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Lecture 11. Introduction to Mechanism Design.

1 Approaches to Solving the Single Allocation Problem

We start by considering a simple setting given by the single allocation problem.

1.1 Problem Setting

Definition 1.1 The single item allocation problem is given by:

1. A single indivisible item

2. n agents competing for the item

3. An associated value/valuation vi for the item for each agent i

The goal is to maximize the social surplus, which, in this case, is the value of the agent who receives

the item or to allocate the item to the user with highest valuation.

1.2 Naive Approach

Given the single allocation problem, one might intuitively come up with the following approach:

1. Ask each agents/bidders to report (bid) their values bi

2. Select agent i∗ with the highest bid, i∗ = argmaxi bi

3. Allocate item to i∗

This approach is problematic. Since agents do not need to pay the amount they bid even if they get

the item, they are incentivized to report an arbitrarily high bid to ensure that they get it. Thus,

the outcome of this mechanism is unpredictable, which makes it hard to reason about performance.

We will look at more reasonable approaches in the following subsections.

1.3 Lotteries

Definition 1.2 (Lottery) In the lottery mechanism, we

1. Select a uniformly random agent

2. Allocate the item to that agent
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This mechanism is predictable and thus easy to reason about. The following theorem gives us a

bound on the expected surplus of the lottery mechanism.

Theorem 1.1 The lottery mechanism has n-approximation ratio (i.e. OPT
alg ≤ n).

Proof: Assume v1 = 1 and vi = ϵ for i ≥ 2. Then, the expected surplus is

1 · 1
n
+ ϵ · n− 1

n
=

1 + ϵ(n− 1)

n

Since the optimal surplus is 1 (agent 1 gets the item), the approximation ratio is n
1+ϵ(n−1) . This

converges to n as ϵ → 0.

This approximation ratio is quite bad. One way to design better mechanisms is to introduce

payments. We will discuss such mechanisms next.

1.4 First-Price Auctions

Definition 1.3 (First-Price Auction) In a first-price auction,

1. Each agent report their bids bi

2. Select agent i∗ = argmaxi bi

3. Agent i∗ gets the item and pays bi∗

The problem with first-price auctions is that they are hard to reason about. Thus, it is hard

for participants to figure out how to bid and hard for designers to predict what will happen.

1.5 Second-Price Auctions (Vickrey Auctions)

Definition 1.4 (Second-Price Auction) In a second-price auction,

1. Each agent report their bids bi

2. Let agent i∗ = argmaxi bi and j∗ the agent with the second highest bid

3. Agent i∗ gets the item and pays bj∗

Second-price auctions are predictable and easier to reason about. The following theorem is a

result about the dominant strategy for participants in a second-price auction.

Definition 1.5 (Dominant strategy) A strategy is said to be dominant if the utility for playing

this strategy is no less than that for playing any other strategy, regardless of what strategies other

players play.

In the case here, for agent i, the utility is ui = vi − bj∗ if i gets the item and ui = 0 otherwise.

Theorem 1.2 (Vickrey is truthful) In second price auctions, every bidder i has a dominant

strategy, which is to bid truthfully; i.e. set bi = vi.
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Proof: Fix an agent i and set B = maxj ̸=i bj Consider the cases:

1. if bi < B then i gets utility 0 as the agent doesn’t get the item

2. if bi ≥ B then i wins the item and ui = vi −B

Now consider the cases

(a) vi < B

i. If the bid is truthful, ui = 0 as bi = vi < B

ii. If bid is less than valuation, we have ui = 0 as bi < vi < B

iii. If bid is greater than valuation, we have ui = 0 when B > bi > vi and ui < 0 when

bi ≥ B > vi

(b) vi ≥ B

i. If the bid is truthful, ui = vi −B ≥ 0 as bi = vi ≥ B and the agent wins the item.

ii. If bid is less than valuation, we have ui = vi −B ≥ 0 when vi > bi ≥ B and ui = 0

when vi ≥ B > bi as the agent looses the item.

iii. If bid is greater than valuation, we have ui = vi − B > 0 as bi > vi ≥ B and the

agent wins the item.

From above, we can see that for scenarios If the bid is truthful, If bid is less than

valuation, and If bid is greater than valuation, no matter the different cases of bi ⪋ B and

vi ⪋ B, if the bid is truthful the agent get the maximum utility. So truth telling is the Dominant

Strategy in Vickrey Auction.

Corollary 1.3 Every agent with dominant strategy in Vickrey Auction has non-zero utility.

2 A General Approach to Auctions

In this section, we will look at more general forms of auction mechanisms.

2.1 Desirable Properties of Auctions

Auctions should satisfy the following properties:

1. Dominant strategy incentive compatible (DSIC); i.e. reporting bids truthfully is a dominant

strategy.

2. If bidders are truthful, then the auction achieves maximum surplus
∑n

i=1 vixi, where xi = 1

if bidder i wins, and xi = 0 otherwise.

3. The auction can be implemented in polynomial time.
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2.2 An Example

Let us now look at a more complex case.

Example 2.1 Suppose there is a society with n citizens and a public good G, where

• each citizen i has a private valuation vi for G (here we assume vi ≥ 0 for simplicity)

• the cost of building G is C and is publicly known.

• G should be built if
∑n

i=1 vi ≥ C

Our goal is to design a mechanism that charges citizens such that G is built only if
∑n

i=1 vi ≥ C.

A naive approach to this example would be to allocate the cost C equally to all citizens. With

this payment rule, each citizen would have to pay C/n. Then, if for citizen i, vi > C/n, he/she has

incentive for G to be built. Hence, citizen i can just report valuation C+ ϵ, such that
∑n

i=1 vi > C,

for G to be built. Hence, this mechanism is not DSIC.

Instead, we should charge citizen i the amount pi = max(0, C−
∑

j ̸=i vj) if G is built and pi = 0

otherwise. This is DSIC as we will see later.

2.3 VCG Mechanisms

Definition 2.1 (Quasi-Linear environment) A quasi-linear environment, or Vickrey-Groves-

Clark (VCG) environment, is defined as

• A set of n agents

• A set of finite outcomes X

• Valuation functions vi : X → R+ for each agent i

• Utilities ui = vi − pi, where pi is the received payment of agent i (which can be positive or

negative)

Definition 2.2 (VCG Mechanism) The family of mechanisms is defined as follows:

• Agents have private valuations vi and report their bids bi

• Set x∗ = argmaxx∈X
∑n

i=1 bi(x)

• Each agent pays pi = hi(b−i)−
∑

j ̸=i bj(x
∗)

• Each agent has utility ui = vi(x
∗)− pi(x

∗)

It is important to note that there is a bid bi(x) for each possible outcome x ∈ X .

Theorem 2.2 (VCG is DSIC) Every VCG mechanism is DSIC.
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Proof: Fix agent i, and let x∗ = argmaxx∈X
∑n

i=1 bi(x) where i reports bi = vi (i.e. truthfully).

Similarly, let x′ be the argmax if i reports bi ̸= vi (i.e. not truthfully) and all other agents report

truthfully bj = vj∀j ̸= i. Then by the definition of utility,

ui = vi(x
∗) +

∑
j ̸=i

bj(x
∗)− hi(v−i)

= vi(x
∗) +

∑
j ̸=i

vj(x
∗)− hi(v−i), by the definition of x∗

=
∑
j

vj(x
∗)− hi(v−i)

Similarly,

u′i = vi(x
′) +

∑
j ̸=i

bj(x
′)− hi(v−i)

= vi(x
′) +

∑
j ̸=i

vj(x
′)− hi(v−i), by the definition of x′

=
∑
j

vj(x
′)− hi(v−i)

Here, ui is i’s utility if he/she reports truthfully and u′i is i’s utility if not. Since x∗ is the argmax

of
∑n

j=1 vj(x), it follows that

n∑
j=1

vj(x
∗) ≥

n∑
j=1

vj(x) ∀x ∈ X

It follows trivially that ui ≥ u′i, which proves the theorem.

2.4 Clark Pivots

In the definition of VCG mechanisms, the function hi is not specified. Hence, a question that arises

naturally is how we should choose hi. A requirement would be to choose hi such that utility is

non-negative (if vi ≥ 0 for all i), so that agents have incentive to participate in the mechanism. A

Clark pivot is one such choice for hi.

Definition 2.3 (Clark Pivot) A Clark pivot is a choice for hi such that

hi = max
x∈X

∑
j ̸=i

bj(x)

Lemma 2.3 VCG with Clark pivots has non-negative utilities if each agent’s valuation vi is non-

negative.
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Proof: Assume vj ≥ 0 for all j. An agent i participating in a VCG mechanism has utility

ui = vi(x
∗) +

∑
j ̸=i

bj(x
∗)−max

x∈X

∑
j ̸=i

bj(x)

= bi(x
∗) +

∑
j ̸=i

bj(x
∗)−max

x∈X

∑
j ̸=i

bj(x),VCG is DSIC

= max
x∈X

∑
j

bj(x)−max
x∈X

∑
j ̸=i

bj(x) ≥ 0,by definition of x∗

Corollary 2.4 For single item allocation, a VCG mechanism with Clark pivots give us the second-

price auction.

Proof: Let vi denote the true valuation of agent i for the item. Since this is a single item allocation,

only one person receives the item and all others receive no item. If x ∈ X is the outcome where

agent i receives the item, then bi(x) is agent i’s bid for the item while bj(x) = 0 for all j ̸= i.

By the definition of VCG we pick the outcome x∗ where

x∗ = argmax
x∈X

n∑
i=1

bi(x)

But since only one agent gets the item, say agent a, we have that

x∗ = argmax
x∈X

[ba(x) + 0 + 0...]

= argmax
x∈X

ba(x)

Thus, x∗ is the outcome where the bidder with the highest bid is picked. Let ba = A.

By the Clark pivot in the VCG mechanism, the price paid by a is

pa = max
x∈X

∑
j ̸=a

bj(x)−
∑
j ̸=a

bj(x
∗)

= max
x∈X

∑
j ̸=a

bj(x)

since bj(x
∗) = 0 for all j ̸= a.

Note that x′ = argmaxx∈X
∑

j ̸=a bj(x) is the outcome of the allocation if a were removed from

it. Thus x′ is the outcome where the bidder, say b, with the second highest bid is picked. Let

bb = B. Then,

pa = max
x∈X

∑
j ̸=a

bj(x) = B
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For all other agents i ̸= a we have

pi = max
x∈X

∑
j ̸=i

bj(x)−
∑
j ̸=i

bj(x
∗)

= max
x∈X

[A+ 0 + 0...]− [A+ 0 + 0...] = 0

Thus VCG with Clark pivots applied to the single item allocation problem gives us the second-price

auction.

Remark 2.4 VCG might not be computationally efficient due to the computation of argmax. Ex-

ample: Combinatorial auctions.

Corollary 2.5 The mechanism described in Example 2.1 is DSIC.

Proof: Assume the mechanism described in the example is VCG (except for the payment rule).

We derive a payment rule as specified by the VCG definition and show that it indeed corresponds

to the payment rule given in Example 2.1. In the case where x∗ is the outcome where G is not

built, it is trivially the case that pi = 0. Let x∗ be the outcome where the good G is built. By

definition,

pi = hi(b−i)−
∑
j ̸=i

bj(x
∗)

= hi(v−i)−
∑
j ̸=i

vj(x
∗) VCG is DSIC

Since vj(x
∗) = vj is constant and h is arbitrary, we let h be some constant function, giving us

pi = K −
∑
j ̸=i

vj

As we are considering the case where G is built, it follows that the payments sum to C:

n∑
i=1

pi = C = nK − (n− 1)
n∑

j=1

vj

By the problem specification, G should be built if
∑n

j=1 vj ≥ C. Hence,

(n− 1)

n∑
j=1

vj ≥ (n− 1)C =⇒ nK − (n− 1)

n∑
j=1

vj ≤ nK − (n− 1)C

=⇒ C ≤ nK − (n− 1)C

=⇒ K ≤ C

SinceK is arbitrary with the constraint given above, we setK = C, which gives us pi = C−
∑

j ̸=i vj .

Since payments should be non-negative, we take the maximum, setting pi = max(0, C −
∑

j ̸=i vj).

This can be done as we can set h accordingly to achieve this result. So, the mechanism with the

payment rule specified in Example 2.1 is VCG and thus DSIC.
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