L15 Introduction to Markets

CS 280 Algorithmic Game Theory
Ioannis Panageas

Food Markets

Stock Markets

Matching Markets

Driven by a rule: Supply meets demand!

Food Markets

Stock Markets

Matching Markets

Definitions

Definition (Market). A market consists of:

- A set \mathcal{B} of n buyers/traders.
- A set \mathcal{G} of m goods.
- Each buyer i has e_{i} amount of \$. W.l.o.g assume $e_{i}=1$.
- b_{j} denotes the amount of each good. W.l.o.g $b_{j}=1$.
- $u_{i j}$ denotes the utility derived by i on obtaining a unit amount of good of j.
- Each good j is associated with a price p_{j}.

Definitions

Definition (Market). A market consists of:

- A set \mathcal{B} of n buyers/traders.
- A set \mathcal{G} of m goods.
- Each buyer i has e_{i} amount of \$. W.l.o.g assume $e_{i}=1$.
- b_{j} denotes the amount of each good. W.l.o.g $b_{j}=1$.
- $u_{i j}$ denotes the utility derived by i on obtaining a unit amount of good of j.
- Each good j is associated with a price p_{j}.

Definition (Fisher Market). A market so that the utilities are linear:
Let $x_{i j}$ be the amount of units buyer i gets of good j then

$$
u_{i}=\sum_{j \in \mathcal{G}} x_{i j} u_{i j} .
$$

Definitions

Definition (Market clearance). A vector of price $\left(x^{*}, p^{*}\right)$ is called market equilibrium if for given prices p^{*}, each buyer is assigned an optimal basket of goods relative the prices and buyer's budget and there is no surplus or deficiency of any of the goods

Goal: Compute allocations and prices in polynomial time!

Definitions

Definition (Market clearance). A vector of price $\left(x^{*}, p^{*}\right)$ is called market equilibrium if for given prices p^{*}, each buyer is assigned an optimal basket of goods relative the prices and buyer's budget and there is no surplus or deficiency of any of the goods

Goal: Compute allocations and prices in polynomial time!

Given an arbitrary vector of prices $p \geq 0$, from each buyer's i perspective:

$$
\max \sum_{j=1}^{m} x_{i j} u_{i j}
$$

Definitions

Definition (Market clearance). A vector of price $\left(x^{*}, p^{*}\right)$ is called market equilibrium if for given prices p^{*}, each buyer is assigned an optimal basket of goods relative the prices and buyer's budget and there is no surplus or deficiency of any of the goods

Goal: Compute allocations and prices in polynomial time!

Given an arbitrary vector of prices $p \geq 0$, from each buyer's i perspective:

Eisenberg-Gale Convex Program

Given an arbitrary vector of prices $p \geq 0$, from each buyer's i perspective:

$$
\begin{array}{c|l}
\max \sum_{j=1}^{m} x_{i j} u_{i j} & \text { Budget constraint. } \\
\text { s.t } \sum_{j=1}^{m} p_{j} x_{i j} \leq 1 &
\end{array}
$$

From the perspective of good j :
Demand for good j.

Eisenberg-Gale Convex Program

Given an arbitrary vector of prices $p \geq 0$, from each buyer's i perspective:

$$
\begin{array}{c|l}
\max \sum_{j=1}^{m} x_{i j} u_{i j} & \text { Budget constraint. } \\
\text { s.t } \sum_{j=1}^{m} p_{j} x_{i j} \leq 1 & \longrightarrow \\
x_{i} \geq 0 &
\end{array}
$$

Demand for good j.
From the perspective of good j :

$$
\begin{array}{c|l}
\sum_{i=1}^{n} x_{i j} \leq 1 \longrightarrow \text { Supply for good } j . ~ \\
p_{j} \geq 0
\end{array}
$$

Can we find $(\boldsymbol{x}, \boldsymbol{p})$ s.t all are satisfied simultaneously?

Eisenberg-Gale Convex Program

Consider the following convex program:

$$
\begin{aligned}
& \max \sum_{j=1}^{n} \ln u_{i} \\
& \text { s.t } u_{i}=\sum_{j=1}^{m} u_{i j} x_{i j} \text { for all buyers } i \in \mathcal{B}, \\
& \quad \sum_{i=1}^{n} x_{i j} \leq 1 \text { for all goods } j \in \mathcal{G}, \\
& \quad x_{i j} \geq 0 \text { for all } i \in \mathcal{B}, j \in \mathcal{G} . \\
& \hline
\end{aligned}
$$

Eisenberg-Gale Convex Program

Consider the following convex program:

$$
\begin{aligned}
& \max \sum_{j=1}^{n} \ln u_{i} \\
& \text { s.t } u_{i}=\sum_{j=1}^{m} u_{i j} x_{i j} \text { for all buyers } i \in \mathcal{B}, \\
& \quad \sum_{i=1}^{n} x_{i j} \leq 1 \text { for all goods } j \in \mathcal{G}, \\
& x_{i j} \geq 0 \text { for all } i \in \mathcal{B}, j \in \mathcal{G} . \\
& \hline
\end{aligned}
$$

Remark:

- The domain above is compact hence there is an optimal solution x^{*}.

Eisenberg-Gale Convex Program

Consider the following convex program:

$$
\begin{aligned}
& \max \sum_{j=1}^{n} \ln u_{i} \\
& \text { s.t } u_{i}=\sum_{j=1}^{m} u_{i j} x_{i j} \text { for all buyers } i \in \mathcal{B}, \\
& \quad \sum_{i=1}^{n} x_{i j} \leq 1 \text { for all goods } j \in \mathcal{G}, \\
& \quad x_{i j} \geq 0 \text { for all } i \in \mathcal{B}, j \in \mathcal{G} . \\
& \hline
\end{aligned}
$$

Remark:

- The domain above is compact hence there is an optimal solution x^{*}.
- Note that there are no budget constraints!

Eisenberg-Gale Convex Program

Consider the following convex program:

$$
\begin{aligned}
& \max \sum_{j=1}^{n} \ln u_{i} \\
& \text { s.t } u_{i}=\sum_{j=1}^{m} u_{i j} x_{i j} \text { for all buyers } i \in \mathcal{B}, \\
& \quad \sum_{i=1}^{n} x_{i j} \leq 1 \text { for all goods } j \in \mathcal{G}, \\
& x_{i j} \geq 0 \text { for all } i \in \mathcal{B}, j \in \mathcal{G} .
\end{aligned}
$$

Remark:

- The domain above is compact hence there is an optimal solution x^{*}.
- Note that there are no budget constraints!
- Maximizing a concave function is a convex program and can be solved in poly-time for affine constraints!

Eisenberg-Gale Convex Program

Consider the following convex program:

$$
\begin{aligned}
& \max \sum_{j=1}^{n} \ln u_{i} \\
& \text { s.t } u_{i}=\sum_{j=1}^{m} u_{i j} x_{i j} \text { for all buyers } i \in \mathcal{B}, \\
& \quad \sum_{i=1}^{n} x_{i j} \leq 1 \text { for all goods } j \in \mathcal{G}, \\
& \quad x_{i j} \geq 0 \text { for all } i \in \mathcal{B}, j \in \mathcal{G} . \\
& \hline
\end{aligned}
$$

Remark:

- The domain above is compact hence there is an optimal solution x^{*}.
- Note that there are no budget constraints!
- Maximizing a concave function is a convex program and can be solved in poly-time for affine constraints!

Eisenberg-Gale Convex Program

x^{*} satisfies the KKT conditions.

```
KKT are first-order conditions for constrained Optimization
```


Eisenberg-Gale Convex Program

 x^{*} satisfies the KKT conditions.
KKT are first-order conditions for constrained Optimization

$$
L(x, p)=\underbrace{\sum_{j=1}^{n} \ln u_{i}}_{\text {objective }}-\sum_{j=1}^{m} \underbrace{p_{j}\left(\sum_{i=1}^{n} x_{i j}-1\right)}_{\text {constraint for good } j}
$$

Remark: Langrangian involves objective and constraints!

Eisenberg-Gale Convex Program

x^{*} satisfies the KKT conditions.

KKT are first-order conditions for constrained Optimization

$$
L(x, p)=\underbrace{\sum_{j=1}^{n} \ln u_{i}}_{\text {objective }}-\sum_{j=1}^{m} \underbrace{p_{j}\left(\sum_{i=1}^{n} x_{i j}-1\right)}_{\text {constraint for good } j}
$$

Remark: Langrangian involves objective and constraints!
KKT conditions: x are primal variables, p are dual variables.

Primal feasibility:
$x_{i j} \geq 0$ for all $i \in \mathcal{B}, j \in \mathcal{G}$.

Dual feasibility:

$$
p_{j} \geq 0 \text { for all } j \in \mathcal{G}
$$

Eisenberg-Gale Convex Program

x^{*} satisfies the KKT conditions.

$$
L(x, p)=\underbrace{\sum_{j=1}^{n} \ln u_{i}}_{\text {objective }}-\sum_{j=1}^{m} \underbrace{p_{j}\left(\sum_{i=1}^{n} x_{i j}-1\right)}_{\text {constraint for good } j}
$$

Remark: Langrangian involves objective and constraints!
KKT conditions: x are primal variables, p are dual variables.
Primal feasibility:
Dual feasibility:

$$
x_{i j} \geq 0 \text { for all } i \in \mathcal{B}, j \in \mathcal{G} . \quad p_{j} \geq 0 \text { for all } j \in \mathcal{G}
$$

$$
\begin{aligned}
& \frac{\partial L(x, p)}{\partial x_{i j}}=\frac{u_{i j}}{u_{i}}-p_{j}=0 \text { if } x_{i j}>0 . \\
& \frac{\partial L(x, p)}{\partial x_{i j}}=\frac{u_{i j}}{u_{i}}-p_{j} \leq 0 \text { if } x_{i j}=0 . \\
& \frac{\partial L(x, p)}{\partial p_{j}}=1-\sum_{i=1}^{n} x_{i j}=0 \text { if } p_{j}>0 . \\
& \frac{\partial L(x, p)}{\partial p_{j}}=1-\sum_{i=1}^{n} x_{i j} \geq 0 \text { if } p_{j}=0 .
\end{aligned}
$$

Complementary Slackness

Eisenberg-Gale Convex Program

Let $\left(x^{*}, p^{*}\right)$ satisfy the KKT conditions. Then $\left(x^{*}, p^{*}\right)$ solves
$\min _{p \geq 0} \max _{x \geq 0} L(x, p)=\max _{x \geq 0} \min _{p \geq 0} L(x, p)$ since it is conve - concave,
where $L(x, p)=\sum_{j=1}^{n} \ln u_{i}-\sum_{j=1}^{m} p_{j}\left(\sum_{i=1}^{n} x_{i j}-1\right)$.

Eisenberg-Gale Convex Program

Let $\left(x^{*}, p^{*}\right)$ satisfy the KKT conditions. Then $\left(x^{*}, p^{*}\right)$ solves $\min _{p \geq 0} \max _{x \geq 0} L(x, p)=\max _{x \geq 0} \min _{p \geq 0} L(x, p)$ since it is convex - concave, where $L(x, p)=\sum_{j=1}^{n} \ln u_{i}-\sum_{j=1}^{m} p_{j}\left(\sum_{i=1}^{n} x_{i j}-1\right)$.

Remark: Observe that dual variables p penalize if a constraint is violated.

Eisenberg-Gale Convex Program

Let $\left(x^{*}, p^{*}\right)$ satisfy the KKT conditions. Then $\left(x^{*}, p^{*}\right)$ solves

$$
\min _{p \geq 0} \max _{x \geq 0} L(x, p)=\max _{x \geq 0} \min _{p \geq 0} L(x, p) \text { since it is convex - concave, }
$$

where $L(x, p)=\sum_{j=1}^{n} \ln u_{i}-\sum_{j=1}^{m} p_{j}\left(\sum_{i=1}^{n} x_{i j}-1\right)$.
Remark: Observe that dual variables p penalize if a constraint is violated.
Theorem (Fisher Market). For the linear case of Fisher Market and assuming that for each good j, there exists a buyer i with $u_{i j}>0$ then:

- The set of equilibrium allocations is convex.
- Equilibrium utilities and prices are unique.
- If all $u_{i j}$'s are rational then allocations and prices are rational.

Eisenberg-Gale Convex Program

Theorem (Fisher Market). For the linear case of Fisher Market and assuming that for each good j, there exists a buyer i with $u_{i j}>0$ then:

- The set of equilibrium allocations is convex.
- Equilibrium utilities and prices are unique.
- If all $u_{i j}$'s are rational then allocations and prices are rational.

Proof. Let x^{*} be an optimum of EG program and let p^{*} be the dual variables so that $\left(x^{*}, p^{*}\right)$ satisfy the KKT constraints. We shall show that $\left(x^{*}, p^{*}\right)$ is a market equilibrium.

Eisenberg-Gale Convex Program

Theorem (Fisher Market). For the linear case of Fisher Market and assuming that for each good j, there exists a buyer i with $u_{i j}>0$ then:

- The set of equilibrium allocations is convex.
- Equilibrium utilities and prices are unique.
- If all $u_{i j}$'s are rational then allocations and prices are rational.

Proof. Let x^{*} be an optimum of EG program and let p^{*} be the dual variables so that $\left(x^{*}, p^{*}\right)$ satisfy the KKT constraints. We shall show that $\left(x^{*}, p^{*}\right)$ is a market equilibrium.

By assumption we have $p_{j}^{*}>0$ for all $j \in \mathcal{G}$ (why?)

Eisenberg-Gale Convex Program

Theorem (Fisher Market). For the linear case of Fisher Market and assuming that for each good j, there exists a buyer i with $u_{i j}>0$ then:

- The set of equilibrium allocations is convex.
- Equilibrium utilities and prices are unique.
- If all $u_{i j}$'s are rational then allocations and prices are rational.

Proof. Let x^{*} be an optimum of EG program and let p^{*} be the dual variables so that $\left(x^{*}, p^{*}\right)$ satisfy the KKT constraints. We shall show that $\left(x^{*}, p^{*}\right)$ is a market equilibrium.

By assumption we have $p_{j}^{*}>0$ for all $j \in \mathcal{G}$ (why?)
By KKT we have there exists buyer i so that $u_{i j}>0$. We conclude from KKT $p_{j}^{*} \geq \frac{u_{i j}}{\sum_{j^{\prime}=1}^{m} u_{i j^{\prime}} x_{i j^{\prime}}^{*}}>0$.

Eisenberg-Gale Convex Program

Proof cont. Let x^{*} be an optimum of EG program and let p^{*} be the dual variables so that $\left(x^{*}, p^{*}\right)$ satisfy the KKT constraints. We shall show that $\left(x^{*}, p^{*}\right)$ is a market equilibrium.

1) We showed that $p_{j}^{*}>0$ for all $j \in \mathcal{G}$.

Positive prices \Rightarrow
By complementary slackness we have $\sum_{i=1}^{n} x_{i j}^{*}=1$.

Eisenberg-Gale Convex Program

Proof cont. Let x^{*} be an optimum of EG program and let p^{*} be the dual variables so that $\left(x^{*}, p^{*}\right)$ satisfy the KKT constraints. We shall show that $\left(x^{*}, p^{*}\right)$ is a market equilibrium.

1) We showed that $p_{j}^{*}>0$ for all $j \in \mathcal{G}$. Positive prices
2) We showed that $\sum_{i=1}^{n} x_{i j}^{*}=1$ for all $j \in \mathcal{G}$. Goods sold out

Eisenberg-Gale Convex Program

Proof cont. Let x^{*} be an optimum of EG program and let p^{*} be the dual variables so that $\left(x^{*}, p^{*}\right)$ satisfy the KKT constraints. We shall show that $\left(x^{*}, p^{*}\right)$ is a market equilibrium.

1) We showed that $p_{j}^{*}>0$ for all $j \in \mathcal{G}$. Positive prices
2) We showed that $\sum_{i=1}^{n} x_{i j}^{*}=1$ for all $j \in \mathcal{G}$. Goods sold out

Using KKT conditions for fixed buyer i we also have for $x_{i j}^{*}>0$

$$
\frac{u_{i j}}{\sum_{j^{\prime}=1}^{m} x_{i j^{\prime}}^{*} u_{i j^{\prime}}}=p_{j}^{*} \Rightarrow \frac{u_{i j} x_{i j}^{*}}{\sum_{j^{\prime}=1}^{m} x_{i j^{\prime}}^{*} u_{i j^{\prime}}}=x_{i j}^{*} p_{j}^{*}
$$

Eisenberg-Gale Convex Program

Proof cont. Let x^{*} be an optimum of EG program and let p^{*} be the dual variables so that $\left(x^{*}, p^{*}\right)$ satisfy the KKT constraints. We shall show that $\left(x^{*}, p^{*}\right)$ is a market equilibrium.

1) We showed that $p_{j}^{*}>0$ for all $j \in \mathcal{G}$. Positive prices
2) We showed that $\sum_{i=1}^{n} x_{i j}^{*}=1$ for all $j \in \mathcal{G}$. Goods sold out

Using KKT conditions for fixed buyer i we also have for $x_{i j}^{*}>0$

$$
\frac{u_{i j}}{\sum_{j^{\prime}=1}^{m} x_{i j^{\prime}}^{*} u_{i j^{\prime}}}=p_{j}^{*} \Rightarrow \frac{u_{i j} x_{i j}^{*}}{\sum_{j^{\prime}=1}^{m} x_{i j^{\prime}}^{*} u_{i j^{\prime}}}=x_{i j}^{*} p_{j}^{*}
$$

Summing over all goods $j \in \mathcal{G}$ the above we have

$$
1=\frac{\sum_{j=1}^{m} u_{i j} x_{i j}^{*}}{\sum_{j^{\prime}=1}^{m} x_{i j^{\prime}}^{*} u_{i j^{\prime}}}=\sum_{j=1}^{m} x_{i j}^{*} p_{j}^{*}
$$

Eisenberg-Gale Convex Program

Proof cont. Let x^{*} be an optimum of EG program and let p^{*} be the dual variables so that $\left(x^{*}, p^{*}\right)$ satisfy the KKT constraints. We shall show that $\left(x^{*}, p^{*}\right)$ is a market equilibrium.

1) We showed that $p_{j}^{*}>0$ for all $j \in \mathcal{G}$. Positive prices
2) We showed that $\sum_{i=1}^{n} x_{i j}^{*}=1$ for all $j \in \mathcal{G}$. Goods sold out
3) We showed that $\sum_{j=1}^{m} x_{i j}^{*} p_{j}^{*}=1$ for all $i \in \mathcal{B}$. Buyers spent all their money

Eisenberg-Gale Convex Program

Proof cont. Let x^{*} be an optimum of EG program and let p^{*} be the dual variables so that $\left(x^{*}, p^{*}\right)$ satisfy the KKT constraints. We shall show that $\left(x^{*}, p^{*}\right)$ is a market equilibrium.

1) We showed that $p_{j}^{*}>0$ for all $j \in \mathcal{G}$. Positive prices
2) We showed that $\sum_{i=1}^{n} x_{i j}^{*}=1$ for all $j \in \mathcal{G}$. Goods sold out
3) We showed that $\sum_{j=1}^{m} x_{i j}^{*} p_{j}^{*}=1$ for all $i \in \mathcal{B}$. Buyers spent all their money

Hence $\left(x^{*}, p^{*}\right)$ is a market equilibrium. Since EG is a convex program, the set x^{*} of optimal solutions to EG is a convex set.

Eisenberg-Gale Convex Program

Proof cont. Let x^{*} be an optimum of EG program and let p^{*} be the dual variables so that $\left(x^{*}, p^{*}\right)$ satisfy the KKT constraints. We shall show that $\left(x^{*}, p^{*}\right)$ is a market equilibrium.

1) We showed that $p_{j}^{*}>0$ for all $j \in \mathcal{G}$. Positive prices
2) We showed that $\sum_{i=1}^{n} x_{i j}^{*}=1$ for all $j \in \mathcal{G}$. Goods sold out
3) We showed that $\sum_{j=1}^{m} x_{i j}^{*} p_{j}^{*}=1$ for all $i \in \mathcal{B}$. Buyers spent all their money

Hence $\left(x^{*}, p^{*}\right)$ is a market equilibrium. Since EG is a convex program, the set x^{*} of optimal solutions to EG is a convex set.

Uniqueness of utilities is derived since \ln is a strictly concave function.

Eisenberg-Gale Convex Program

Proof cont. Let x^{*} be an optimum of EG program and let p^{*} be the dual variables so that $\left(x^{*}, p^{*}\right)$ satisfy the KKT constraints. We shall show that $\left(x^{*}, p^{*}\right)$ is a market equilibrium.

1) We showed that $p_{j}^{*}>0$ for all $j \in \mathcal{G}$. Positive prices
2) We showed that $\sum_{i=1}^{n} x_{i j}^{*}=1$ for all $j \in \mathcal{G}$. Goods sold out
3) We showed that $\sum_{j=1}^{m} x_{i j}^{*} p_{j}^{*}=1$ for all $i \in \mathcal{B}$. Buyers spent all their money

Hence $\left(x^{*}, p^{*}\right)$ is a market equilibrium. Since EG is a convex program, the set x^{*} of optimal solutions to EG is a convex set.

Uniqueness of utilities is derived since \ln is a strictly concave function.
By doing the transformation $q_{j}=\frac{1}{p_{j}}$ the prices should satisfy a linear system (by KKT conditions) with rational coefficients.

Other utility functions

CES (Constant elasticity of substitution) utility functions:

$$
u_{i}(x)=\left(\sum_{j=1}^{m} u_{i j} x_{i j}^{\rho}\right)^{\frac{1}{\rho}}, \text { for }-\infty<\rho \leq 1
$$

Remark:

- $u_{i}(x)$ is concave function.
- If $u_{i j}=0$, then the corresponding term in the utility function is always 0 .
- If $u_{i j}>0, x_{i j}=0$, and $\rho<0$ then $u_{i}(x)=0$ no matter what the other $x_{i j}$'s are.

Other utility functions

CES (Constant elasticity of substitution) utility functions:

$$
u_{i}(x)=\left(\sum_{j=1}^{m} u_{i j} x_{i j}^{\rho}\right)^{\frac{1}{\rho}}, \text { for }-\infty<\rho \leq 1
$$

Remark:

- $u_{i}(x)$ is concave function.
- If $u_{i j}=0$, then the corresponding term in the utility function is always 0 .
- If $u_{i j}>0, x_{i j}=0$, and $\rho<0$ then $u_{i}(x)=0$ no matter what the other $x_{i j}$'s are.

$$
\begin{aligned}
\rho=1 & \longrightarrow \text { Linear utility form } \\
\rho \rightarrow-\infty & \longrightarrow \text { Leontief utility form } \\
\rho \rightarrow 0 & \longrightarrow \text { Cobb-Douglas form }
\end{aligned}
$$

Proportional Response Dynamics

Market dynamics:
Each time step the buyers face the same market parameters, (goods, budget constraint, utility function) while the buyers make their bidding decisions according to the previous market actions

Proportional Response Dynamics

Market dynamics:
Each time step the buyers face the same market parameters, (goods, budget constraint, utility function) while the buyers make their bidding decisions according to the previous market actions

Notation:

- $b_{i j}^{(t)}$ the bid of buyer i for good j at time t.
- $p_{j}^{(t)}=\sum_{i \in \mathcal{B}} b_{i j}^{(t)}$ price for good j.
- Allocation $x_{i j}^{(t)}=\frac{b_{i j}^{(t)}}{p_{j}^{(t)}}$.
- Utility of agent i from good j is $u_{i j}^{(t)}=x_{i j}^{(t)} w_{i j}$.
- Utility $u_{i}^{(t)}=\sum_{j \in \mathcal{G}} u_{i j}^{(t)}$. Bid $b_{i}^{(t)}=\sum_{j \in \mathcal{G}} b_{i j}^{(t)}$.

Proportional Response Dynamics

- $b_{i j}^{(t)}$ the bid of buyer i for good j at time t.
- $p_{j}^{(t)}=\sum_{i} b_{i j}^{(t)}$ price for good j.
- Allocation $x_{i j}^{(t)}=\frac{b_{i j}^{(t)}}{p_{j}^{(t)}}$.
- Utility of agent i from good j is $u_{i j}^{(t)}=x_{i j}^{(t)} w_{i j}$.
- Utility $u_{i}^{(t)}=\sum_{j \in \mathcal{G}} u_{i j}^{(t)}$. Bid $b_{i}^{(t)}=\sum_{j \in \mathcal{G}} b_{i j}^{(t)}$.

For each agent i and good j set

Proportional Response Dynamics

For each agent i and good j set

$$
b_{i j}^{(t+1)}=\frac{u_{i j}^{(t)}}{u_{i}^{(t)}}
$$

Theorem (Convergence). The proportional response dynamics converges to a market equilibrium in the Fisher market with linear utility functions. For linear functions, it converges to an ϵ-market equilibrin in $O\left(\frac{1}{\epsilon^{2}}\right)$ iterations.

Proportional Response Dynamics

For each agent i and good j set

$$
b_{i j}^{(t+1)}=\frac{u_{i j}^{(t)}}{u_{i}^{(t)}}
$$

Theorem (Convergence). The proportional response dynamics converges to a market equilibrium in the Fisher market with linear utility functions. For linear functions, it converges to an ϵ-market equilibrin in $O\left(\frac{1}{\epsilon^{2}}\right)$ iterations.

Remark:

- The convergence result holds for CES utilities with a different rate.
- Similar rate to Multiplicative Weights Method (not a coincidence).

Proportional Response Dynamics: Proof of Convergence

Proof idea. We need to come up with a potential function.

Proportional Response Dynamics: Proof of Convergence

Proof idea. We need to come up with a potential function.

Let $\left(x^{*}, p^{*}\right)$ be a market equilibrium (optimum for EG program). We set

$$
b_{i j}^{*}=x_{i j}^{*} \cdot p_{j}^{*} .
$$

The potential function will be (show it is decreasing)

$$
\Phi^{(t)}=\sum_{i \in \mathcal{B}} \mathrm{KL}\left(b_{i}^{*} \| b_{i}^{(t)}\right) .
$$

Proportional Response Dynamics: Proof of Convergence

Proof idea. We need to come up with a potential function.

Let $\left(x^{*}, p^{*}\right)$ be a market equilibrium (optimum for EG program). We set

$$
b_{i j}^{*}=x_{i j}^{*} \cdot p_{j}^{*} .
$$

The potential function will be (show it is decreasing)

$$
\Phi^{(t)}=\sum_{i \in \mathcal{B}} \mathrm{KL}\left(b_{i}^{*} \| b_{i}^{(t)}\right) .
$$

Remark:

- KL divergence $\mathrm{KL}(x \| y)=\sum x_{i} \log \frac{x_{i}}{y_{i}}$ for distributions x, y.
- KL $(x \| y) \geq 0$, pseudo-distance, symmetry not satisfied.

