L13 Myerson’s Lemma cont
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Inspired and some figures by Tim Roughgarden notes



Recap (Single parameter)

Three desirable guarantees
1. DSIC: Being truthful is a dominant strategy.
2. Social surplus maximization.

3. Implementation in polynomial time.
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Recap (Single parameter)

Three desirable guarantees
1. DSIC: Being truthful is a dominant strategy.
2. Social surplus maximization.

3. Implementation in polynomial time.

Theorem (Myerson’s Lemma). Let (x, p) be a mechanism.
We assume that p;(b) = 0 whenever b; = 0, for all bidders i.

1. It holds that if (x, p) is DSIC mechanism then x is monotone.

2. If x is a monotone allocation, then there is a unique payment rule
such that (x,p) is DSIC.
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A (computationally) hard example:
Knapsack auctions

* Each bidder i has a publicly known size w; and
a private valuation v;.

 The seller has capacity V.

* Feasibility set X is all 0-1 n-vectors (x4, ..., X;;)
so that ) x;,w; < W.
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A (computationally) hard example:
Knapsack auctions

* Each bidder i has a publicly known size w; and
a private valuation v;.

 The seller has capacity V.

* Feasibility set X is all 0-1 n-vectors (x4, ..., X;;)
so that ) x;,w; < W.

Remark:
 k-identical item auction is a special case (why)?
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Knapsack auctions

Approach:

e Step 1: Assume, without justification, that bidders bid truthfully. How should we design
the allocation so that we can maximize surplus?

e Step 2: Given our answer to Step 1, how should we set the payments so that DSIC
holds?
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Knapsack auctions

Approach:

e Step 1: Assume, without justification, that bidders bid truthfully. How should we design
the allocation so that we can maximize surplus? Let by, ..., b,, the bids of the agents:

max, Y ., T;b;
st >0 xiw; < W,
z; € {0, 1} for all i.

e Step 2: Given our answer to Step 1, how should we set the payments so that DSIC
holds?
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Knapsack auctions

Approach:

e Step 1: Assume, without justification, that bidders bid truthfully. How should we design
the allocation so that we can maximize surplus? Let by, ..., b,, the bids of the agents:

max, Y ., T;b;
st >0 xiw; < W,
z; € {0, 1} for all i.

This is not LP! It is IP (integer programming).

e Step 2: Given our answer to Step 1, how should we set the payments so that DSIC
holds?
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Knapsack auctions

Approach:

e Step 1: Assume, without justification, that bidders bid truthfully. How should we design
the allocation so that we can maximize surplus? Let by, ..., b,, the bids of the agents:

max, Y ., T;b;
st >0 xiw; < W,
z; € {0, 1} for all i.

This is not LP! It is IP (integer programming).

The above is called Knapsack, it is NP-complete!

e Step 2: Given our answer to Step 1, how should we set the payments so that DSIC
holds?
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Knapsack auctions

Approach:

e Step 1: Assume, without justification, that bidders bid truthfully. How should we design
the allocation so that we can maximize surplus? Let by, ..., b,, the bids of the agents:

max, Y ., T;b;
st >0 xiw; < W,
z; € {0, 1} for all i.

This is not LP! It is IP (integer programming).

The above is called Knapsack, it is NP-complete!

e Step 2: Given our answer to Step 1, how should we set the payments so that DSIC
holds? Payment rule from Myerson’s Lemma.

Remark: Theory people are not happy with the solution above.
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Relaxing Knapsack auctions:
Approximation

Approach:

e Step 1 was computationally intractable. Instead, how should we design the allocation
so that we can approximately maximize surplus (monotone allocation)? Let b4, ..., b,
the bids of the agents:

First remove all i: w; > WW.

. . b b b
Sort and re-index bidders:| %+ > 2% > ... > .
W1 Wo Wn

Intro to AGT



Relaxing Knapsack auctions:
Approximation

Approach:

e Step 1 was computationally intractable. Instead, how should we design the allocation
so that we can approximately maximize surplus (monotone allocation)? Let b4, ..., b,
the bids of the agents:

First remove all i: w; > WW.
Sort and re-index bidders:|—=> — > --- > —.

S S+1
Choose as many as possible (say S) so that >,y w; < W and SO w > WL
Allocate to highest feasible bidder or first S, whichever gives higher surplus.
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Relaxing Knapsack auctions:
Approximation

Approach:

e Step 1 was computationally intractable. Instead, how should we design the allocation
so that we can approximately maximize surplus (monotone allocation)? Let b4, ..., b,
the bids of the agents:

First remove all i: w; > WW.
Sort and re-index bidders:|—=> — > --- > —.

S S+1
Choose as many as possible (say S) so that >,y w; < W and SO w > WL
Allocate to highest feasible bidder or first S, whichever gives higher surplus.

» Step 2: Step 1 gives a monotone allocation (why)? We can use the payment rule from
Myerson’s Lemma.
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Relaxing Knapsack auctions:
Approximation

Approach:

e Step 1 was computationally intractable. Instead, how should we design the allocation
so that we can approximately maximize surplus (monotone allocation)? Let b4, ..., b,
the bids of the agents:

First remove all i: w; > WW.

b b b
_12_22 Z—n.
W1 W> Wn

Sort and re-index bidders:

S S+1
Choose as many as possible (say S) so that >,y w; < W and SO w > WL

Allocate to highest feasible bidder or first S, whichever gives higher surplus.

» Step 2: Step 1 gives a monotone allocation (why)? We can use the payment rule from
Myerson’s Lemma.

What guarantees the auctioneer has?
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Knapsack auctions: 2-Approximation

Theorem (Approximation). Assuming truthful bids, the surplus of
the greedy allocation rule is at least 50% of the maximum-posible surplus.
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Knapsack auctions: 2-Approximation

Theorem (Approximation). Assuming truthful bids, the surplus of
the greedy allocation rule is at least 50% of the maximum-posible surplus.

Proof. Let S be the number of agents chosen so that (if all agents fit, then this

is optimal)
S+1

S
ZwigVVand wai>W
i=1 1=1

It holds that
S+1

Z v; > OPT.

1=1
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Knapsack auctions: 2-Approximation

Theorem (Approximation). Assuming truthful bids, the surplus of
the greedy allocation rule is at least 50% of the maximum-posible surplus.

Proof. Let S be the number of agents chosen so that (if all agents fit, then this

is optimal)
S+1

S
ZwigVVand wai>W
i=1 1=1

It holds that
S+1

Z v; > OPT.

1=1

S
1
max (Z ’UZ',’US_|_1) Z §OPT

1=1

Hence
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Knapsack auctions: 2-Approximation

Theorem (Approximation). Assuming truthful bids, the surplus of
the greedy allocation rule is at least 50% of the maximum-posible surplus.

Proof. Let S be the number of agents chosen so that (if all agents fit, then this
is optimal)

S+1
Zw@ < W and sz > W
It holds that o IfA+ B > OPT (;c?fn
3 v > OPT, max(4,B) = — >

1=1

Hence

S
1
max (Z ’Ufi,’US_|_1) 2 §OPT

=1
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Knapsack auctions: 2-Approximation

Theorem (Approximation). Assuming truthful bids, the surplus of
the greedy allocation rule is at least 50% of the maximum-posible surplus.

S+1
Proof cont. To show Z v; > OPT, observe that the fractional version
i=1
. . . B . W_Zs:l w;
(relaxation of IP) has optimal solution 1 = ... = zg = land xg41 = T

LP relaxation
max,. Z?:l €r;U;
st > xiw; < W,
z; € [0,1] for all 1.
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Knapsack auctions: 2-Approximation

Theorem (Approximation). Assuming truthful bids, the surplus of
the greedy allocation rule is at least 50% of the maximum-posible surplus.

S+1
Proof cont. To show Z v; > OPT, observe that the fractional version
i=1
W_Zf:l Wi

(relaxation of IP) has optimal solution 1 = ... = zg = land xg41 = T

LP relaxation
max, Z?:l T;U;
s.t Z?zl riw; < W,
z; € [0,1] for all 1.

Also we have | OPT of knapsack < OPT of LP relaxation

Intro to AGT



Definitions: Bayesian Setting
(Revenue)

Definition (Bayesian - Single parameter setting). Bayesian setting
single parameter environment is defined:

* n bidders with private v;.

e Feasible set X', each element of which is a n-dimensional vector
(x1, ..., Xn) in which x; is the amount of "stuff” given to i.

® The private valuation v; of agent i is assumed to be drawn from a
distribution F; with density f; and support [0, Umax]-

e F,...,E, are independent but not necessarily identically distributed and
are known to the auctioneer.
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Definitions: Bayesian Setting

Definition (Bayesian - Single parameter setting). Bayesian setting
single parameter environment is defined:

* n bidders with private v;.

e Feasible set X', each element of which is a n-dimensional vector
(x1, ..., Xn) in which x; is the amount of "stuff” given to i.

® The private valuation v; of agent i is assumed to be drawn from a
distribution F; with density f; and support [0, Umax]-

e F,...,E, are independent but not necessarily identically distributed and

k to th ti : 15
are knowr to the auctioneer Probability to

have valuation
Intuition: higher than r.

* 1item, 1 person. Suppose pght price is r. Revenue is

r (@ FGD
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Definitions: Bayesian Setting

Probability to
have valuation
higher than r.

t price is . Revenue is

Intuition:
* 1item, 1 person. Suppose pg

 Reserve price is ¥ means that bidder needs to bid at least r.
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Definitions: Bayesian Setting

Probability to
have valuation
higher than r.

t price is . Revenue is

Intuition:
* 1item, 1 person. Suppose pg

 Reserve price is ¥ means that bidder needs to bid at least r.

Question:
e 1item, 1 person and Fis uniformin [0,1]. Suppose post
price is r. What r maximizes revenue?
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Definitions: Bayesian Setting

Probability to
have valuation
higher than 7.

t price is . Revenue is

Intuition:
* 1item, 1 person. Suppose pg

 Reserve price is ¥ means that bidder needs to bid at least r.

Question:
e 1item, 1 person and Fis uniformin [0,1]. Suppose post
price is r. What r maximizes revenue?

2 1
=>Tr =—,revs=
2 4

max r-r
re(0,1]
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More Definitions

Definition (Payments). Assume bidders are truthful (b = v). Recall by Myerson’s

Lemma:
Vi dei (2,0
pi(’Uz',’U—z'):f Z- wilz b )dz.
0

dz
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More Definitions

Definition (Payments). Assume bidders are truthful (b = v). Recall by Myerson’s

Lemma:
Vi dri(z,v_;)
i\Viy, V—q) — ’ dz.
pi(vi,v_;) fo 2 - z

Valuations are random variables, hence we care about the expectation:

Ev,~r; i (vi, v—3)] :/o maxpi(viav—i)f(vi)dv-
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More Definitions

Definition (Payments). Assume bidders are truthful (b = v). Recall by Myerson’s

Lemma:
Vi dri(z,v_;)
i\Viy, V—q) — ’ dz.
pi(vi,v_;) fo 2 - z

Valuations are random variables, hence we care about the expectation:

Ev,~r; i (vi, v—3)] :/o maxpi(viav—i)f(vi)dv-

Plugging in the above:

Eo, ~F, [pi(vi, v_;)] :/0 o [/0 i z-xi(2,v_5)dz| f(v;)dv;.
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Payments reduce to welfare

Umax

Payments: E,. g [pi(vi,v_;)] = f [/ z - x;(z,v_z-)dz] f(v;)dw;.
0 0

Reversing the integration we have

By p [ps(vi,0_3)] = /0 o [ f o f(fuz-)dv@-] 22 (20 0)dz.



Payments reduce to welfare

Umax

Payments: E,. g [pi(vi,v_;)] = f [/ z - x;(z,v_z-)dz] f(v;)dw;.
0 0

Reversing the integration we have

0

By, ~F, [pi(vi,v_5)] = / ) [/ ) f(fuz-)dfui] z-xh(z,v_;)dz.
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Payments reduce to welfare

Payments: E,. g [pi(vi,v_;)] = f [/ z - xé(z,v_z-)dz] f(v;)dw;.
0 0

Reversing the integration we have

By, ~F, [pi(vi,v_5)] = fovmax [/’Umax f(fuz-)dvi] z-xh(z,v_;)dz.

A .y

1—;7‘:(2')

Ey. ~F [pi(vi,v_;)] = / (1—F;(2))z-xi(z,v_;)dz.
0
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Payments reduce to welfare

Payments: E,. g [pi(vi,v_;)] = f [f z - xé(z,v_z-)dz] f(v;)dw;.
0 0

Reversing the integration we have

By, ~F, [pi(vi,v_5)] = fovmax [/’Umax f(fuz-)dfui] z-xh(z,v_;)dz.

A .y

1-F;(2)

Euprpi(0i,0-1)] = | 0= ) v )de,

"

= (1= Fi(2))z - i(z,v-)|g" j/ovmxff( ~i)(1 = Fi(z) = 2fi(2))dz

this is zero

Intro to AGT



Payments reduce to welfare

Payments: E,. g [pi(vi,v_;)] = f [f z - xé(z,v_i)dz] f(v;)dw;.
0 0

Reversing the integration we have

By, ~F, [pi(vi,v_5)] = ]Ovmax [/’Umax f(fuz-)dfui] z-xh(z,v_;)dz.

A .y

1-F;(2)

Euprpi(0i,0-1)] = | 0= ) v )de,

= (1= Fi(2))z - i(z,v-)|g" J_/Ovmaxx( ~i)(1 = Fi(z) = 2fi(2))dz

"

this is zero

e U-FE ),
= [ e S T e
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Payments reduce to welfare

By~ F (i (v, v5)] = — /Ovmax zi(2,v_q) e F@(;)(Z_) 2fil2)) fi(z)dz.

Set ¢;(v;) = v; — 1}5;(3*') (called virtual valuations) and we get
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Payments reduce to welfare

By~ F (i (v, v5)] = — /Ovmax zi(2,v_q) e F@(;)(Z_) 2fil2)) fi(z)dz.

Set ¢;(v;) = v; — 1}52)(3*') (called virtual valuations) and we get

EWNE‘ [pi(vivv—i)] — /Ovmax x@(z,v_z)qb(z)fz(z)dz

B | Eon[pi(viv-)] = Eur [9(0:)zi(vi,v-0)
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Payments reduce to welfare

By~ F (i (v, v5)] = — /Ovmax zi(2,v_q) e F@(;)(Z_) 2fil2)) fi(z)dz.

Set ¢;(v;) = v; — 1}52)(3*') (called virtual valuations) and we get

EWNE‘ [pi(vivv—i)] — /Ovmax x@(z,v_z)qb(z)fz(z)dz

B | Eon[pi(viv-)] = Eur [9(0:)zi(vi,v-0)

B |Rev—E..r, [Zp

= Ey~r ... F, [Z mi(”)@‘(”)]

7
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Monotone Allocations for regular F

Approach:

e Step 1: Assume, without justification, that bidders bid truthfully. How should we design
the allocation so that we can maximize virtual social welfare, ) x;(v)¢p;(v)?

e Step 2: Given our answer to Step 1, how should we set the payments so that DSIC
holds? According to Myerson’s Lemma
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Monotone Allocations for regular F

Approach:

e Step 1: Assume, without justification, that bidders bid truthfully. How should we design
the allocation so that we can maximize virtual social welfare, ) x;(v)¢p;(v)?

e Step 2: Given our answer to Step 1, how should we set the payments so that DSIC
holds? According to Myerson’s Lemma

Issue: Higher valuation v; gives higher x; (is the allocation
monotone)? Depends on F;.
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Monotone Allocations for regular F

Approach:

e Step 1: Assume, without justification, that bidders bid truthfully. How should we design
the allocation so that we can maximize virtual social welfare, ) x;(v)¢p;(v)?

e Step 2: Given our answer to Step 1, how should we set the payments so that DSIC
holds? According to Myerson’s Lemma

Issue: Higher valuation v; gives higher x; (is the allocation
monotone)? Depends on F;.

Definition (Regular F). A distribution F is regular if the corresponding virtual

valuation function v — 1}5)()0 ) js strictly increasing.
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Monotone Allocations for regular F

Definition (Regular F). A distribution F is regular if the corresponding virtual
—F(v)

valuation function v — ! (o) is strictly increasing.

It turns out that if F; are regular, then in step 1,
X IS monotone.
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Monotone Allocations for regular F

Definition (Regular F). A distribution F is regular if the corresponding virtual
—F(v)

valuation function v — ! (o) is strictly increasing.

It turns out that if F; are regular, then in step 1,
X IS monotone.

Example (Uniform is Regular): Let F be the uniformin [0,1].
The valuation is 2v — 1 which is strictly increasing.
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Example

Consider a single item and n bidders with same F being regular.

Question: What is the allocation rule and the payment?
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Example

Consider a single item and n bidders with same F being regular.

Question: What is the allocation rule and the payment?

1) Give the item to the bidder with highest positive virtual valuation.
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Example

Consider a single item and n bidders with same F being regular.

Question: What is the allocation rule and the payment?

1) Give the item to the bidder with highest positive virtual valuation.
2) Since virtual is strictly increasing, the winner is the highest bidder, thus the
allocation is monotone!
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Example

Consider a single item and n bidders with same F being regular.
Question: What is the allocation rule and the payment?
1) Give the item to the bidder with highest positive virtual valuation.
2) Since virtual is strictly increasing, the winner is the highest bidder, thus the
allocation is monotone!

3) The winner i pays ¢;.(V;.).

Observe that this is a Vickrey auction with reserve price ¢p~1(0). If valuations come
_ 1
from [0,1], to maximize welfare, set r = p

Intro to AGT
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