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Lecture 12. Monotone Allocations and Myerson’s Lemma.

1 Introduction

When designing an auction, there are three desirable properties that the designer would like to

satisfy.

1. DSIC (Dominant-Strategy Invenctive Compatibility). No matter what other agents do, the

dominant strategy of each agent should be to play truthfully with respect to their valuation.

2. Social surplus maximization. The allocation should maximize the sum
∑n

i=1 xivi.

3. The auction should be implementable in polynomial time.

Example 1.1 Sponsored Search Auctions

In this auction there is a search engine which is essentially our auctioneer. When a user arrives and

inputs a query, an auction is conducted to decide which of the advertiser’s links will be shown and

in which order in the search results. Also a corresponding price is determined for each advertiser.

Specifically,

• There are k slots

• The bidders are the advertisers

• Each slot j has a click through rate aj , such that a1 ≥ a2 ≥ ... ≥ ak

• Each bidder i has a private valuation vi and gets value ajvi if they are assigned slot j

We will return to this example at the end and show how we can determine an auction satisfying

our three above conditions of interest.

Definition 1.1 Single parameter environments. A single parameter environment is defined by the

following conditions

• There are n bidders with private vi

• There is a feasible set X , each element of which is a n-dimensional vector (x1, ..., xn) in which

xi is the amount of stuff given to bidder i
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Example 1.2 Examples of single parameter environments

1. Single-item auctions: is 0-1 vectors with at most one 1, i.e.,
∑

xi ≤ 1

2. k identical goods, each bidder gets at most one: X is 0-1 vectors with
∑

xi ≤ k

3. In sponsored search, X is the set of n-vectors with xi being aj if slot j is assigned to bidder i.

Definition 1.2 Allocations and Payments. A sealed-bid auction is defined by the following condi-

tions

• Bidders report bids b = (b1, ..., bn)

• Auctioneer chooses feasible allocation x(b) ∈ X

• Auctioneer chooses payments p(b) ∈ Rn

• Bidder i gets utility ui = vi · xi(b)− pi(b)

Definition 1.3 Monotone Allocations. An allocation rule x for a single-parameter environment

is monotone if for every bidder i and bids b−i by the rest of bidders, the allocation xi(z, b−i) is

nondecreasing in z.

2 Myerson’s Lemma

Theorem 2.1 Myerson’s Lemma

Let (x, p) be a mechanism, which is the allocation and payments. We assume that pi(b) = 0

whenever bi = 0 for all bidders i.

1. It holds that if (x, p) is DSIC mechanism then x is monotone.

2. If x is a monotone allocation, then there is a unique payment rule such that (x, p) is DISC.

Essentially if given the allocation, there is a unique payment rule, depending on the allocation,

so that the pair is DSIC.

Remark 2.1 This lemma characterizes all single-parameter environments.

Proof: We start by proving point 1. We assume that we are given a mechanism (x, p) that is

DSIC. Let 0 ≤ y ≤ z.

If bidder i has private valuation z, to avoid reporting y, DSIC requries the condition

ui(z) ≥ ui(y) for all i

z · xi(z)− pi(z) ≥ z · xi(y)− pi(y) for all i

In particular, the utility of agent i at z has to be larger than the utility of player i at y. The

utility of playing the truth has to be at least the utility of not playing the truth.
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Now , if bidder i has private valuation y, to avoid reporting z, DSIC demands

y · xi(y)− pi(y) ≥ y · xi(z)− pi(z) for all i

We can combine the above two inequalities, moving the pi to same side of both inequalities, to

obtain

z(xi(y)− xi(z)) ≤ p(y)− p(z) ≤ y(xi(y)− xi(z)) (1)

Since y ≤ z, the only way this inequality can hold is if the left hand side is nonpositive, which

requires the inequality xi(y) ≤ xi(z), which implies monotonicity.

Now we prove point 2 of Myerson’s Lemma. We now know that x is monotone. Assume x is

piecewise constant. If there is a jump at point z, say of magnitude h, then as y → z from the left

we get

z · h ≤ p(y)− p(z) ≤ y · h

Hence there exists a jump in p so that

jump in p at z = z · jump in xi at z

So we know the payments are also piece wise constant and in particular, using our assumption

pi(0) = 0 the payments are given by the formula

pi(bi, b−i) =
l∑

j=1

zj · jump in xi(·, b−i) at zj (2)

where z1, ..., zl are the breakpoints of xi(·, b−i) in [0, bi].

Similarly we can assume x is monotone and suppose that x is differentiable. Divide both sides

of (1) by y − z and let y → z, giving us

p′i(z) = z · x′i(z) (3)

pi(bi, b−i) =

∫ bi

0
z · dxi(z, b−i)

dz
dz (4)

Now we need to show that the resulting payment structure indeed gives a DISC mechanism

(x, p). We show this in proof by picture, see Figure 1. Essentially we can compare what happens

when we truthfully bid, when we overbid, and when we underbid, comparing the product utility

we derive subtracted by the money we spend and hence the resulting utility we obtain. Truthfully

bidding clearly gives the highest reuslting utility as can be see in the figure.

Thus the allocation x along with the payments p either given formula (2) or (3), corresponding

to the piecewise constant or differentiable assumptions, respectively, give a DISC mechanism (x, p).

3



Figure 1: Allocation is in the first row, price is in the second, and resulting utility is in the third.

The first column corresponds to the player truthfully bidding, while second is overbidding, and

third is underbidding. The highest utility results from truthfully bidding.

Remark 2.2 Myserson’s Lemma regenerates the Vickrey auction as a special case. To see this,

fix i, b−i and set B = maxj ̸=i bj. Then xi(z, b−i) is 0 for 0 ≤ z < B and 1 for z ≥ B. Moreover,

pi(z, bi) = B for z ≥ B and 0 for 0 ≤ z < B.

Now we consider solving the sponsored search auction problen of Example 1.1.

1. Assume, without justification, that bidders bid truthfully. How should we assign bidders slots

so that we can maximize surplus?

2. Given our answer to 1, how should we set selling prices so that DSIC holds?

The approach is to assign the t-th highest bidder to the jth highest slot for j = 1, ..., k. Note

that this can clearly be done in polynomial time with sorting. Moreover, the allocation is monotone

since the higher you bid the better the slot you are given. So by Myerson’s Lemma we know that

there are payments that make this mechanism DSIC as long as we determine how to set the prices.

Consider b1 ≥ ... ≥ bn. Focus on the first bidder (fixing the others), and assume that the bid

ranges from 0 to bi. Thus the allocation x1(z, b−1) ranges from 0 to a1 with a jump as bj+1 of

aj − aj+1 (when bidder 1 becomes j-th highest effectively). Hence for the i-th highest bidder, we
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get the payment

pi(b) =
k∑

j=1

bj+1(aj − aj+1)

3 Knapsack Approximation

Some types of auctions fail the third desirable property of auctions. One such auction is a knapsack

auction.

Definition 3.1 Knapsack auction. A knapsack auction is defined by the following conditions:

• Each bidder i has a publicly known size wi and a private valuation vi.

• The seller has capacity W .

• Feasibility set X is all zero-one vectors (x1, x2, ..., xn) so that
∑

xiwi ≤ W .

Remark 3.2 Note that k-identical item auctions (e.g. sponsored search auctions) are a special

case of knapsack auctions if all bidders have the same size w1 = w2 = ... = wn = 1.

As before can use the payment rule from Myerson’s Lemma above to set the payments such

that DSIC holds, given an allocation of bidders. However, if we assume bidders bid truthfully, to

find the allocation of bidders that maximize surplus we would need to solve

maxx

n∑
i=1

xibi

s.t.
n∑

i=1

xiwi ≤ W

∀i xi ∈ {0, 1}

which is integer programming, an NP-complete problem. To make the problem tractable, we

would relax the problem by computing the approximate surplus instead; this is done greedily by

removing all wi > W for all i, then sorting and re-indexing bidders such that b1
w1

≥ b2
w2

≥ ... ≥ bn
wn

.

We then choose as many bidders as possible (say S) so that
∑S

i=1wi ≤ W and
∑S+1

i=1 wi > W ,

allocating to highest feasible bidder or first S bidders, whichever gives higher surplus.

Theorem 3.1 2-approximation Assuming truthful bids, the surplus of the greedy allocation rule is

at least 50% of the maximum possible surplus.

Proof: Let S be the number of agents so that

S∑
i=1

wi ≤ W and
S+1∑
i=1

wi > W
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It holds that

S+1∑
i=1

vi ≥ OPT

Hence,

max

(
S∑

i=1

vi, vS+1

)
≥ 1

2
OPT

4 Bayesian Setting

Definition 4.1 Bayesian Single Parameter Setting. Bayesian setting single parameter environment

is defined as:

• n bidders with private valuation vi

• Feasible set X, each element of which is an n-dimensional vector (x1, x2, ..., xn) in which xi
is the amount of stuff given to i.

• vi is assumed to be drawn from a distribution Fi with density fi and support [0, vmax]

Suppose we have one item with post price r and one person. The revenue would then be

r · (1− F (r)) where 1− F (r) is the probability for the person to have valuation higher than r. A

reserve price of r means that the bidder needs to bid at least r. If F is uniform in [0, 1], then the

r that maximizes revenue is

max
r∈[0,1]

r − r2 → r =
1

2
, rev =

1

4

Definition 4.2 Payments. Assume bidders are truthful, i.e. b = v. By Myerson’s lemma,

pi(vi, v−i =

∫ vi

0
z · dxi(z, v−i)

dz
dz

Since valuations are random variables in this case, we care about the expectation:

Evi∼Fi [pi(vi, v−i)] =

∫ vmax

0
pi(vi, v−i)f(vi)dv

Thus from the first equation we have

Evi∼Fi [pi(vi, v−i)] =

∫ vmax

0

∫ vi

0
z · x′i(z, v−i)dzf(vi)dv
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Reversing the integration,

Evi∼Fi [pi(vi, v−i)] =

∫ vmax

0

∫ vmax

z
f(vi)dv z · x′i(z, v−i)dz

Evi∼Fi [pi(vi, v−i)] =

∫ vmax

0
(1− Fi(z))z · x′i(z, v−i)dz

= −
∫ vmax

0
x′i(z, v−i)

(1− Fi(z)− zfi(z)

fi(z)
fi(z)dz

Let ϕi(vi) = vi − 1−Fi(vi)
fi(vi)

be called virtual valuations. We would then get

Evi∼Fi [pi(vi, v−i)] =

∫ vmax

0
x′i(z, v−i)ϕ(z)fi(z) dz

Evi∼Fi [pi(vi, v−i)] = Evi∼Fi [ϕ(vi)xi(vi, v−i)]

Revenue = Ev∼F1,...,Fn

[∑
i

pi(v)

]
= Ev∼F1,...,Fn

[∑
i

xi(v)ϕi(v)

]
As in the previous auction models, we return to our original two questions of surplus-maximizing

allocation and DSIC-compliant payment designs. In the Bayesian setting we would maximize the

virtual social welfare, namely
∑

xi(v)ϕi(v). A distribution Fi determines whether the allocation is

monotone, where a higher valuation vi gives higher xi.

Definition 4.3 Regular F. A distribution F is regular if the corresponding virtual value function

v − 1−F (v)
f(v) is strictly increasing.

Example 4.1 Uniform distribution is regular. Let F be uniform in [0, 1]. The valuation function

would be 2v − 1, which is strictly increasing. Therefore uniform distributions are regular.

Consider a single item with n bidders and regular F . We would then give the item to the

bidder with the highest positive virtual valuation; since the virtual valuation function is strictly

increasing, that same person must be the highest bidder. The winner pays ϕi(vi). Note that this

auction mimics a Vickrey auction with reserve price ϕ−1(0).
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