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Lecture 3. Linear Programming Duality and Zero-sum Games.

1 Linear Programming

1.1 Feasibility and Optimization

A linear program takes the standard form

Ax ≤ b

x ≥ 0.

A is a matrix of size n × m. When we are looking for a feasible solution, we are looking for an

existing solution x∗ of our linear program, if one exists. The size of our matrix A represents the

fact that we have n constraints and m variables in our linear program.

Now suppose that we want to find the most optimal solution for our linear program–that is, a

solution that both exists and maximizes (or minimizes) a metric of our choosing. Our linear pro-

gram can now take on the following form:

max cᵀx

s.tAx ≤ b

x ≥ 0.

With this form, we have the added caveat of wanting to maximize (or minimize) a metric of our

choosing, in this case cᵀx, subject to some rule that we can define, which in this case is Ax ≤ b.

Our goal here now is to find an optimized solution x∗, or if we aren’t able to, designate the program

as infeasible.

Lemma 1.1 Equivalence: These two problems are polynomial-time equivalent.

1.2 Dual and Primal Formulations

Often when trying to create a solvable algorithm for an LP-definable problem, the problem needs to

be decomposed into a standard formulation. We can demonstrate that every LP-definable problem

can be transformed into this standard form, otherwise known as a primal formulation.
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Suppose then that we are given a LP in the standard form:

max cᵀx

s.tAx ≤ b

x ≥ 0.

The goal of a primal formulation is to then return either a optimal answer, or that is infeasible. In

different terms, the primal formulation’s goal is to identify the player strategy x which maximizes

some criteria c, while obeying the given constraints in a zero-sum game.

As the primal formulation is an Linear Program, it also has a inverse. This is the Dual For-

mulation.

max cᵀx -min (−cᵀ)x

Ax ≤ b = −Ax ≥ −b
x ≥ 0. x ≥ 0.

The problem on the right is in standard form, and we can then take its dual to get the desired LP

max (−bᵀ)y min (bᵀ)y

(−A)y ≤ b = Ay ≥ b

y ≥ 0. y ≥ 0.

This primal-dual pairing of two LP’s A and B is related via the Weak Duality Theorem .

Let us take the two Linear Programs,

U :

max cᵀx

s.tAx ≤ b

x ≥ 0.
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and V :

min bᵀy

s.tAy ≥ b

y ≥ 0.

A primal-dual formulation, as demonstrated above. Given m constraints and n variables, if x ∈ Rn

for U is feasible, and y ∈ Rm for V is feasible then we can state that xᵀAᵀy ≥ xᵀc and yᵀAx ≤ yᵀb.

Given these two inequalities, we can then state

cᵀx ≤ yᵀAx ≤ bᵀy

From this we can make several conclusions. It follows, that if U is unbounded, then V is infeasible.

Similarly, if V is unbounded, then U is also infeasible. Finally, if cᵀx = bᵀy with x being feasible

for U and y being feasible for V, then both must solve with their respective variable.

Indeed, this primal-dual pairing of Linear Programs possess four key characteristics which de-

scribe their relation. These are the only four possible states the primal-dual pairing can exist in:

1. The Primal is bounded and feasible −→ The Dual is bounded and feasible.

2. The Primal is unbounded and feasible −→ The Dual is infeasible.

3. The Primal is infeasible −→ The Dual is unbounded and feasible.

4. The Primal is infeasible −→ The Dual is infeasible.

Using the Weak Duality Theorem we can prove that If either U or V has a finite optimal value,

then so does the other. Furthermore, the optimal values will coincide, and the optimal solutions to

both U and V will exist. This is known as the Strong Duality Theorem . Here is an example:

Primal

max 0 ·x1 + 0 · x2 + 1 · z

s.t

(
−3 2 1

1 −1 1

) x1

x2

z

 ≤ 0

x1 + x2 = 1

x1, x2 ≥ 0

Dual

min 0 ·y1 + 0 · y2 + 1 · w

s.t

(
−3 1 1

2 −1 1

) y1

y2

w

 ≥ 0

y1 + y2 = 1

y1, y2 ≥ 0

These primal and dual forms are equivalent by the Strong Duality Theorem.
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2 Zero-Sum Games as Linear Programs

2.1 Representing Zero-Sum Games with Linear Programming

Linear programs can seem very overly theoretical or difficult to understand without any context.

Why do linear programs matter, and more importantly, how can we use them to our benefit in

algorithmic game theory?

Consider a zero-sum game. We have an outcome matrix Rij , where the row player x chooses

a strategy x ∈ ∆n, and the column player picks a strategy y ∈ ∆m.

The row player’s payout is xᵀRy received, and the column player’s payout is xᵀRy paid, thus

designating the scenario as a zero-sum game.

If we assume that player x plays first, and that they want to receive a payout of at least z,

then for all pure strategies of player y we can assume that player x receives a payout of at least z.

As a more formal definition, we can say that

xᵀR ≥ z ∗ 1ᵀ

−xᵀR + z ∗ 1ᵀ ≤ 0.

In addition, x should be a randomized strategy. More formally, we can define this in the following

manner:

xᵀ1 = 1

x ≥ 0

where 1 represents the identity matrix.

2.2 Dual Formulations of Zero-Sum Games

Using the logic from above, we can write a linear program that represents the maximal payout of

player x, the row player:

max z

xᵀR ≥ z ∗ 1ᵀ

xᵀ1 = 1

x ≥ 0

We want to maximize z, subject to the constraints that player x receives a payout of at least z

using a randomized mixed strategy. Note that the above linear program is the same as expressing

the following:
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maxx∈∆nminy∈∆mx
ᵀRy

If we consider the dual form of the previous linear program, we can find some interesting

behavior.

min z′

−yᵀRᵀ + z′ ∗ 1ᵀ ≥ 0

yᵀ1 = 1

y ≥ 0

Now, if we substitute z′′ = −z′, we get the following:

−max z′′

yᵀ ∗ (−R)ᵀ ≥ z′′ ∗ 1ᵀ

yᵀ1 = 1

y ≥ 0

If we flip the signs, we get a linear program that represents what would occur if y, the column

player, played first. The property of LP duality allows us to make some interesting conclusions

regarding Nash equilibrium as well.

3 Nash Equilibrium and Linear Programs

3.1 Equilibrium Between Linear Programs

A zero-sum game can be represented fully as a series of n Linear Programs, each representing a

player. In this series, each player will have an optimal x and z such that (x*,z*) will be optimal

for their respective LP. In this series, let x1, z1 and x2, z2 represent the optimal values for their

respective LP’s 1 and 2. If this is true, then x1, x2 is the Nash Equilibrium of the zero sum game

on their reward matrix R with the payoffs being z1 and z2 respectively.

Since (x1, z1) is optimal, it is also by definition feasible. We can expand it out to x1ᵀRx2 ≥ z1.

Similarly, x2, z2 is optimal and feasible, so -x2ᵀRᵀx1 ≥ z2.

Using Strong Duality, we can now say that -z = z2 and thus x1ᵀRx2 = z1.

This means that no matter what player 2 does, they will pay at least z as long as player 1 chooses

x1. And no matter what player 1 does, they will get at most z, as long as player 2 chooses x2. This

is a Nash Equilibrium!

4 Corollaries

Corollary 4.1 Von Neuman minmax theorem: it holds that

maxx∈∆nminy∈∆mx
ᵀRy = miny∈∆mmaxx∈∆nx

ᵀRy
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Corollary 4.2 Uniqueness of payout: In all Nash equilibrium points of a zero-sum game, the

payouts of the row player are always the same. The same holds for the column player–their payout

will always be the same.

Corollary 4.3 Convexity of Nash equilibrium: The set of Nash equilibrium points in a game is

convex.
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