# L13 Myerson's Lemma cont (Bayesian).

CS 280 Algorithmic Game Theory Ioannis Panageas

Inspired and some figures by Tim Roughgarden notes

## Recap (Single parameter)

#### Three desirable guarantees

- 1. DSIC: Being truthful is a dominant strategy.
- 2. Social surplus maximization.
- 3. Implementation in polynomial time.

## Recap (Single parameter)

#### Three desirable guarantees

- 1. DSIC: Being truthful is a dominant strategy.
- 2. Social surplus maximization.
- 3. Implementation in polynomial time.

**Theorem** (Myerson's Lemma). Let (x, p) be a mechanism. We assume that  $p_i(b) = 0$  whenever  $b_i = 0$ , for all bidders i.

- 1. It holds that if (x, p) is DSIC mechanism then x is monotone.
- 2. If x is a monotone allocation, then there is a unique payment rule such that (x, p) is DSIC.

# A (computationally) hard example: Knapsack auctions

- Each bidder i has a publicly known size  $w_i$  and a private valuation  $v_i$ .
- The seller has capacity W.
- Feasibility set X is all 0-1 n-vectors  $(x_1, ..., x_n)$  so that  $\sum x_i w_i \leq W$ .

# A (computationally) hard example: Knapsack auctions

- Each bidder i has a publicly known size  $w_i$  and a private valuation  $v_i$ .
- The seller has capacity W.
- Feasibility set X is all 0-1 n-vectors  $(x_1, ..., x_n)$  so that  $\sum x_i w_i \leq W$ .

#### Remark:

• k-identical item auction is a special case (why)?

#### Approach:

- Step 1: Assume, without justification, that bidders bid truthfully. How should we design the allocation so that we can maximize surplus?
- Step 2: Given our answer to Step 1, how should we set the payments so that DSIC holds?

#### Approach:

• Step 1: Assume, without justification, that bidders bid truthfully. How should we design the allocation so that we can maximize surplus? Let  $b_1, ..., b_n$  the bids of the agents:

$$\max_{x} \sum_{i=1}^{n} x_{i} b_{i}$$
s.t 
$$\sum_{i=1}^{n} x_{i} w_{i} \leq W,$$

$$x_{i} \in \{0, 1\} \text{ for all } i.$$

• Step 2: Given our answer to Step 1, how should we set the payments so that DSIC holds?

#### Approach:

• Step 1: Assume, without justification, that bidders bid truthfully. How should we design the allocation so that we can maximize surplus? Let  $b_1, ..., b_n$  the bids of the agents:

$$\max_{x} \sum_{i=1}^{n} x_{i} b_{i}$$
s.t 
$$\sum_{i=1}^{n} x_{i} w_{i} \leq W,$$

$$x_{i} \in \{0, 1\} \text{ for all } i.$$

#### This is not LP! It is IP (integer programming).

 Step 2: Given our answer to Step 1, how should we set the payments so that DSIC holds?

#### Approach:

• Step 1: Assume, without justification, that bidders bid truthfully. How should we design the allocation so that we can maximize surplus? Let  $b_1, ..., b_n$  the bids of the agents:

$$\max_{x} \sum_{i=1}^{n} x_{i} b_{i}$$
s.t 
$$\sum_{i=1}^{n} x_{i} w_{i} \leq W,$$

$$x_{i} \in \{0, 1\} \text{ for all } i.$$

This is not LP! It is IP (integer programming).
The above is called Knapsack, it is NP-complete!

• Step 2: Given our answer to Step 1, how should we set the payments so that DSIC holds?

#### Approach:

• Step 1: Assume, without justification, that bidders bid truthfully. How should we design the allocation so that we can maximize surplus? Let  $b_1, ..., b_n$  the bids of the agents:

$$\max_{x} \sum_{i=1}^{n} x_{i} b_{i}$$
s.t 
$$\sum_{i=1}^{n} x_{i} w_{i} \leq W,$$

$$x_{i} \in \{0, 1\} \text{ for all } i.$$

# This is not LP! It is IP (integer programming). The above is called Knapsack, it is NP-complete!

• Step 2: Given our answer to Step 1, how should we set the payments so that DSIC holds? Payment rule from Myerson's Lemma.

Remark: Theory people are not happy with the solution above.

#### Approach:

Step 1 was computationally **intractable**. Instead, how should we design the allocation so that we can **approximately** maximize surplus (**monotone allocation**)? Let  $b_1, \ldots, b_n$ the bids of the agents:

First remove all 
$$i$$
:  $w_i > W$ .

Sort and re-index bidders:  $\frac{b_1}{w_1} \ge \frac{b_2}{w_2} \ge \cdots \ge \frac{b_n}{w_n}$ .

#### Approach:

Step 1 was computationally **intractable**. Instead, how should we design the allocation so that we can **approximately** maximize surplus (**monotone allocation**)? Let  $b_1, \ldots, b_n$ the bids of the agents:

First remove all 
$$i$$
:  $w_i > W$ .

Sort and re-index bidders:  $\frac{b_1}{w_1} \ge \frac{b_2}{w_2} \ge \cdots \ge \frac{b_n}{w_n}$ .

Choose as many as possible (say S) so that  $\sum_{i=1}^{S} w_i \leq W$  and  $\sum_{i=1}^{S+1} w_i > W$ . Allocate to highest feasible bidder or first S, whichever gives higher surplus.

#### Approach:

• Step 1 was computationally **intractable**. Instead, how should we design the allocation so that we can **approximately** maximize surplus (**monotone allocation**)? Let  $b_1, \ldots, b_n$  the bids of the agents:

First remove all i:  $w_i > W$ .

Sort and re-index bidders:  $\frac{b_1}{w_1} \ge \frac{b_2}{w_2} \ge \cdots \ge \frac{b_n}{w_n}$ .

Choose as many as possible (say S) so that  $\sum_{i=1}^{S} w_i \leq W$  and  $\sum_{i=1}^{S+1} w_i > W$ . Allocate to highest feasible bidder or first S, whichever gives higher surplus.

• Step 2: Step 1 gives a monotone allocation (why)? We can use the payment rule from Myerson's Lemma.

#### Approach:

• Step 1 was computationally **intractable**. Instead, how should we design the allocation so that we can **approximately** maximize surplus (**monotone allocation**)? Let  $b_1, \ldots, b_n$  the bids of the agents:

First remove all i:  $w_i > W$ .

Sort and re-index bidders:  $\frac{b_1}{w_1} \ge \frac{b_2}{w_2} \ge \cdots \ge \frac{b_n}{w_n}$ .

Choose as many as possible (say S) so that  $\sum_{i=1}^{S} w_i \leq W$  and  $\sum_{i=1}^{S+1} w_i > W$ . Allocate to highest feasible bidder or first S, whichever gives higher surplus.

• Step 2: Step 1 gives a monotone allocation (why)? We can use the payment rule from Myerson's Lemma.

#### What guarantees the auctioneer has?

**Theorem** (Approximation). Assuming truthful bids, the surplus of the greedy allocation rule is at least 50% of the maximum-posible surplus.

**Theorem** (Approximation). Assuming truthful bids, the surplus of the greedy allocation rule is at least 50% of the maximum-posible surplus.

*Proof.* Let S be the number of agents chosen so that (if all agents fit, then this is optimal)

$$\sum_{i=1}^{S} w_i \le W \text{ and } \sum_{i=1}^{S+1} w_i > W$$

It holds that

$$\sum_{i=1}^{S+1} v_i \ge \text{OPT}.$$

**Theorem** (Approximation). Assuming truthful bids, the surplus of the greedy allocation rule is at least 50% of the maximum-posible surplus.

*Proof.* Let S be the number of agents chosen so that (if all agents fit, then this is optimal)

$$\sum_{i=1}^{S} w_i \le W \text{ and } \sum_{i=1}^{S+1} w_i > W$$

It holds that

$$\sum_{i=1}^{S+1} v_i \ge \text{OPT}.$$

Hence

$$\max\left(\sum_{i=1}^{S} v_i, v_{S+1}\right) \ge \frac{1}{2} \text{OPT.}$$

**Theorem** (Approximation). Assuming truthful bids, the surplus of the greedy allocation rule is at least 50% of the maximum-posible surplus.

*Proof.* Let S be the number of agents chosen so that (if all agents fit, then this is optimal)

$$\sum_{i=1}^{S} w_i \le W \text{ and } \sum_{i=1}^{S+1} w_i > W$$

It holds that

$$\sum_{i=1}^{S+1} v_i \ge \text{OPT}.$$

If 
$$A + B \ge \text{OPT}$$
 then  $\sum_{i=1}^{S+1} v_i \ge \text{OPT}$ .  $\max(A, B) \ge \frac{OPT}{2}$ 

Hence

$$\max\left(\sum_{i=1}^{S} v_i, v_{S+1}\right) \ge \frac{1}{2} \text{OPT.}$$

**Theorem** (Approximation). Assuming truthful bids, the surplus of the greedy allocation rule is at least 50% of the maximum-posible surplus.

Proof cont. To show 
$$\sum_{i=1}^{S+1} v_i \ge \text{OPT}$$
, observe that the fractional version (relaxation of IP) has optimal solution  $x_1 = \dots = x_S = 1$  and  $x_{S+1} = \frac{W - \sum_{i=1}^{S} w_i}{w_{S+1}}$ 

#### LP relaxation

The relaxation 
$$\max_{x} \sum_{i=1}^{n} x_{i} v_{i}$$
$$\text{s.t.} \sum_{i=1}^{n} x_{i} w_{i} \leq W,$$
$$x_{i} \in [0, 1] \text{ for all } i.$$

**Theorem** (Approximation). Assuming truthful bids, the surplus of the greedy allocation rule is at least 50% of the maximum-posible surplus.

Proof cont. To show 
$$\sum_{i=1}^{S+1} v_i \ge \text{OPT}$$
, observe that the fractional version (relaxation of IP) has optimal solution  $x_1 = ... = x_S = 1$  and  $x_{S+1} = \frac{W - \sum_{i=1}^{S} w_i}{w_{S+1}}$ 

#### LP relaxation

$$\max_{x} \sum_{i=1}^{n} x_{i} v_{i}$$
s.t 
$$\sum_{i=1}^{n} x_{i} w_{i} \leq W,$$

$$x_{i} \in [0, 1] \text{ for all } i.$$

Also we have

OPT of knapsack ≤ OPT of LP relaxation

# Definitions: Bayesian Setting (Revenue)

**Definition** (Bayesian - Single parameter setting). Bayesian setting single parameter environment is defined:

- n bidders with private  $v_i$ .
- Feasible set X, each element of which is a n-dimensional vector  $(x_1, ..., x_n)$  in which  $x_i$  is the amount of "stuff" given to i.
- The private valuation  $v_i$  of agent i is assumed to be drawn from a distribution  $F_i$  with density  $f_i$  and support  $[0, v_{\text{max}}]$ .
- $F_1, ..., F_n$  are independent but not necessarily identically distributed and are known to the auctioneer.

**Definition** (Bayesian - Single parameter setting). Bayesian setting single parameter environment is defined:

- *n bidders with private v<sub>i</sub>*.
- Feasible set X, each element of which is a n-dimensional vector  $(x_1, ..., x_n)$  in which  $x_i$  is the amount of "stuff" given to i.
- The private valuation  $v_i$  of agent i is assumed to be drawn from a distribution  $F_i$  with density  $f_i$  and support  $[0, v_{\text{max}}]$ .
- $F_1$ , ...,  $F_n$  are independent but not necessarily identically distributed and are known to the auctioneer.

  Probability to

## Intuition: have valuation higher than r.

• 1 item, 1 person. Suppose post price is r. Revenue is

$$r \cdot (1 - F(r))$$

Intuition:

Probability to have valuation higher than r.

• 1 item, 1 person. Suppose post price is r. Revenue is

$$r \cdot (1 - F(r))$$

• Reserve price is r means that bidder needs to bid at least r.

Probability to have valuation higher than r.

#### Intuition:

• 1 item, 1 person. Suppose post price is r. Revenue is

$$r \cdot (1 - F(r))$$

• Reserve price is r means that bidder needs to bid at least r.

#### Question:

• 1 item, 1 person and F is uniform in [0,1]. Suppose post price is r. What r maximizes revenue?

Intuition:

Probability to have valuation higher than r.

- 1 item, 1 person. Suppose post price is r. Revenue is  $r \cdot (1 F(r))$
- Reserve price is r means that bidder needs to bid at least r.

#### Question:

• 1 item, 1 person and F is uniform in [0,1]. Suppose post price is r. What r maximizes revenue?

$$\max_{r \in [0,1]} r - r^2 \Rightarrow r = \frac{1}{2}, \text{ rev} = \frac{1}{4}$$

#### **More Definitions**

**Definition** (Payments). Assume bidders are truthful (b = v). Recall by Myerson's Lemma:

$$p_i(v_i, v_{-i}) = \int_0^{v_i} z \cdot \frac{dx_i(z, v_{-i})}{dz} dz.$$

#### **More Definitions**

**Definition** (Payments). Assume bidders are truthful (b = v). Recall by Myerson's Lemma:

$$p_i(v_i, v_{-i}) = \int_0^{v_i} z \cdot \frac{dx_i(z, v_{-i})}{dz} dz.$$

Valuations are random variables, hence we care about the expectation:

$$\mathbb{E}_{v_i \sim F_i}[p_i(v_i, v_{-i})] = \int_0^{v_{\text{max}}} p_i(v_i, v_{-i}) f(v_i) dv.$$

#### **More Definitions**

**Definition** (Payments). Assume bidders are truthful (b = v). Recall by Myerson's Lemma:

$$p_i(v_i, v_{-i}) = \int_0^{v_i} z \cdot \frac{dx_i(z, v_{-i})}{dz} dz.$$

Valuations are **random variables**, hence we care about the **expectation**:

$$\mathbb{E}_{v_i \sim F_i}[p_i(v_i, v_{-i})] = \int_0^{v_{\text{max}}} p_i(v_i, v_{-i}) f(v_i) dv.$$

Plugging in the above:

$$\mathbb{E}_{v_i \sim F_i}[p_i(v_i, v_{-i})] = \int_0^{v_{\text{max}}} \left[ \int_0^{v_i} z \cdot x_i'(z, v_{-i}) dz \right] f(v_i) dv_i.$$

Payments: 
$$\mathbb{E}_{v_i \sim F_i}[p_i(v_i, v_{-i})] = \int_0^{v_{\text{max}}} \left[ \int_0^{v_i} z \cdot x_i'(z, v_{-i}) dz \right] f(v_i) dv_i.$$

$$\mathbb{E}_{v_i \sim F_i}[p_i(v_i, v_{-i})] = \int_0^{v_{\text{max}}} \left[ \int_z^{v_{\text{max}}} f(v_i) dv_i \right] z \cdot x_i'(z, v_{-i}) dz.$$

Payments: 
$$\mathbb{E}_{v_i \sim F_i}[p_i(v_i, v_{-i})] = \int_0^{v_{\text{max}}} \left[ \int_0^{v_i} z \cdot x_i'(z, v_{-i}) dz \right] f(v_i) dv_i.$$

$$\mathbb{E}_{v_i \sim F_i}[p_i(v_i, v_{-i})] = \int_0^{v_{\text{max}}} \underbrace{\left[\int_z^{v_{\text{max}}} f(v_i) dv_i\right]}_{1 - F_i(z)} z \cdot x_i'(z, v_{-i}) dz.$$

Payments: 
$$\mathbb{E}_{v_i \sim F_i}[p_i(v_i, v_{-i})] = \int_0^{v_{\text{max}}} \left[ \int_0^{v_i} z \cdot x_i'(z, v_{-i}) dz \right] f(v_i) dv_i.$$

$$\mathbb{E}_{v_i \sim F_i}[p_i(v_i, v_{-i})] = \int_0^{v_{\text{max}}} \underbrace{\left[\int_z^{v_{\text{max}}} f(v_i) dv_i\right]}_{1 - F_i(z)} z \cdot x_i'(z, v_{-i}) dz.$$

$$\mathbb{E}_{v_i \sim F_i}[p_i(v_i, v_{-i})] = \int_0^{v_{\text{max}}} (1 - F_i(z)) z \cdot x_i'(z, v_{-i}) dz.$$

Payments: 
$$\mathbb{E}_{v_i \sim F_i}[p_i(v_i, v_{-i})] = \int_0^{v_{\text{max}}} \left[ \int_0^{v_i} z \cdot x_i'(z, v_{-i}) dz \right] f(v_i) dv_i.$$

$$\mathbb{E}_{v_i \sim F_i}[p_i(v_i, v_{-i})] = \int_0^{v_{\text{max}}} \underbrace{\left[\int_z^{v_{\text{max}}} f(v_i) dv_i\right]}_{1 - F_i(z)} z \cdot x_i'(z, v_{-i}) dz.$$

$$\mathbb{E}_{v_i \sim F_i}[p_i(v_i, v_{-i})] = \int_0^{v_{\text{max}}} (1 - F_i(z)) z \cdot x_i'(z, v_{-i}) dz.$$

$$=\underbrace{(1-F_{i}(z))z\cdot x_{i}(z,v_{-i})|_{0}^{v_{\max}}}_{\text{this is zero}}-\int_{0}^{v_{\max}}x_{i}(z,v_{-i})(1-F_{i}(z)-zf_{i}(z))dz.$$

Payments: 
$$\mathbb{E}_{v_i \sim F_i}[p_i(v_i, v_{-i})] = \int_0^{v_{\text{max}}} \left[ \int_0^{v_i} z \cdot x_i'(z, v_{-i}) dz \right] f(v_i) dv_i.$$

#### Reversing the integration we have

$$\mathbb{E}_{v_i \sim F_i}[p_i(v_i, v_{-i})] = \int_0^{v_{\text{max}}} \underbrace{\left[\int_z^{v_{\text{max}}} f(v_i) dv_i\right]}_{1 - F_i(z)} z \cdot x_i'(z, v_{-i}) dz.$$

$$\mathbb{E}_{v_i \sim F_i}[p_i(v_i, v_{-i})] = \int_0^{v_{\text{max}}} (1 - F_i(z)) z \cdot x_i'(z, v_{-i}) dz.$$

$$= \underbrace{(1 - F_i(z)) z \cdot x_i(z, v_{-i})|_0^{v_{\text{max}}}}_{\text{this is zero}} - \int_0^{v_{\text{max}}} x_i(z, v_{-i}) (1 - F_i(z) - z f_i(z)) dz.$$

Intro to AGT

 $= -\int_{z}^{v_{\text{max}}} x_i(z, v_{-i}) \frac{(1 - F_i(z) - z f_i(z))}{f_i(z)} f_i(z) dz.$ 

$$\mathbb{E}_{v_i \sim F_i}[p_i(v_i, v_{-i})] = -\int_0^{v_{\text{max}}} x_i(z, v_{-i}) \frac{(1 - F_i(z) - z f_i(z))}{f_i(z)} f_i(z) dz.$$

Set  $\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$  (called **virtual** valuations) and we get

$$\mathbb{E}_{v_i \sim F_i}[p_i(v_i, v_{-i})] = -\int_0^{v_{\text{max}}} x_i(z, v_{-i}) \frac{(1 - F_i(z) - z f_i(z))}{f_i(z)} f_i(z) dz.$$

Set  $\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$  (called **virtual** valuations) and we get

$$\mathbb{E}_{v_i \sim F_i}[p_i(v_i, v_{-i})] = \int_0^{v_{\text{max}}} x_i(z, v_{-i}) \phi(z) f_i(z) dz.$$



$$\mathbb{E}_{v_i \sim F_i}[p_i(v_i, v_{-i})] = \mathbb{E}_{v_i \sim F_i}[\phi(v_i)x_i(v_i, v_{-i})]$$

$$\mathbb{E}_{v_i \sim F_i}[p_i(v_i, v_{-i})] = -\int_0^{v_{\text{max}}} x_i(z, v_{-i}) \frac{(1 - F_i(z) - z f_i(z))}{f_i(z)} f_i(z) dz.$$

Set  $\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$  (called **virtual** valuations) and we get

$$\mathbb{E}_{v_i \sim F_i}[p_i(v_i, v_{-i})] = \int_0^{v_{\text{max}}} x_i(z, v_{-i}) \phi(z) f_i(z) dz.$$



$$\mathbb{E}_{v_i \sim F_i}[p_i(v_i, v_{-i})] = \mathbb{E}_{v_i \sim F_i}[\phi(v_i)x_i(v_i, v_{-i})]$$



Rev = 
$$\mathbb{E}_{v \sim F_1, \dots, F_n} \left[ \sum_i p_i(v) \right] = \mathbb{E}_{v \sim F_1, \dots, F_n} \left[ \sum_i x_i(v) \phi_i(v) \right]$$

#### Approach:

- Step 1: Assume, without justification, that bidders bid truthfully. How should we design the allocation so that we can maximize virtual social welfare,  $\sum x_i(v)\phi_i(v)$ ?
- Step 2: Given our answer to Step 1, how should we set the payments so that DSIC holds? According to Myerson's Lemma

#### Approach:

- Step 1: Assume, without justification, that bidders bid truthfully. How should we design the allocation so that we can maximize virtual social welfare,  $\sum x_i(v)\phi_i(v)$ ?
- Step 2: Given our answer to Step 1, how should we set the payments so that DSIC holds? According to Myerson's Lemma

Issue: Higher valuation  $v_i$  gives higher  $x_i$  (is the allocation monotone)? Depends on  $F_i$ .

#### Approach:

- Step 1: Assume, without justification, that bidders bid truthfully. How should we design the allocation so that we can maximize virtual social welfare,  $\sum x_i(v)\phi_i(v)$ ?
- Step 2: Given our answer to Step 1, how should we set the payments so that DSIC holds? According to Myerson's Lemma

Issue: Higher valuation  $v_i$  gives higher  $x_i$  (is the allocation monotone)? Depends on  $F_i$ .

**Definition** (Regular F). A distribution F is regular if the corresponding virtual valuation function  $v - \frac{1 - F(v)}{f(v)}$  is strictly increasing.

**Definition** (Regular F). A distribution F is regular if the corresponding virtual valuation function  $v - \frac{1 - F(v)}{f(v)}$  is strictly increasing.

It turns out that if  $F_i$  are regular, then in step 1, x is monotone.

**Definition** (Regular F). A distribution F is regular if the corresponding virtual valuation function  $v - \frac{1 - F(v)}{f(v)}$  is strictly increasing.

It turns out that if  $F_i$  are regular, then in step 1, x is monotone.

Example (Uniform is Regular): Let F be the uniform in [0,1]. The valuation is 2v-1 which is strictly increasing.

Consider a single item and n bidders with same F being regular.

Question: What is the allocation rule and the payment?

Consider a single item and n bidders with same F being regular.

Question: What is the allocation rule and the payment?

1) Give the item to the bidder with highest positive virtual valuation.

Consider a single item and n bidders with same F being regular.

Question: What is the allocation rule and the payment?

- 1) Give the item to the bidder with highest positive virtual valuation.
- 2) Since virtual is strictly increasing, the winner is the highest bidder, thus the allocation is monotone!

Consider a single item and n bidders with same F being regular.

Question: What is the allocation rule and the payment?

- 1) Give the item to the bidder with highest positive virtual valuation.
- 2) Since virtual is strictly increasing, the winner is the highest bidder, thus the allocation is monotone!
- 3) The winner i pays  $\phi_{i*}(v_{i*})$ .

Observe that this is a Vickrey auction with reserve price  $\phi^{-1}(0)$ . If valuations come from [0,1], to maximize welfare, set  $r=\frac{1}{2}$ .