
CS295 Introduction to Algorithmic Game Theory

Instructor: Ioannis Panageas

Scribed by: Sehwan Hong, Radhit Dedania, Rohith Reddy Gangam

Lecture 4. Online learning and a proof of minimax theorem.

1 Abstract

The previous lectures talk about LP duality and their application to Zero-sum games. They also

show how the minimax theorem emerges as a corollary of LP Strong duality. In this lecture,

the concepts of ‘Expert games’, ‘No-regret algorithm’ and ‘Multiplicative Weights Update’ are

introduced. The results and properties of these algorithms will be used to give an alternative proof

of the Von Neumann minimax theorem.

2 Playing The Expert Game[3, 4]

2.1 Definition

Expert game is a type of game where an expert predicts the result of the game. For example, we

could think about the weather forecast. In this situation, the forecast center becomes the experts

and predicts whether it will rain or not. This kind of game is called Expert game and it will be

defined as following.

Definition 2.1 (Playing the Expert Game) For each day t = 1...T , you have to choose be-

tween alternative A, B

• Choose A or B according to some rule.

• One of the alternatives realizes.

• If you choose correctly you are not penalized otherwise you lose one point.

• Imagine that there are n experts who on each day t, recommend either A or B

In the expert game, expert cannot be always correct. However we could gather the expert’s

opinion, and try to perform close to best expert. In zero information, choose the majority’s opinion,

then penalize(give less weight to their future opinions) those who are incorrect. Repeating this, we

are able to perform close to the best expert.

2.2 Algorithm

From above definition, we design Algorithm 1. This algorithm is called weighted Majority. The

first step is initializing all the weights to 1 to find the majority.

1



After the first step, we update the weights for every time-step. For every mistake an expert

makes, their weight will be decreased by a factor of ε. However, if they did not make the mistake,

then the weight value will be maintained. ε is the step-size, though experiment, step-size will be

chosen to make the best prediction.

As the time-steps increase, the algorithm will improve to get better result. This algorithm

performs almost as good as ”best” expert. In other words, the number of mistakes by this algorithm

is bounded by the number of mistakes by the best expert from our pool of experts.

Algorithm 1 Weighted Majority

Initialize w0
i = 1 for all i ∈ [n]

for t = 1...T do

if Σi choose Aw
t−1
i ≥ Σi choose Bw

t−1
i then

Choose A

else

Choose B

end if

for expert i that made mistake do

wti = (1− ε)wt−1
i

end for

for expert i that did not make mistake do

wti = wt−1
i

end for

end for

2.3 Theorem

Theorem 2.1 (Weighted Majority) Let MT , MB
T be the total number of mistakes the algorithm

and best expert make until time step T, respectively. It holds that

MT ≤ 2(1 + ε)MB
T +

2 log n

ε
(1)

Proof: Let’s define potential function φ = Σiw
t
i From this equation we are able to find two

important aspect of the potential function:

• φ0 = n

• φt+1 ≤ φt

From the above algorithm 1, we could observe that at each time step, the value of phi could

decrease when the experts makes a mistake, but when they do not make the mistake the weight

remains. From this observation, we could see that φt+1 ≤ φt.
At time t,if there is a mistake, it means majority of the experts have made a mistake, so at the

least φt
2 will be multiplied by (1− ε) and remaining will maintain its value. From this, we get the

following equation:

2



φt+1 ≤ (1− ε) · φt
2

+
φt
2

= (1− ε

2
)φt (2)

So, when we make a mistake, φt+1 ≤ (1 + ε
2)φt. On the other hand, when we do not make

mistake, φt+1 ≤ φt. Since we are making MT mistakes, expanding the result we get:

φt+1 ≤ (1− ε

2
)M

T
φ1 (3)

Moreover, assuming the best expert (say i∗) did MB
T mistakes, we have φT > wTi∗ = (1− ε)MB

T .

Using this equation and the equation 3, we conclude:

(1− ε)MB
T < φt ≤ (1− ε

2
)M

T
φ0

=⇒ (1− ε)MB
T < (1− ε

2
)M

T
n (4)

When we apply the logarithms on both side of inequality (4), we will get (5).

MB
T log(1− ε) < MT log(1− ε

2
) + log n (5)

=⇒ MB
T (−ε− ε2) < −MT ε/2 + log n

Since −x − x2 < log(1 − x) < −x, we could substitute (5) to eliminate the logarithm. By

eliminating the logarithms, we are are able to simplify the result to get the (1).

MB
T (−ε− ε2) < −MT ε/2 + log n

=⇒ MT ε/2 < MB
T (ε+ ε2) + log n

=⇒ MT /2 < MB
T (1 + ε) +

log n

ε

=⇒ MT < 2MB
T (1 + ε) +

2 log n

ε

MT < 2MB
T (1 + ε) +

2 log n

ε
(6)

This proves that the number of mistakes committed by the weighted majority theorem algorithm

is bounded w.r.t. the number of mistakes by the best expert.

2.4 General Setting

The expert game setting can be generalised as below.

Definition 2.2 At each time step t = 1...T

3



• Player choose xt ∈ ∆n

• Adversary chooses ut ∈ [−1, 1]n

• Player gets payoff x>t ut and observes ut

Player’s goal is to minimize the (time average) Regret, that is :

1

T

[
max
x∈∆n

T∑
t=1

x>ut −
T∑
t=1

x>t ut

]
=

1

T

[
max
i∗∈[n]

T∑
t=1

ut,i −
T∑
t=1

x>t ut

]
(7)

The goal of the player is to minimize the regret using different expert’s prediction. As described

in the equation above, the player is trying to minimize the regret and compare with the best expert’s

prediction. In this expert game, if Regret gets to zero as T becomes ∞, the algorithm is said to

have no-regret.

3 Multiplicative Weights Update[3, 4]

3.1 Algorithm

Following up on the above algorithm, we define a variant of it below(Algorithm 2). In contrast

to the above algorithm, this one updates the beliefs(with respect to each expert) of each player

irrespective of the status of their mistakes. This algorithm is called Multiplicative Weights Update

as, at each step, it tries to modify the current belief by adding a multiplicative factor of its payoff.

Here, the player has a some belief in every expert and they sum to 1 at each time step as the beliefs

constitute a probability distribution.

The algorithm starts by initializing belief in every expert to the same constant 1
n . Then, for each

time step and each expert, it updates the belief of the player in that expert at that time step by

adding a fraction of its payoff(computed using the observed adversary realisation at that time step)

to the current belief in that expert. A re-normalization factor is also included in each update to

ensure that the updated beliefs represent a probability distribution. The algorithm is stated below

(Algorithm 2). Here, ε refers to the step-size(which will be chosen later) and Zt =
∑

i p
t
i(1+εut,i) is

the re-normalization constant. This algorithm performs almost as good as the best expert(fewest

mistakes).

Algorithm 2 Multiplicative Weights Update

Initialize p0
i = 1

n for all i ∈ [n]

for t = 1...T do

for each i that gives payoff ut,i do

pt+1
i = pti

1 + εut,i
Zt

(8)

end for

end for

4



3.2 Theorem

Theorem 3.1 (Multiplicative Weights Update) It holds that

1

T

∑
t

uTt p
t ≥ max

x

∑
t

xTut −
log n

εT
− ε (9)

Proof: Let’s define the potential function φ = Σiw
t
i where weights wti =

∏t
s=0(1 + εus,i). It

can be observed that the potential function obeys the following properties:

• φ0 = n

• φt ≥ 0, for all t ∈ {0, 1, . . . T}

As 1 + εus,i ≥ 0 for every s and wti is defined as the product of these terms, φt ≥ 0 as it is the

sum over all such positive wti values. As w0
i = 1 since p0

i = 1
n for all i ∈ [n] and φ0 = Σiw

0
i , φ0 = n.

Let the best strategy be i∗, the following equation holds as φT which is the sum over wTi values

for every i ∈ [n] is always greater than a particular constituent term(here, it is the weight of the

best expert, wTi∗)

φT > wTi∗

Since log(1 + x) ≥ x − x2 or in other words, 1 + x ≥ ex−x
2

where x = εus,i∗ , we could rewrite

the above equation as shown below.

φT > wTi∗ ≥ e
ε
∑T

s=0 us,i∗−ε2
∑T

s=0 u
2
s,i∗ (10)

As φt+1 is the sum over wt+1
i values for every i ∈ [n] and wt+1

i can be written recursively in

terms of wti as stated in the equation below

φt+1 =
∑
i

wt+1
i =

∑
i

wti(1 + εut,i)

As pti =
wt

i
Zt =

wt
i
φt

since φt =
∑

iw
t
i = Zt (using the fact that re-normalizing updated beliefs

at each iteration yields the same result as re-normalizing the beliefs once at the end of all iter-

ations along with the application of telescopic method to the belief update equation (8) for all

t ∈ {0, 1, . . . T} to eliminate intermediate ptis), we get the following equation.

φt+1 =
∑
i

wt+1
i =

∑
i

wti(1 + εut,i) =
∑
i

φtp
t
i(1 + εut,i)

Since φt is independent of i, it can be taken out of the summation to get the below expression.

φt+1 =
∑
i

wt+1
i =

∑
i

wti(1 + εut,i) =
∑
i

φtp
t
i(1 + εut,i) = φt

∑
i

pti(1 + εut,i)

In other words,

φt+1 = φt
∑
i

pti(1 + εut,i)

5



Since beliefs pti for every i ∈ [n] constitute a probability distribution,
∑

i p
t
i = 1 and so the first

term equals to 1 when
∑

i p
t
i = 1 is brought inside the sum term (1 + εut,i). As ε is a constant, it

will stay out of
∑

i p
t
i in the second term.

φt+1 = φt(1 + ε
∑
i

ptiut,i)

Using the fact that log(1 + x) ≤ x or in other words, 1 + x ≥ ex where x = ε
∑

i p
t
iut,i, we get,

φt+1 = φt(1 + ε
∑
i

ptiut,i) ≤ φteε
∑

i p
t
iut,i

Using the vector notation,
∑

i p
t
iut,i becomes uTt p

t.

φt+1 = φt(1 + ε
∑
i

ptiut,i) ≤ φteε
∑

i p
t
iut,i = φte

εuTt p
t

(11)

Enumerating (11) by listing it at each time step t ∈ {0, 1, . . . T}, we get,

@@φ1 ≤ φ0e
εuT0 p

0

@@φ2 ≤ @@φ1e
εuT1 p

1

@@φ3 ≤ @@φ2e
εuT2 p

2

@@φ4 ≤ @@φ3e
εuT3 p

3

...

φT ≤ HHHφT−1e
εuTT−1p

T−1

Multiplying the above equations(using telescopic product), we get,

φT ≤ φ0e
ε
∑

t u
T
t p

t

Since φ0 = n as shown above, φT becomes upper bounded by neε
∑

t u
T
t p

t

φT ≤ φ0e
ε
∑

t u
T
t p

t
= neε

∑
t u

T
t p

t
(12)

Therefore, from (10)[lower bound of φT ] and (12)[upper bound of φT ], we can state that,

e
ε
∑T

s=0 us,i∗−ε2
∑T

s=0 u
2
s,i∗ ≤ neε

∑
t u

T
t p

t

Since
∑T

s=0 u
2
s,i∗ ≤ T as maxus,i∗ = 1 for all s ∈ {0, 1, . . . T}, we can get a lower bound of

e
ε
∑T

s=0 us,i∗−ε2
∑T

s=0 u
2
s,i∗ as follows,

eε
∑T

s=0 us,i∗−ε2T ≤ eε
∑T

s=0 us,i∗−ε2
∑T

s=0 u
2
s,i∗ ≤ neε

∑
t u

T
t p

t

As log is a strictly increasing function, by taking log on both sides of the inequality will not

change the sign of it. Thus, it can be written as,

ε
T∑
s=0

us,i∗ − ε2T ≤ ε
T∑
s=0

us,i∗ − ε2
T∑
s=0

u2
s,i∗ ≤ log n+ ε

∑
t

uTt p
t

6



Equivalently, the equation becomes,

ε

T∑
s=0

us,i∗ − ε2T ≤ log n+ ε
∑
t

uTt p
t

Dividing both sides of the equation by εT and rearranging it, we get the main equation which

we had set out to prove.
1

T

∑
t

uTt p
t ≥ max

x

∑
t

xTut −
log n

εT
− ε (13)

3.3 Choice of Step-size(Epsilon)

As we can choose ε arbitrarily, we can try the below mentioned value which gives us good interpre-

tation of the player’s strategy with respect to that of the best expert. Regret can be alternately

understood as the number of additional mistakes made by the player in comparison to the best

expert. As regret is always non-zero(as no player knows what their best strategy should be while

playing), the player always gets worse payoff compared to the best expert.

• Setting ε −→
√

lnn
T , we get that the regret is bounded by 2

√
lnn
T . As T tends to∞, the above

tends to zero, so this is a no-regret algorithm.

4 Minimax Theorem

Theorem 4.1 (Minimax Theorem by John Von Neumann) Let A be a matrix of size n×m.

min
x∈∆n

max
y∈∆m

x>Ay = max
y∈∆m

min
x∈∆n

x>Ay (14)

The above is defined to be the value of the game.

Von Neumann published the above result in 1928 [1]. We will prove the same result using the

theory presented above.

Proof: To prove the above equality, we first prove that the LHS ≥ RHS. For this, we use the

following well-known, slightly trivial lemma.

Lemma 4.2 For all functions f(x, y)

inf
x∈X

sup
y∈Y

f(x, y) ≥ sup
y∈Y

inf
x∈X

f(x, y) (15)

Proof: Define a function g(y) based on the function f(x, y) as follows.

g(y) = inf
x∈X

f(x, y)

7



Since g(y) is defined as the infimum over x of f , and using inf and sup operators on the free

variables, we get

∀x,∀y, g(y) ≤ f(x, y)

=⇒ ∀x, sup
y
g(y) ≤ sup

y
f(x, y)

=⇒ sup
y
g(y) ≤ inf

x
sup
y
f(x, y)

=⇒ sup
y

inf
x
f(x, y) ≤ inf

x
sup
y
f(x, y)

And so, irrespective of the function f(x, y), the above inequality always holds. Choosing

f(x, y) = x>Ay for x ∈ ∆n and y ∈ ∆m and the given matrix A, we get that

min
x∈∆n

max
y∈∆m

x>Ay ≥ max
y∈∆m

min
x∈∆n

x>Ay (16)

4.1 Using MWU to prove the minimax theorem

And to prove the other inequality, we will model the game from the viewpoint of ”Multiplicative

Weights Update for the general setting”(MWU). In the general setting, there was only one player

playing against an adversary. So, when player x is playing, we view player y as its adversary and

he will use the MWU iterates as his strategy. Now, player y responds to this using his own MWU

iterates viewing player x as his adversary. Viewed as a whole, this is a ”game” between the two

players but separately this should satisfy the no-regret results obtained in the previous sections.

Let x1, . . . , xT and y1, . . . , yT be the iterates advised by MWU to each player. Lets also define

x̂ = 1
T

∑T
i=1 xi and ŷ = 1

T

∑T
i=1 yi and let T = Θ

(
1
η2

)
i.e., the game has been run for long enough

time steps that the regret is bound by η.

And so, choosing any x, from the no-regret property for x, we get that,

1

T

∑
t

x>t Ayt ≤
1

T

∑
t

x>Ayt + η = x>A

(∑
t yt
T

)
+ η

Similarly, choosing any y, noting that he is trying to oppose of player x in terms of the ’game’s

value’, the no-regret property gives,

1

T

∑
t

x>t Ayt ≥
1

T

∑
t

x>t Ay − η =

(∑
t xt
T

)>
Ay − η

Joining both the above equations, for all x, y we have,(∑
t xt
T

)>
Ay − 2η ≤ x>A

(∑
t yt
T

)

8



Using the facts that x and y are free variables in the above equations, and maximum and

minimum of a set sandwich the averages, we get

min
x
x>A

(∑
t yt
T

)
≥ max

y

(∑
t xt
T

)>
Ay − 2η

=⇒ max
y

min
x
x>Ay ≥ min

x
x>A

(∑
t yt
T

)
=⇒ max

y
min
x
x>Ay ≥ max

y

(∑
t xt
T

)>
Ay − 2η

max
y

min
x
x>Ay ≥ min

x
max
y
x>Ay − 2η (17)

The last inequality, along with the previous lemma, tells us that, for any chosen η, we can reach

to a stage where the value of the games is within a 2η interval. But, increasing the number if time

steps T → inf, we can get η as close to zero and hence, proving that the value of the games is

constant and equal to both minx∈∆n maxy∈∆m x
>Ay and maxy∈∆m minx∈∆n x

>Ay.

Using MWU in the above way, leads us to the following trivial algorithm 3 to find an ε-

approximate Nash Equilibrium for the case of two player Zero sum game.

Algorithm 3 Computing ε-approximate Nash Equilibrium

Initialize x0
i = 1

n for all i ∈ [n] and y0
i = 1

n for all i ∈ [n] and T = Θ
(

1
ε2

)
for t = 1...T do

for i ∈ [n] do

xt+1
i = xti

1−ε(Ayt)i
1−εxt>Ayt

end for

for j ∈ [n] do

yt+1
j = ytj

1+ε(A>xt)j
1+εxt>Ayt

end for

end for

Return (x̂, ŷ) =

((
1
T

∑T
i=1 xi

)
,
(

1
T

∑T
i=1 yi

))

5 Summary

In this lecture, we have covered basic online learning using expert game. Expert game is a type of

game where an expert predicts the result of the game. Since experts cannot be always correct, we

use Weighted Majority Algorithms to get the best result using multiple experts. Weighted Majority

Algorithm updates every weights by checking if the experts have made a mistake or not.

The variant of Weighted Majority Algorithms is Multiplicative Weights Update. This algorithms

updates the beliefs with respect to each experts of each player. Compared to WM algorithm, the

weights of the WMU algorithm must sum up to 1 and it represents the probability distribution of

belief.

9



We use the results of Multiplicative Weights Update to show that, a two player zero-sum game

has a value and give a proof of minimax theorem. A modified MWU algorithm to compute an

ε-approximate Nash Equilibrium of the game is provided.

6 Do you know?

• The theory of online learning was proposed by Hannan in 1957 which is interestingly the same

year when the game of battle of sexes was introduced and has an interesting application to

the casino problem(also known as multi-arm bandit problem).

• Exploration(switching to another expert) and exploitation(continuing with the same expert)

also derive their origin from the bandit problem wherein at each step the choice of continuing

with the same machine or switching to another is to be made to maximize monetary gains.

• The first proof of minimax theorem was proposed by Von Neumann as early as 1928([1]) but

at that time, he had no knowledge of the theory of linear inequalities and fixed-point theorem

and hence, he came up with another proof in 1944([2]) using these topics which was much

simpler to understand than the former.

• The most prominent usage of online learning nowadays is in online advertisements where the

website has to instantly come up with an advertisement for the new user. If the user opens

the banner, then the website earns revenue and their end goal is to maximize it by showing

relevant advertisements to the visitor.

References

[1] John von Neumann. Zur Theorie der Gesellschaftsspiele(On the theory of board games). Math.

Ann. 100, 295–320 (1928).

[2] John von Neumann, Oscar Morgenstern. Theory of Games and Economic Behavior. Princeton

University Presss, Princeton, NJ (1944).

[3] Arora, Sanjeev, Elad Hazan, and Satyen Kale. The Multiplicative Weights Update Method:

Meta Algorithm and Applications. Theory of Computing 8.1 (2012): 121-164. http://www.

theoryofcomputing.org/articles/v008a006/v008a006.pdf

[4] Si Yi Meng. Multiplicative Weights Update. Lecture Slides. University of British

Columbia(2019).

https://www.cs.ubc.ca/labs/lci/mlrg/slides/2019_summer_2_multiplicative_

weight_update.pdf

[5] Sanjeev Arora. Lecture 8: Decision-making under total uncertainty: the multiplicative weight

algorithm. https://www.cs.princeton.edu/courses/archive/fall13/cos521/lecnotes/

lec8.pdf.

10

http://www.theoryofcomputing.org/articles/v008a006/v008a006.pdf
http://www.theoryofcomputing.org/articles/v008a006/v008a006.pdf
https://www.cs.ubc.ca/labs/lci/mlrg/slides/2019_summer_2_multiplicative_weight_update.pdf
https://www.cs.ubc.ca/labs/lci/mlrg/slides/2019_summer_2_multiplicative_weight_update.pdf
https://www.cs.princeton.edu/courses/archive/fall13/cos521/lecnotes/lec8.pdf
https://www.cs.princeton.edu/courses/archive/fall13/cos521/lecnotes/lec8.pdf

	1 Abstract
	2 Playing The Expert GameAHK, Meng
	2.1 Definition
	2.2 Algorithm
	2.3 Theorem
	2.4 General Setting

	3 Multiplicative Weights UpdateAHK, Meng
	3.1 Algorithm
	3.2 Theorem
	3.3 Choice of Step-size(Epsilon)

	4 Minimax Theorem
	4.1 Using MWU to prove the minimax theorem

	5 Summary
	6 Do you know?

