Equilibrium is not a decision problem. The goal is to find a function that maps

games to mixed strategies. An example for this is to add two numbers and find an outcome.

8 Function Complexity Classes

FP is the set of function problems for which some algorithm can provide an answer in polynomial

time. FNP is the set of all function problems where the validity of an input, output pair can be

verified in polynomial time with an algorithm of some kind. TFNP is the subclass of FNP where

existence of a solution is guaranteed to exist for every input.
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