L15 Introduction to Markets

CS 280 Algorithmic Game Theory Ioannis Panageas

Food Markets

Stock Markets

Matching Markets

Driven by a rule: Supply meets demand!

Food Markets

Stock Markets

Matching Markets

Definition (Market). A market consists of:

- A set B of n buyers/traders.
- *A set G of m goods*.
- Each buyer i has e_i amount of \$. W.l.o.g assume $e_i = 1$.
- b_i denotes the amount of each good. W.l.o.g $b_i = 1$.
- u_{ij} denotes the utility derived by i on obtaining a unit amount of good of j.
- Each good j is associated with a price p_j .

Definition (Market). A market consists of:

- A set B of n buyers/traders.
- *A set G of m goods*.
- Each buyer i has e_i amount of \$. W.l.o.g assume $e_i = 1$.
- b_i denotes the amount of each good. W.l.o.g $b_i = 1$.
- u_{ij} denotes the utility derived by i on obtaining a unit amount of good of j.
- Each good j is associated with a price p_j .

Definition (Fisher Market). A market so that the utilities are linear: Let x_{ij} be the amount of units buyer i gets of good j then

$$u_i = \sum_{j \in \mathcal{G}} x_{ij} u_{ij}.$$

Definition (Market clearance). A vector of price (x^*, p^*) is called **market equilibrium** if for given prices p^* , each buyer is assigned an optimal basket of goods relative the prices and buyer's budget and there is no surplus or deficiency of any of the goods

Goal: Compute allocations and prices in polynomial time!

Definition (Market clearance). A vector of price (x^*, p^*) is called **market equilibrium** if for given prices p^* , each buyer is assigned an optimal basket of goods relative the prices and buyer's budget and there is no surplus or deficiency of any of the goods

Goal: Compute allocations and prices in polynomial time!

Given an arbitrary vector of prices $p \ge 0$, from each buyer's i perspective:

$$\max \sum_{j=1}^m x_{ij} u_{ij}$$

Definition (Market clearance). A vector of price (x^*, p^*) is called **market equilibrium** if for given prices p^* , each buyer is assigned an optimal basket of goods relative the prices and buyer's budget and there is no surplus or deficiency of any of the goods

Goal: Compute allocations and prices in polynomial time!

Given an arbitrary vector of prices $p \ge 0$, from each buyer's i perspective:

$$\max \sum_{j=1}^{m} x_{ij} u_{ij}$$
 Budget constraint.
$$s.t \sum_{j=1}^{m} p_{j} x_{ij} \leq 1$$

$$x_{i} \geq 0$$

Given an arbitrary vector of prices $p \ge 0$, from each buyer's i perspective:

Given an arbitrary vector of prices $p \ge 0$, from each buyer's i perspective:

Can we find (x, p) s.t all are satisfied simultaneously?

Consider the following **convex** program:

$$\max \sum_{j=1}^{n} \ln u_{i}$$
s.t $u_{i} = \sum_{j=1}^{m} u_{ij} x_{ij}$ for all buyers $i \in \mathcal{B}$,
$$\sum_{i=1}^{n} x_{ij} \leq 1 \text{ for all goods } j \in \mathcal{G},$$

$$x_{ij} \geq 0 \text{ for all } i \in \mathcal{B}, j \in \mathcal{G}.$$

Consider the following **convex** program:

$$\max \sum_{j=1}^{n} \ln u_{i}$$
s.t $u_{i} = \sum_{j=1}^{m} u_{ij} x_{ij}$ for all buyers $i \in \mathcal{B}$,
$$\sum_{i=1}^{n} x_{ij} \leq 1 \text{ for all goods } j \in \mathcal{G},$$

$$x_{ij} \geq 0 \text{ for all } i \in \mathcal{B}, j \in \mathcal{G}.$$

Remark:

• The domain above is compact hence there is an optimal solution x^* .

Consider the following **convex** program:

$$\max \sum_{j=1}^{n} \ln u_{i}$$
s.t $u_{i} = \sum_{j=1}^{m} u_{ij} x_{ij}$ for all buyers $i \in \mathcal{B}$,
$$\sum_{i=1}^{n} x_{ij} \leq 1 \text{ for all goods } j \in \mathcal{G},$$

$$x_{ij} \geq 0 \text{ for all } i \in \mathcal{B}, j \in \mathcal{G}.$$

Remark:

- The domain above is compact hence there is an optimal solution x^* .
- Note that there are no budget constraints!

Consider the following **convex** program:

$$\max \sum_{j=1}^{n} \ln u_{i}$$
s.t $u_{i} = \sum_{j=1}^{m} u_{ij} x_{ij}$ for all buyers $i \in \mathcal{B}$,
$$\sum_{i=1}^{n} x_{ij} \leq 1 \text{ for all goods } j \in \mathcal{G},$$

$$x_{ij} \geq 0 \text{ for all } i \in \mathcal{B}, j \in \mathcal{G}.$$

Remark:

- The domain above is compact hence there is an optimal solution x^* .
- Note that there are no budget constraints!
- Maximizing a concave function is a convex program and can be solved in poly-time for affine constraints!

Consider the following **convex** program:

$$\max \sum_{j=1}^{n} \ln u_{i}$$
s.t $u_{i} = \sum_{j=1}^{m} u_{ij} x_{ij}$ for all buyers $i \in \mathcal{B}$,
$$\sum_{i=1}^{n} x_{ij} \leq 1 \text{ for all goods } j \in \mathcal{G},$$

$$x_{ij} \geq 0 \text{ for all } i \in \mathcal{B}, j \in \mathcal{G}.$$

Remark:

- The domain above is compact hence there is an optimal solution x^* .
- Note that there are no budget constraints!
- Maximizing a concave function is a convex program and can be solved in poly-time for affine constraints!

Is x^* an **equilibrium**? What are the **prices**?

 x^* satisfies the KKT conditions.

KKT are first-order conditions for constrained Optimization

 x^* satisfies the KKT conditions.

KKT are first-order conditions for constrained Optimization

$$L(x,p) = \sum_{j=1}^{n} \ln u_i - \sum_{j=1}^{m} p_j (\sum_{i=1}^{n} x_{ij} - 1)$$
objective
constraint for good j

Remark: Langrangian involves objective and constraints!

 x^* satisfies the KKT conditions.

KKT are first-order conditions for constrained Optimization

$$L(x, p) = \underbrace{\sum_{j=1}^{n} \ln u_i - \sum_{j=1}^{m} p_j (\sum_{i=1}^{n} x_{ij} - 1)}_{\text{objective}} \underbrace{p_j (\sum_{i=1}^{n} x_{ij} - 1)}_{\text{constraint for good } j}$$

Remark: Langrangian involves objective and constraints!

KKT conditions: *x* are primal variables, *p* are dual variables.

Primal feasibility:

Dual feasibility:

$$x_{ij} \geq 0$$
 for all $i \in \mathcal{B}$, $j \in \mathcal{G}$.

$$p_j \ge 0$$
 for all $j \in \mathcal{G}$.

 x^* satisfies the KKT conditions.

$$L(x, p) = \sum_{j=1}^{n} \ln u_i - \sum_{j=1}^{m} p_j (\sum_{i=1}^{n} x_{ij} - 1)$$
objective
constraint for good j

Remark: Langrangian involves objective and constraints!

KKT conditions: *x* are primal variables, *p* are dual variables.

Primal feasibility:

Dual feasibility:

$$x_{ij} \ge 0$$
 for all $i \in \mathcal{B}$, $j \in \mathcal{G}$. $p_j \ge 0$ for all $j \in \mathcal{G}$.

$$p_j \ge 0$$
 for all $j \in \mathcal{G}$.

$$\frac{\partial L(x,p)}{\partial x_{ij}} = \frac{u_{ij}}{u_i} - p_j = 0 \text{ if } x_{ij} > 0.$$

$$\frac{\partial L(x,p)}{\partial x_{ij}} = \frac{u_{ij}}{u_i} - p_j \le 0 \text{ if } x_{ij} = 0.$$

$$\frac{\partial L(x,p)}{\partial p_j} = 1 - \sum_{i=1}^n x_{ij} = 0 \text{ if } p_j > 0.$$

$$\frac{\partial L(x,p)}{\partial p_j} = 1 - \sum_{i=1}^n x_{ij} \ge 0 \text{ if } p_j = 0.$$

Complementary Slackness

Intro to AGT

Let (x^*, p^*) satisfy the KKT conditions. Then (x^*, p^*) solves

$$\min_{p\geq 0} \max_{x\geq 0} L(x,p) = \max_{x\geq 0} \min_{p\geq 0} L(x,p) \text{ since it is } convex - concave,$$

where
$$L(x, p) = \sum_{j=1}^{n} \ln u_i - \sum_{j=1}^{m} p_j (\sum_{i=1}^{n} x_{ij} - 1)$$
.

Let (x^*, p^*) satisfy the KKT conditions. Then (x^*, p^*) solves

$$\min_{p\geq 0} \max_{x\geq 0} L(x,p) = \max_{x\geq 0} \min_{p\geq 0} L(x,p) \text{ since it is } convex - concave,$$

where
$$L(x, p) = \sum_{j=1}^{n} \ln u_i - \sum_{j=1}^{m} p_j (\sum_{i=1}^{n} x_{ij} - 1)$$
.

Remark: Observe that dual variables *p* penalize if a constraint is violated.

Let (x^*, p^*) satisfy the KKT conditions. Then (x^*, p^*) solves

$$\min_{p\geq 0} \max_{x\geq 0} L(x,p) = \max_{x\geq 0} \min_{p\geq 0} L(x,p) \text{ since it is } \frac{convex - concave}{convex},$$

where
$$L(x, p) = \sum_{j=1}^{n} \ln u_i - \sum_{j=1}^{m} p_j (\sum_{i=1}^{n} x_{ij} - 1)$$
.

Remark: Observe that dual variables *p* penalize if a constraint is violated.

Theorem (Fisher Market). For the linear case of Fisher Market and assuming that for each good j, there exists a buyer i with $u_{ij} > 0$ then:

- *The set of equilibrium allocations is convex.*
- Equilibrium utilities and prices are unique.
- If all u_{ij} 's are rational then allocations and prices are rational.

Theorem (Fisher Market). For the linear case of Fisher Market and assuming that for each good j, there exists a buyer i with $u_{ij} > 0$ then:

- *The set of equilibrium allocations is convex.*
- Equilibrium utilities and prices are unique.
- If all u_{ij} 's are rational then allocations and prices are rational.

Proof. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

Theorem (Fisher Market). For the linear case of Fisher Market and assuming that for each good j, there exists a buyer i with $u_{ij} > 0$ then:

- *The set of equilibrium allocations is convex.*
- Equilibrium utilities and prices are unique.
- If all u_{ij} 's are rational then allocations and prices are rational.

Proof. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

By assumption we have $p_i^* > 0$ for all $j \in \mathcal{G}$ (why?)

Theorem (Fisher Market). For the linear case of Fisher Market and assuming that for each good j, there exists a buyer i with $u_{ij} > 0$ then:

- *The set of equilibrium allocations is convex.*
- Equilibrium utilities and prices are unique.
- If all u_{ij} 's are rational then allocations and prices are rational.

Proof. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

By assumption we have $p_j^* > 0$ for all $j \in \mathcal{G}$ (why?)

By KKT we have there exists buyer i so that $u_{ij} > 0$. We conclude from KKT $p_j^* \ge \frac{u_{ij}}{\sum_{j'=1}^m u_{ij'} x_{ij'}^*} > 0$.

Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

1) We showed that $p_j^* > 0$ for all $j \in \mathcal{G}$.

Positive prices \Longrightarrow

By complementary slackness we have $\sum_{i=1}^{n} x_{ij}^* = 1$.

Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

1) We showed that $p_j^* > 0$ for all $j \in \mathcal{G}$.

Positive prices

2) We showed that $\sum_{i=1}^{n} x_{ij}^* = 1$ for all $j \in \mathcal{G}$.

Goods sold out

Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

1) We showed that $p_j^* > 0$ for all $j \in \mathcal{G}$.

Positive prices

2) We showed that $\sum_{i=1}^{n} x_{ij}^* = 1$ for all $j \in \mathcal{G}$.

Goods sold out

Using KKT conditions for fixed buyer i we also have for $x_{ij}^* > 0$

$$\frac{u_{ij}}{\sum_{j'=1}^{m} x_{ij'}^* u_{ij'}} = p_j^* \Rightarrow \frac{u_{ij} x_{ij}^*}{\sum_{j'=1}^{m} x_{ij'}^* u_{ij'}} = x_{ij}^* p_j^*$$

Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

1) We showed that $p_j^* > 0$ for all $j \in \mathcal{G}$.

Positive prices

2) We showed that $\sum_{i=1}^{n} x_{ij}^* = 1$ for all $j \in \mathcal{G}$.

Goods sold out

Using KKT conditions for fixed buyer i we also have for $x_{ij}^* > 0$

$$\frac{u_{ij}}{\sum_{j'=1}^{m} x_{ij'}^* u_{ij'}} = p_j^* \Rightarrow \frac{u_{ij} x_{ij}^*}{\sum_{j'=1}^{m} x_{ij'}^* u_{ij'}} = x_{ij}^* p_j^*$$

Summing over all goods $j \in \mathcal{G}$ the above we have

$$1 = \frac{\sum_{j=1}^{m} u_{ij} x_{ij}^{*}}{\sum_{j'=1}^{m} x_{ij'}^{*} u_{ij'}} = \sum_{j=1}^{m} x_{ij}^{*} p_{j}^{*}$$

Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

1) We showed that $p_i^* > 0$ for all $j \in \mathcal{G}$.

Positive prices

2) We showed that $\sum_{i=1}^{n} x_{ij}^* = 1$ for all $j \in \mathcal{G}$.

Goods sold out

3) We showed that $\sum_{j=1}^{m} x_{ij}^* p_j^* = 1$ for all $i \in \mathcal{B}$. Buyers spent all their money

Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

1) We showed that $p_j^* > 0$ for all $j \in \mathcal{G}$.

Positive prices

2) We showed that $\sum_{i=1}^{n} x_{ij}^* = 1$ for all $j \in \mathcal{G}$.

Goods sold out

3) We showed that $\sum_{j=1}^{m} x_{ij}^* p_j^* = 1$ for all $i \in \mathcal{B}$. Buyers spent all their money

Hence (x^*, p^*) is a market equilibrium. Since EG is a convex program, the set x^* of optimal solutions to EG is a convex set.

Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

1) We showed that $p_j^* > 0$ for all $j \in \mathcal{G}$.

Positive prices

2) We showed that $\sum_{i=1}^{n} x_{ij}^* = 1$ for all $j \in \mathcal{G}$.

Goods sold out

3) We showed that $\sum_{j=1}^{m} x_{ij}^* p_j^* = 1$ for all $i \in \mathcal{B}$. Buyers spent all their money

Hence (x^*, p^*) is a market equilibrium. Since EG is a convex program, the set x^* of optimal solutions to EG is a convex set.

Uniqueness of utilities is derived since ln is a strictly concave function.

Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

1) We showed that $p_i^* > 0$ for all $j \in \mathcal{G}$.

Positive prices

2) We showed that $\sum_{i=1}^{n} x_{ij}^* = 1$ for all $j \in \mathcal{G}$.

Goods sold out

3) We showed that $\sum_{j=1}^{m} x_{ij}^* p_j^* = 1$ for all $i \in \mathcal{B}$. Buyers spent all their money

Hence (x^*, p^*) is a market equilibrium. Since EG is a convex program, the set x^* of optimal solutions to EG is a convex set.

Uniqueness of utilities is derived since ln is a strictly concave function.

By doing the transformation $q_j = \frac{1}{p_j}$ the prices should satisfy a linear system (by KKT conditions) with rational coefficients.

Other utility functions

CES (Constant elasticity of substitution) utility functions:

$$u_i(x) = \left(\sum_{j=1}^m u_{ij} x_{ij}^{\rho}\right)^{\frac{1}{\rho}}$$
, for $-\infty < \rho \le 1$.

Remark:

- $u_i(x)$ is concave function.
- If $u_{ij} = 0$, then the corresponding term in the utility function is always 0.
- If $u_{ij} > 0$, $x_{ij} = 0$, and $\rho < 0$ then $u_i(x) = 0$ no matter what the other x_{ij} 's are.

Other utility functions

CES (Constant elasticity of substitution) utility functions:

$$u_i(x) = \left(\sum_{j=1}^m u_{ij} x_{ij}^{\rho}\right)^{\frac{1}{\rho}}$$
, for $-\infty < \rho \le 1$.

Remark:

- $u_i(x)$ is concave function.
- If $u_{ij} = 0$, then the corresponding term in the utility function is always 0.
- If $u_{ij} > 0$, $x_{ij} = 0$, and $\rho < 0$ then $u_i(x) = 0$ no matter what the other x_{ij} 's are.

$$ho=1$$
 _____ Linear utility form $ho o -\infty$ ____ Leontief utility form $ho o 0$ ____ Cobb-Douglas form

Market dynamics:

Each time step the buyers face the same market parameters, (goods, budget constraint, utility function) while the buyers make their bidding decisions according to the previous market actions

Market dynamics:

Each time step the buyers face the same market parameters, (goods, budget constraint, utility function) while the buyers make their bidding decisions according to the previous market actions

Notation:

- $b_{ij}^{(t)}$ the bid of buyer i for good j at time t.
- $p_j^{(t)} = \sum_{i \in \mathcal{B}} b_{ij}^{(t)}$ price for good j.
- Allocation $x_{ij}^{(t)} = \frac{b_{ij}^{(t)}}{p_j^{(t)}}$.
- Utility of agent *i* from good *j* is $u_{ij}^{(t)} = x_{ij}^{(t)} w_{ij}$.
- Utility $u_i^{(t)} = \sum_{j \in \mathcal{G}} u_{ij}^{(t)}$. Bid $b_i^{(t)} = \sum_{j \in \mathcal{G}} b_{ij}^{(t)}$.

- $b_{ij}^{(t)}$ the bid of buyer i for good j at time t.
- $p_j^{(t)} = \sum_i b_{ij}^{(t)}$ price for good j.
- Allocation $x_{ij}^{(t)} = \frac{b_{ij}^{(t)}}{p_j^{(t)}}$.
- Utility of agent *i* from good *j* is $u_{ij}^{(t)} = x_{ij}^{(t)} w_{ij}$.
- Utility $u_i^{(t)} = \sum_{j \in \mathcal{G}} u_{ij}^{(t)}$. Bid $b_i^{(t)} = \sum_{j \in \mathcal{G}} b_{ij}^{(t)}$.

For each agent *i* and good *j* set

$$b_{ij}^{(t+1)} = \frac{u_{ij}^{(t)}}{u_i^{(t)}}$$

For each agent *i* and good *j* set

$$b_{ij}^{(t+1)} = \frac{u_{ij}^{(t)}}{u_i^{(t)}}$$

Theorem (Convergence). The proportional response dynamics converges to a market equilibrium in the Fisher market with linear utility functions. For linear functions, it converges to an ϵ -market equilibrin in $O\left(\frac{1}{\epsilon^2}\right)$ iterations.

For each agent *i* and good *j* set

$$b_{ij}^{(t+1)} = \frac{u_{ij}^{(t)}}{u_i^{(t)}}$$

Theorem (Convergence). The proportional response dynamics converges to a market equilibrium in the Fisher market with linear utility functions. For linear functions, it converges to an ϵ -market equilibrin in $O\left(\frac{1}{\epsilon^2}\right)$ iterations.

Remark:

- The convergence result holds for CES utilities with a different rate.
- Similar rate to Multiplicative Weights Method (not a coincidence).

Proportional Response Dynamics: Proof of Convergence

Proof idea. We need to come up with a potential function.

Proportional Response Dynamics: Proof of Convergence

Proof idea. We need to come up with a potential function.

Let (x^*, p^*) be a market equilibrium (optimum for EG program). We set

$$b_{ij}^* = x_{ij}^* \cdot p_j^*.$$

The potential function will be (show it is decreasing)

$$\Phi^{(t)} = \sum_{i \in \mathcal{B}} \mathrm{KL}(b_i^* || b_i^{(t)}).$$

Proportional Response Dynamics: Proof of Convergence

Proof idea. We need to come up with a potential function.

Let (x^*, p^*) be a market equilibrium (optimum for EG program). We set

$$b_{ij}^* = x_{ij}^* \cdot p_j^*.$$

The potential function will be (show it is decreasing)

$$\Phi^{(t)} = \sum_{i \in \mathcal{B}} \mathrm{KL}(b_i^* || b_i^{(t)}).$$

Remark:

- KL divergence $KL(x||y) = \sum x_i \log \frac{x_i}{y_i}$ for distributions x, y.
- $KL(x||y) \ge 0$, pseudo-distance, symmetry not satisfied.