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Lecture 1-2: Notation, Nash Equilibrium, and Zero-sum Games
Lecturer: Ioannis Panageas Scribes: Sam Showalter and Antony Alexos

1 Introduction
In our first lecture, we were first introduced to the concept of game theory, defined below.

Definition 1. Game Theory is defined as the analysis of experiments theoretically and empirically to
help us understand rational behavior in situations of conflict.

Game theory applies to various real-world situations, including auctions, routing, resource allocation,
and voting. The components of game theory are defined as follows.

1. Conflict: Everyone’s actions affect other people

2. Rational Behavior: Every player wishes to individually maximize their benefit, or utility.

3. Prediction: We want to know what will happen and what, if any, equilibrium points will be
reached in behavior. This is typically accomplished through the use of solution concepts. Moreover,
if we can effectively discover this, we wish to develop structural mechanisms to facilitate optimal
group outcomes.

Some common examples of games we can apply this type of analysis to include rock-paper-scissors
and The Prisoner’s Dilemma. In this thought experiment, two prisoners can cooperate to receive a lower
punishment but inevitably do not due to their sole interest in maximizing their utility. More details of
these examples can be found on the lecture slides, but in general, these games give examples of Nash
Equilibrium, defined later on in these notes. Nash Equilibrium, named after the scientist John Nash,
who discovered that an equilibrium point exists for strategies in any finite game. Colloquially, we can
think of this as a strategy that each game player or agent keeps even if they know the strategies of the
other players. In other words, at a Nash Equilibrium all agents simultaneously play the best responses
to each other’s strategies.

Theorem 1. For any game with a finite number of players and action, a Nash Equilibrium exists (John
Nash, 1951) [1].

Building on the concept of Nash Equilibrium, we were also introduced to The Price of Anarchy.
This concept mathematically defines the ratio between the worst-case Nash-Equilibrium that can be
achieved in a game over the optimal outcome if each agent was completely controlled. Ideally, we want
this ratio to be as close to 1 as possible, implying that the actual equilibrium achieved will be near-
optimal. Such considerations apply to building roadways or other routing applications where individuals,
driven by their self-interest, jointly slow each other down due to their lack of coordination. The remainder
of the lecture explored a different situation that can be explored with Game Theory: Auctions, defined
below.

Definition 2. Auctions describe a situation where:

• An auctioneer has one item to sell.

• There are n bidders interested in the item.

• Each bidder i has a valuation vi for the item that they determine ahead of the auction itself
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• At the time of the auction, each bidder i places a bid bi to the auctioneer. The auctioneer collects
all of these bids {b1, ..., bn}and privately decides which bidder i should receive the item, as well as
the price p he or she should pay.

• If bidder i gets the item and pays price p, his or her utility is vi − p. All non-winning bidders have
utility zero.

What is fascinating about auctions defined in this manner is that the optimal choice for the auctioneer,
who wishes to maximize the price p paid for the item, is to give the item to the highest bidder but make
them pay the second highest bid. This is because if the auctioneer took the highest bid, the bidders
have no incentive to bid anything and bid zero in a rational world. The second-highest bid encourages
bidders to bid as high as they can.

2 Notation and Context
Before formalizing the notion of Nash Equilibrium, we need to define the games for which it applies. In
general, Nash Equilibrium is explored for what are called Normal Form Games.

Definition 3. Normal Form Games are defined by:

• A set of n players [n] = {p1, ..., pn}

• Each player pi is given a set of strategies (actions) Si = {s1, ..., smi
}. As shown, the number of

strategies mi can vary per player pi.

• Set S = {S1 × S2 × ...× Sn} represents the set of all possible strategy profiles for all players. Let
us consider S to be a sample set of chosen strategies drawn from S according to some distribution
(generally the mixed strategy profile of the game X , defined below).

• Each player also is given a utility function ui = f(S) → R which determines the payout given the
strategies of all players.

With this very general definition, there are many games and situations that we can formulate as
normal-form games. Now, at this point it is important to explain the difference between pure and
mixed strategies. In the most general case, we can consider all player strategies from the mixed strategy
perspective.

Definition 4. A mixed strategy represents a valid probability mass function (pmf) over the strategy
set Si of player pi. Mixed strategies encode the randomness of player decision-making while also offering
a clear method of defining the expected utility of the agent. Let xi ∈ Rmi represent the mixed strategy
of player pi and X = {x1, ..., xn} be the set of mixed strategies from all players. By representing the
probability of a player pi taking strategy Sij (the jth strategy of the ith player, simplified to just si to
denote the strategy taken by the ith player) as xi(si) ,we can represent expected utility as:

ui(X ) = ES∼X [ui(S)] =
∑
Sj∈S

ui(Sj)x(Sj) =
∑

(s1,...,sn)∈S

ui(s1, ..., sn)

n∏
j=1

xj(sj) (1)

NOTE: In future formulations, we refer to si as the strategy taken by player pi instead of the ith

strategy option in arbitrary strategy profile S = {s1, ..., sm}. With this information, the concept of a
pure strategy is simple: it is simply a mixed strategy in which player pi has all of its probability density
on a single strategy sj ∈ Si. That is, the player always takes the same strategy regardless of what other
players do. Better understanding the possible strategies (including mixed strategies) a player can take
is essential to grasp the proof of the existence of Nash Equilibrium in all finite games so that we will
explore that next:
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3 Strategy (action) Spaces and Simplexes
Discovering a Nash Equilibrium can be interpreted as an optimization over all the possible strategies
that all players can take. An arbitrary player pi can choose from mi pure strategies. However, this is
far smaller than their total number of possible strategies once mixed strategies are included. There is an
infinite number of mixed strategies xi player pi can take. This infinite set is represented by the following
mi-dimensional simplex ∆i:

∆i = {xi :
∑
si∈Si

xi(si) = 1 and xi ≥ 0} (2)

Visualized in fig. 1 below, we can see what a 3-D simplex would look like for rock-paper-scissors.
Each point on this simplex represents a valid mixed strategy xi for player pi. Moreover, we can extend
this line of thinking to define a simplex of good strategies for all players and, in turn, the entire game.
We represent this simplex as ∆:

∆ = {∆1 ×∆2 × ...×∆n} (3)

Figure 1: Visualization of the one-player strategy simplex set for Rock-Paper-Scissors

Another useful tool is to refer to the set of all valid mixed strategies for all players except player
pi as ∆−i. We can sample from this set to attain valid strategies for all players except pi by choosing
x−i ∈ ∆−i. Now that our notation is complete, we can formally define Nash Equilibrium and validate
its existence with John Nash’s proof.

4 Nash Equilibrium
There are multiple formulations of Nash Equilibrium, some of which offer stricter bounds than others.

Definition 5. Nash Equilibrium represents a set of strategies where no player would change their
existing strategy regardless of the actions of other players. They each are responding optimally to the
other players’ strategies. Mathematically, we can say that:

A mixed game strategy X = {x1, ..., xn} = {xi;x−i} ∈ ∆ is a Nash Equilibrium iff for all players pi
and other mixed strategies x′

i ∈ ∆i:

ui(xi;x−i) ≥ ui(x
′
i;x−i) (4)

we can extend upon this formulation slightly to also define a looser ϵ-approximate Nash Equilib-
rium as:

ui(xi;x−i) ≥ ui(x
′
i;x−i)− ϵ (5)

Before starting the proof of Nash Equilibrium, we need to understand Brouwer’s Fixed Point
Theorem, a concept from topology that states:
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Theorem 2. Let D be a convex, compact subset of RD and f : D → D a continuous function. There
always exists x ∈ D such that

f(x) = x

Visualized in fig. 2 below, this theorem states that for any function operating on a compact, convex
space, there exists a point x that is invariant to the function f and therefore will remain unchanged.
This theorem will prove helpful in conducting the proof of the existence of Nash Equilibrium.

Figure 2: Visualization of Brouwer’s fixed point theorem, where there always exists a point x ∈ D where
x = f(x)

Proof:

Claim: Any game with a finite number of players and actions possesses a Nash Equilibrium.
⋄

Consider a finite game with strategy space ∆. Define a function f : ∆ → ∆ that defines an operation
on each player pi and their strategy choice si as:

fisi(X ) = fisi(xi;x−i) =
xi (si) + max {ui (si;x−i)− ui(X ), 0}

1 +
∑

s′∈Si
max {ui (s′;x−i)− ui(X ), 0}

(6)

Intuitively, the numerator is the sum of the probability of player pi choosing pure strategy si and the
maximum between 0 and the difference in utility between taking pure strategy si (with all other players
taking a combined mixed strategy of x−i) and taking the mixed strategy X = {xi;x−i}. Regarding
the last term, we can interpret this maximum as how much better off a player would be taking pure
strategy si instead of mixed strategy xi. The denominator normalizes this value by summing the possible
probability density of 1 with the total potential utility gain of considering all pure strategies s′ ∈ Si

relative to mixed strategy xi.

Remark 1. There are three observations we can make by considering the following game formulation
with included function f .

• ∆ is both a convex and compact space

• Based on our definition, f is a continuous mapping from ∆ → ∆

• Since all of these terms are normalized by the same term,
∑

s′∈Si
fis′(X ) = 1
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Therefore, we can conclude that a fixed point always exists for some X passed through f . We can
now complete the proof by considering this fact in greater detail.

Claim: If X ∗ is a fixed point of f , then X ∗ is a Nash Equilibrium. ⋄

Let X ∗ represent the fixed point of f . This implies that:

f(X ∗) = X ∗ (7)

Moreover, this implies that fisi(X ∗) = xi(s) ∀s ∈ Si for each player pi. Further decomposing
this equivalence based on the definition of f , we see this implies:

x∗
i (s)

∑
s′∈Si

max
{
ui

(
s′;x∗

−i

)
− ui (x

∗) , 0
}
= max

{
ui

(
s;x∗

−i

)
− ui (x

∗) , 0
}

(8)

To satisfy this equation, we must consider two cases which would make it true:

• ∀s ∈ Si, xi(s) = 0 → ui(s;x
∗
−i) ≤ ui(X ∗)

• ∀s ∈ Si, xi(s) > 0 → ui(s;x
∗
−i) ≥ ui(X ∗) → ui(s;x

∗
−i) = ui(X ∗)

The first bullet states that whenever we place zero probability on a strategy s, this implies the utility
from taking action must be at most the expectation of utility ui(X ∗). If the utility was better, we would
have a non-zero probability of taking that strategy.

The implication of the second bullet is slightly more subtle. Since the expected utility is ui(X ∗)
simply the weighted sum of individual pure strategies and their probabilities of occurring, having a
positive probability xi(s) > 0 for all actions s implies that the utility of that strategy must be equal
to the overall expectation. If not, then we reach a contradiction where the expectation of the utility
ui(X ∗) =

∑
s′∈Si

ui(s
′;x−i)xi(s

′) is actually lower than each of its component utilities ui(s;x
∗
−i) ∀s ∈

Si.
Recapping for this proof, we have shown that if we play something with probability 0, the expectation

that we get is less than the expected utility. If we play something with positive probability, then we get
our own expected utility. Both of these hold for all players i without needing to make any assumptions.
Continuing our proof, we claim that these two cases are sufficient to prove Nash Equilibrium. To show
that something is a Nash Equilibrium, we arbitrarily choose a player and assume that this player deviates
from his strategy. We need to show that the utility of this player before the deviation is at least his utility
after the deviation. In that way, he does not have an incentive to deviate. By showing that for every
player, we have a Nash Equilibrium. Defining that formally, for any x̃i we have ui

(
x∗
i ;x

∗
−i

)
≥ ui

(
x̃i;x

∗
−i

)
.

We also note that all players keep the same strategy apart from player i who deviates from his strategy
and gains nothing from deviating.

We multiply the first case with x̃i and we have x̃i(s)ui

(
s, x∗

−i

)
≤ x̃i(s)ui (x

∗). By taking the sum-
mation of that we finally have:

ui

(
x̃i, x

∗
−i

)
=

∑
s′

x̃i (s
′)ui

(
s′;x∗

−i

)
≤

∑
s′

x̃i (s
′)ui (x

∗) = ui (x
∗) (9)

We observe that the expected utility is at least as much as the left-hand side of eq. (9), and because
this is true in general, as we see from above, we sum over all possible s strategies. So basically, the
utility of player i from the law of total probability is the utility of s′ given x∗ while the rest is fixed,
times the probability of playing x̃ (s′). This is at most the right-hand side of eq. (9) since it is true for
every s′. Here ui (x

∗) does not depend on s′ so we can put it outside of the sum and because x̃ (s′) are
probabilities they sum to 1.

We have shown that the utility either increases or stays the same if we deviate, but it does not
increase. We have shown that x∗, the fixed point of this function that we have defined in eq. (6), is
a Nash Equilibrium. So finding Nash Equilibrium is easy cause we compute eq. (6) and find a fixed
point for this function. Nevertheless, this is a computationally hard problem, so finding fixed points
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of functions is very hard, and finding Nash Equilibrium is of the same difficulty. Although it might be
computationally hard in general, finding Nash Equilibrium is tractable in some classes of games, like
Zero-Sum Games.

□

5 Zero-Sum Games
For Zero-Sum Classes of Games we do not have to solve a fixed point problem, and we can reduce to
find Nash Equilibrium to something that is computationally easy. Zero-Sum Games are defined below:

Definition 6. Zero-Sum Games describe a situation where:

• Zero-sum games are a specific example of constant sum games where the sum of each outcome is
always zero.

• They are tractable classes of games.

• They consist of 2 players, the Row player and the Column player.

• They have a payoff matrix R size of nxm.

• They have n and m strategies available.

We can see a toy example of Zero-Sum Games in fig. 3. This matrix shows the money that the
column player pays for playing j when the row player plays i. It also shows the money that the row
player gets for playing i when the column player plays j.

Figure 3: Visualization of a toy Payoff Matrix G, with the money that the Row and Column players pay
and get in every action.

Let us investigate another Zero-Sum Games example with a Payoff Matrix. Hypothetically the row
player chooses x ∈ ∆n and the column player choose y ∈ ∆m. Every cell of the Payoff matrix is denoted
as Ri,j . Row player gets x⊤Ry and the column player pays x⊤Ry.

Tax-Cuts Society
Economy 3,-3 -1,1
Education -2,2 1,-1

Another example of a Zero-Sum Game is the following in which we have two candidates aiming for the
presidency, which is depicted in section 5. Each candidate focuses on two strategies. The first one focuses
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on Economy and Education, and the second one focuses on Tax-Cuts and Society. All the combinations
are shown in section 5, and both candidates want to win the election, so they need to maximize their
utility. Let’s assume that the row player plays (x11, x12). The column player has two choices, to play
either Tax-Cuts or Society. In the first scenario the expectation is u2 (x1,

′ Tax−cuts′) = −3x11 + 2x12,
and in the second scenario the expectation is u2 (x1,

′ Society ′) = x11 − x12. The best option for the
column player is to play the maximum of the two options, which formally is max{3x11−2x12, x11−x12}.
The column player needs to put all probability to the one that gives the highest utility to maximize the
gain. Since the column player will play the best option, the row paper should play the best option to
minimize the gain of the column player. More formally this can be written as min{−3x11 +2x12, 1x11 +
x12}. So if the row player wants to maximize her utility, she needs to play:

(x∗
11, x

∗
12) = arg max

x11,x12

min {3x11 − 2x12,−x11 + x12} (10)

Now let’s assume that each of the two numbers in eq. (10) will be at least z. So we can write a linear
program for this maxmin problem:

max z

s.t 3x11 − 2x12 ≥ z

−x11 + x12 ≥ z

x11 + x12 = 1

x11, x12 ≥ 0

(11)

If we solve this problem we get the solution x1 =
(
3
7 ,

4
7

)
, z = 1

7 , so z = 1
7 . Which means that no

matter what the column player does, the row player will get at least 1
7 .

This is the scenario in which the row player plays first. Now let’s do see the same problem when the
column player plays first. Row’s player best response is max {3x21 − x22,−2x21 + x22} so the column
player gets min {−3x21 + x22, 2x21 − x22}. The column player maximizes her utility by solving the
following maxmin problem: (x∗

21, x
∗
22) = argmaxx21,x22 min {−3x21 + x22, 2x21 − x22}. Then we can

write the following linear program:

maxw

s.t − 3x11 + 2x12 ≥ z

x11 − x12 ≥ z

x11 + x12 = 1

x11, x12 ≥ 0

(12)

If we solve this problem we get the solution x1 =
(
2
7 ,

5
7

)
, w = −1

7 , so w = 1
7 . Which means that no

matter what the row player does, the column player will get at least −1
7 .

Since the problem of the two solutions
(
3
7 ,

4
7

)
,
(
2
7 ,

5
7

)
is a zero sum game, it must also be a Nash

Equilibrium.
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