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Markov Games
Markov games or stochastic games are established as a framework for multi-agent 
reinforcement learning [Littman,  1994].
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Markov Games
Markov games or stochastic games are established as a framework for multi-agent 
reinforcement learning [Littman,  1994].

𝒏 number of players
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𝑠’ ~ P(s,𝑎1,…,𝑎𝑛)
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If H is ∞, then we introduce a discount 𝜸

e.g., V1 s0 ≔ σ𝑡=0
∞ 𝛾𝑡𝑟1(𝑠𝑡, 𝑎1

𝑡 , … , 𝑎𝑛
𝑡 )
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Markov games or stochastic games are established as a framework for multi-
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Definitions

Remarks
• The max operator is over all (possibly non-stationary and randomized) policies.
• It suffices to focus on deterministic.
• 𝑉 is not concave in 𝜋.



Example

Remark
• What is 𝑉?
• What is γ in the example?
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Bellman operator
|𝒙 − 𝒚| ∞ ≥ | |𝒙| ∞– |𝒚| ∞|
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Bellman operator

Remarks
• Bellman operator is contracting for infinity norm.
• Applying the operator does not give a polynomial time algorithm. Why?
•  Linear programming can give optimal policies in polynomial time.

|𝑨𝒙| ∞ ≤ |𝑨| ∞ |𝒙| ∞
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of the optimal Bellman operator so that given 𝑉𝑘 at iteration 𝑘 we compute



Value Iteration

Optimization for Machine Learning

Idea: We build a sequence of value functions. Let 𝑉0 be any vector, then iterate the application
of the optimal Bellman operator so that given 𝑉𝑘 at iteration 𝑘 we compute

The policy will be given at every iteration as



Policy Iteration

Optimization for Machine Learning

Idea: We build a sequence of policies. Let 𝜋0 be any stationary policy. At each iteration k 
we perform the two following steps:
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4.  Non-Markovian and non-stationary.
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Solution Concept: Nash equilibrium

• Every agent 𝑘 picks a policy 𝜋𝑘.
• The goal of each agent is to maximize their own value.

Remarks
• Agents do not share randomness.
• Fixing all agents but 𝑖, induces a classic MDP. Every agent aims at  

(approximate) best response.
• Generalizes notion of Nash Equilibrium.  
• Nash policies always exist (Fink 64).



The bad news
• Markov games generalize normal form games.

  Inherit computational intractability



The bad news
• Markov games generalize normal form games.

  Inherit computational intractability

[Daskalakis, Goldberg, Papadimitriou 06]
[Chen, Deng 06] 
[Rubinstein 15] PPAD-hard



The bad news
• Markov games generalize normal form games.

  Inherit computational intractability

[Daskalakis, Goldberg, Papadimitriou 06]
[Chen, Deng 06] 
[Rubinstein 15] PPAD-hard

Specific classes of games? 



• Two-player zero sum 
Markov games
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2-player zero-sum Markov games

Remark
• The game has a unique value 𝑉∗ (recall Von Neumann for normal 

form two player zero-sum games).
• The theorem implies it does not matter who plays first.
• The function is not convex-concave! 
• The proof of Shapley uses a contraction argument.
• The complexity of finding a Nash equilibrium is unknown.
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2-player zero-sum Markov games

Fact: 𝒗𝒂𝒍 𝑨 – 𝒗𝒂𝒍 𝑩 ≤ 𝒎𝒂𝒙𝒊,𝒋|𝑨𝒊𝒋 − 𝑩𝒊𝒋|
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2-player zero-sum Markov games

Remarks
• Bellman operator is contracting for infinity norm.
• Applying the operator does not give a polynomial time algorithm. Why?
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Policy Gradient Iteration



Some facts about Policy Gradient

Remarks
• No guarantees for more than two players (only very specific settings).
• Can we find other classes of Markov games that PGA converges?
• In general, approximating even stationary CCE is PPAD-complete [Daskalakis et al 2022].
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