L09 Complexity of Computing NE

CS 280 Algorithmic Game Theory

Ioannis Panageas
Inspired and some figures
by C. Daskalakis slides and T. Roughgarden notes

Warm-up: Reductions in NP

Example: INDEPENDENT SET (IS) Problem

Given a simple undirected graph $G(V, E)$ and k, is there an independent set in G of size $\geq k$. Independent set is called a set $I \subset V$ of vertices such that pairwise the vertices in I are not connected.

Warm-up: Reductions in NP

Example: INDEPENDENT SET (IS) Problem

Given a simple undirected graph $G(V, E)$ and k, is there an independent set in G of size $\geq k$. Independent set is called a set $I \subset V$ of vertices such that pairwise the vertices in I are not connected.

Claim: INDEPENDENT SET is NP-complete.
Proof: (1) INDEPENDENT SET belongs to NP (why?).
(2) Reduce 3-SAT to INDEPENDENT SET. Since 3-SAT is NP-
hard, INDEPENDENT SET is NP-hard.

Warm-up: Reductions in NP

Example: INDEPENDENT SET (IS) Problem

Given a simple undirected graph $G(V, E)$ and k, is there an independent set in G of size $\geq k$. Independent set is called a set $I \subset V$ of vertices such that pairwise the vertices in I are not connected.

Claim: INDEPENDENT SET is NP-complete.

> (1), (2) imply IND. SET
is NP-complete!
Proof: (1) INDEPENDENT SET belongs to NP (why?).
(2) Reduce 3-SAT to INDEPENDENT SET. Since 3-SAT is NP-
hard, INDEPENDENT SET is NP-hard.

3-SAT reduction to IS

Problem: 3-SAT

Given a Boolean expression E, such that E is a conjunction of clauses, where each clause is a disjunction of exactly 3 literals, is E satisfiable?

3-SAT reduction to IS

Problem: 3-SAT

Given a Boolean expression E, such that E is a conjunction of clauses, where each clause is a disjunction of exactly 3 literals, is E satisfiable?
A literal is a Boolean expression consisting of just a single Boolean variable, or the negation of a Boolean variable.

- Example: " $\neg x_{1}$ " and " x_{2} " are literals.

A clause is a Boolean expression of the form " $\ell_{1} \vee \ell_{2} \vee \cdots \vee \ell_{k}$ ", i.e. a disjunction of some literals $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$. In 3-SAT $k=3$.

- Example: " $\mathrm{C}_{1} \equiv x_{1} \vee \neg x_{2} \vee x_{3}$ " is a clause.

A Boolean expression is a conjunction of clauses.
Example: " $E \equiv C_{1} \wedge C_{2} \wedge C_{3}$ " is a clause.

3-SAT reduction to IS

Satisfiability: Can you assign True, False to the variables so that the expression is True?
Theorem (3-SAT is NP-complete). The 3-SAT problem is NP-complete!

3-SAT reduction to IS

Satisfiability: Can you assign True, False to the variables so that the expression is True?
Theorem (3-SAT is NP-complete). The 3-SAT problem is NP-complete!

$$
E=\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right)
$$

3-SAT reduction to IS

Satisfiability: Can you assign True, False to the variables so that the expression is True?
Theorem (3-SAT is NP-complete). The 3-SAT problem is NP-complete!

3-SAT reduction to IS

Claim: Expression E with k clauses is satisfiable if and only if the induced graph G has an IS of size k.

Therefore, given a graph \boldsymbol{G} and a \boldsymbol{k}, if we can identify in poly-time if there exists an Independent Set of size at least \mathbf{k}, then we can solve in poly-time 3-SAT.

3-SAT reduction to IS

Claim: Expression E with k clauses is satisfiable if and only if the induced graph G has an IS of size k.

Therefore, given a graph \boldsymbol{G} and a \boldsymbol{k}, if we can identify in poly-time if there exists an Independent Set of size at least \mathbf{k}, then we can solve in poly-time 3-SAT.

$$
\begin{aligned}
& 3-\text { SAT } \leq_{p} \text { INDEPENDENT SET } \Rightarrow \\
& \text { INDEPENDENT SET is NP-complete! }
\end{aligned}
$$

3-SAT reduction to IS

Claim: Expression E with k clauses is satisfiable if and only if the induced graph G has an IS of size k.

Therefore, given a graph \boldsymbol{G} and a \boldsymbol{k}, if we can identify in poly-time if there exists an Independent Set of size at least \mathbf{k}, then we can solve in poly-time 3-SAT.

$$
\begin{aligned}
& 3 \text {-SAT } \leq_{p} \text { INDEPENDENT SET } \Rightarrow \\
& \text { INDEPENDENT SET is NP-complete! }
\end{aligned}
$$

Question: Can the problem of computing a Nash Equilibrium be NPcomplete?

3-SAT reduction to IS

Claim: Expression E with k clauses is satisfiable if and only if the induced graph G has an IS of size k.

Therefore, given a graph \boldsymbol{G} and a \boldsymbol{k}, if we can identify in poly-time if there exists an Independent Set of size at least \mathbf{k}, then we can solve in poly-time 3-SAT.

$$
\begin{aligned}
& 3-\text { SAT } \leq_{p} \text { INDEPENDENT SET } \Rightarrow \\
& \text { INDEPENDENT SET is NP-complete! }
\end{aligned}
$$

Question: Can the problem of computing a Nash Equilibrium be NPcomplete?

Answer: (Megiddo) Suppose we have a reduction from SAT to NASH, s.t any solution to the instance of NASH tells us whether or not the SAT instance has a solution. Then we could turn this into a nondeterministic algorithm for verifying that an instance of SAT has no solution: Just guess a solution of the NASH instance, and check that it indeed implies that the SAT instance has no solution. NP = co-NP (unlikely).

The class PLS

PLS (Polynomial-time Local Search) is a complexity class intended to exemplify local search problems. An abstract local search problem is specified by three polynomial-time algorithms.

Canonical Problem: LOCAL MAX-CUT

Given an undirected graph $G=(V, E)$ with non-negative weights w_{e} on edges, find a cut (S, \bar{S}) that maximizes the total weight of cut edges. You are allowed to do only local moves that improve the objective, i.e., moving one vertex v from one side of the cut to the other that improves the total weight of cut edges.

The class PLS

PLS (Polynomial-time Local Search) is a complexity class intended to exemplify local search problems. An abstract local search problem is specified by three polynomial-time algorithms.

Canonical Problem: LOCAL MAX-CUT

Given an undirected graph $G=(V, E)$ with non-negative weights w_{e} on edges, find a cut (S, \bar{S}) that maximizes the total weight of cut edges. You are allowed to do only local moves that improve the objective, i.e., moving one vertex v from one side of the cut to the other that improves the total weight of cut edges.

Remark: (classic) MAX-CUT is NP-Complete.

The class PLS

PLS (Polynomial-time Local Search) is a complexity class intended to exemplify local search problems. An abstract local search problem is specified by three polynomial-time algorithms.

1. The first algorithm takes as input an instance and outputs an arbitrary feasible solution (for LOCAL MAX-CUT this is an arbitrary cut).

The class PLS

PLS (Polynomial-time Local Search) is a complexity class intended to exemplify local search problems. An abstract local search problem is specified by three polynomial-time algorithms.

1. The first algorithm takes as input an instance and outputs an arbitrary feasible solution (for LOCAL MAX-CUT this is an arbitrary cut).
2. The second algorithm takes as input an instance and a feasible solution, and returns the objective function value of the solution (for LOCAL MAX-CUT it is the sum of the total weight of the edges crossing the cut).

The class PLS

PLS (Polynomial-time Local Search) is a complexity class intended to exemplify local search problems. An abstract local search problem is specified by three polynomial-time algorithms.

1. The first algorithm takes as input an instance and outputs an arbitrary feasible solution (for LOCAL MAX-CUT this is an arbitrary cut).
2. The second algorithm takes as input an instance and a feasible solution, and returns the objective function value of the solution (for LOCAL MAX-CUT it is the sum of the total weight of the edges crossing the cut).
3. The third algorithm takes as input an instance and a feasible solution and either reports "locally optimal" or produces a better solution (for LOCAL MAX-CUT it checks all possible $|V|$ moves. If one improves the objective choose that move).
Theorem (Local Max-cut is PLS-complete). The LOCAL MAX-CUT problem is PLS-complete.

The complexity of Pure Nash Eq.

Theorem (PNE in congestion games is PLS-complete). The problem of computing Pure Nash Equilibria in Congestion Games is PLS-complete.

Proof. We show first that PNE CONGESTION GAMES \in PLS.
Describe the three algorithms:

- First algorithm takes as input a congestion game and returns an arbitrary strategy profile (e.g., all agents choose first path).

The complexity of Pure Nash Eq.

Theorem (PNE in congestion games is PLS-complete). The problem of computing Pure Nash Equilibria in Congestion Games is PLS-complete.

Proof. We show first that PNE CONGESTION GAMES \in PLS.
Describe the three algorithms:

- First algorithm takes as input a congestion game and returns an arbitrary strategy profile (e.g., all agents choose first path).
- Second algorithm takes a congestion game and a strategy profile s, and returns the value of the potential function $\Phi(s)=\sum_{e} \sum_{j=1}^{l_{e}(s)} c_{e}(j)$.

The complexity of Pure Nash Eq.

Theorem (PNE in congestion games is PLS-complete). The problem of computing Pure Nash Equilibria in Congestion Games is PLS-complete.

Proof. We show first that PNE CONGESTION GAMES \in PLS.
Describe the three algorithms:

- First algorithm takes as input a congestion game and returns an arbitrary strategy profile (e.g., all agents choose first path).
- Second algorithm takes a congestion game and a strategy profile s, and returns the value of the potential function $\Phi(s)=\sum_{e} \sum_{j=1}^{l_{e}(s)} c_{e}(j)$.
- The third algorithm checks if the given strategy profile s is a PNE; if not, we find an agent i that deviates from s_{i} to another pure s_{i}^{\prime} and decreases her utility. Then $\Phi\left(s_{i}^{\prime}, s_{-i}\right)<\Phi\left(s_{i}, s_{-i}\right)$. This can be done polynomial time in the description of the game.

The complexity of Pure Nash Eq.

Theorem (PNE in congestion games is PLS-complete). The problem of computing Pure Nash Equilibria in Congestion Games is PLS-complete.

Proof cont. We now reduce LOCAL MAX-CUT to PNE CONGESTION GAMES.

Given a weighted graph $G(V, E)$ we define the following congestion game:

- Agents are the vertices V.

The complexity of Pure Nash Eq.

Theorem (PNE in congestion games is PLS-complete). The problem of computing Pure Nash Equilibria in Congestion Games is PLS-complete.

Proof cont. We now reduce LOCAL MAX-CUT to PNE CONGESTION GAMES.

Given a weighted graph $G(V, E)$ we define the following congestion game:

- Agents are the vertices V.
- For each edge $e \in E$ we have two resources $r_{e}, \bar{r}_{e}(2|E|$ resources in total).

The complexity of Pure Nash Eq.

Theorem (PNE in congestion games is PLS-complete). The problem of computing Pure Nash Equilibria in Congestion Games is PLS-complete.

Proof cont. We now reduce LOCAL MAX-CUT to PNE CONGESTION GAMES.

Given a weighted graph $G(V, E)$ we define the following congestion game:

- Agents are the vertices V.
- For each edge $e \in E$ we have two resources $r_{e}, \bar{r}_{e}(2|E|$ resources in total).
- Each player v has two strategies, $s_{v}=\left\{r_{e}: e\right.$ is incident to $\left.v\right\}$ and $\bar{s}_{v}=\left\{\bar{r}_{e}: e\right.$ is incident to $\left.v\right\}$.

The complexity of Pure Nash Eq.

Theorem (PNE in congestion games is PLS-complete). The problem of computing Pure Nash Equilibria in Congestion Games is PLS-complete.

Proof cont. We now reduce LOCAL MAX-CUT to PNE CONGESTION GAMES.

Given a weighted graph $G(V, E)$ we define the following congestion game:

- Agents are the vertices V.
- For each edge $e \in E$ we have two resources $r_{e}, \bar{r}_{e}(2|E|$ resources in total).
- Each player v has two strategies, $s_{v}=\left\{r_{e}: e\right.$ is incident to $\left.v\right\}$ and $\bar{s}_{v}=\left\{\bar{r}_{e}: e\right.$ is incident to $\left.v\right\}$.
- The cost $c_{r_{e}} / c_{\bar{r}_{e}}$ of a resource r_{e} or \bar{r}_{e} is 0 if one agent uses it and w_{e} if two players use it.

This transformation is poly-time.

The complexity of Pure Nash Eq.

Theorem (PNE in congestion games is PLS-complete). The problem of computing Pure Nash Equilibria in Congestion Games is PLS-complete.

Proof cont. We now reduce LOCAL MAX-CUT to PNE CONGESTION GAMES.

Each agent has two strategies, red and green.
Say agents v_{1}, v_{2} choose red and v_{3}, v_{4} choose green. Cost of v_{1}, v_{2} is $w_{e_{1}}$ and of v_{3}, v_{4} is $w_{e_{5}}$.

The complexity of Pure Nash Eq.

Proof cont. Observe that there is a bijection between strategy profiles of this congestion game and cuts of the given graph G.

The complexity of Pure Nash Eq.

Proof cont. Observe that there is a bijection between strategy profiles of this congestion game and cuts of the given graph G. Given a cut (S, \bar{S}) (agents in S choose red and agents in \bar{S} choose green strategy), we have that

$$
w(S, \bar{S})=\sum_{e=(u, v): u \in S, v \in \bar{S}} w_{e}=\sum_{e \in E} w_{e}-\Phi(s, \bar{s})
$$

The complexity of Pure Nash Eq.

Proof cont. Observe that there is a bijection between strategy profiles of this congestion game and cuts of the given graph G. Given a cut (S, \bar{S}) (agents in S choose red and agents in \bar{S} choose green strategy), we have that

$$
w(S, \bar{S})=\sum_{e=(u, v): u \in S, v \in \bar{S}} w_{e}=\sum_{e \in E} w_{e}-\Phi(s, \bar{s}) .
$$

Therefore:

- Cuts with larger weight correspond to strategy profiles with smaller potential.
- Local maxima of cuts of G correspond to local minima of the potential function.

The class PPAD

Suppose that an exponentially large graph with vertex set $\{0,1\}^{\mathrm{n}}$ (i.e, 2^{n} vertices) is defined by two circuits:

Example:
$N\left(v_{1}\right)=v_{2}$ and $P\left(v_{2}\right)=v_{1}$

The class PPAD

Suppose that an exponentially large graph with vertex set $\{0,1\}^{\mathrm{n}}$ (i.e, 2^{n} vertices) is defined by two circuits:

Canonical Problem:
END OF THE LINE: Given P, N : If 0^{n} is an unbalanced node, find another unbalanced node. Otherwise return 0^{n}.
PPAD (Papadimitriou 94'): All problems in FNP reducible to END OF THE LINE.

2D Sperner's Lemma

Theorem (A trichromatic triangle always exist). Consider triangulation of 2d simplex Δ and a proper 3-coloring, that assign each vertex a different color and inside vertices on each edge of Δ use only the two colors of the respective endpoints. Then there always exists a trichromatic triangle (odd in number!).

2D Sperner's Lemma

Theorem (A trichromatic triangle always exist). Consider triangulation of 2d simplex Δ and a proper 3-coloring, that assign each vertex a different color and inside vertices on each edge of Δ use only the two colors of the respective endpoints. Then there always exists a trichromatic triangle (odd in number!).

2D Sperner's Lemma

Theorem (A trichromatic triangle always exist). Consider triangulation of 2d simplex Δ and a proper 3-coloring, that assign each vertex a different color and inside vertices on each edge of Δ use only the two colors of the respective endpoints. Then there always exists a trichromatic triangle (odd in number!).

2D Sperner's Lemma

Theorem (A trichromatic triangle always exist). Consider triangulation of 2d simplex Δ and a proper 3-coloring, that assign each vertex a different color and inside vertices on each edge of Δ use only the two colors of the respective endpoints. Then there always exists a trichromatic triangle (odd in number!).

2D Sperner's Lemma

Theorem (A trichromatic triangle always exist). Consider triangulation of 2d simplex Δ and a proper 3-coloring, that assign each vertex a different color and inside vertices on each edge of Δ use only the two colors of the respective endpoints. Then there always exists a trichromatic triangle (odd in number!).

2D Sperner's Lemma

Proof. We introduce an outer boundary for conveniece that does not create new trichromatic triangles. Next we define a directed walk starting from the bottom-left triangle.

Intro to AGT

2D Sperner's Lemma

Proof. We introduce an outer boundary for conveniece that does not create new trichromatic triangles. Next we define a directed walk starting from the bottom-left triangle.

Intro to AGT

2D Sperner's Lemma

Proof. We introduce an outer boundary for conveniece that does not create new trichromatic triangles. Next we define a directed walk starting from the bottom-left triangle.

Intro to AGT

2D Sperner's Lemma

Proof. We introduce an outer boundary for conveniece that does not create new trichromatic triangles. Next we define a directed walk starting from the bottom-left triangle.

Intro to AGT

2D Sperner's Lemma

Proof. We introduce an outer boundary for conveniece that does not create new trichromatic triangles. Next we define a directed walk starting from the bottom-left triangle.

Intro to AGT

2D Sperner's Lemma

Proof. We introduce an outer boundary for conveniece that does not create new trichromatic triangles. Next we define a directed walk starting from the bottom-left triangle.

Intro to AGT

2D Sperner's Lemma

Proof. We introduce an outer boundary for conveniece that does not create new trichromatic triangles. Next we define a directed walk starting from the bottom-left triangle.

Intro to AGT

2D Sperner's Lemma

Proof. We introduce an outer boundary for conveniece that does not create new trichromatic triangles. Next we define a directed walk starting from the bottom-left triangle.

Intro to AGT

2D Sperner's Lemma

Proof. We introduce an outer boundary for conveniece that does not create new trichromatic triangles. Next we define a directed walk starting from the bottom-left triangle.

Intro to AGT

2D Sperner's Lemma

Proof. We introduce an outer boundary for conveniece that does not create new trichromatic triangles. Next we define a directed walk starting from the bottom-left triangle.

Intro to AGT

2D Sperner's Lemma

Proof cont.

- The walk cannot exit the outer triangle (why?).

2D Sperner's Lemma

Proof cont.

- The walk cannot exit the outer triangle (why?).
- The walk does not contain ρ shapes (why?).

The walk will terminate incide somewhere! That small triangle should be trichromatic!

2D Sperner's Lemma

Proof cont.

- The walk cannot exit the outer triangle (why?).
- The walk does not contain ρ shapes (why?).

Sperner's Lemma can be generalized
for higher dimensions. SPERNER problem is like END OF THE LINE!
te incide somewhere! ould be trichromatic!

BROUWER

Definition (BROUWER). The problem BROUWER is defined below:
Input: A poly-time algorithm Π_{F} for the evaluation of a function
$F:[0,1]^{m} \rightarrow[0,1]^{m}$, a constant K such that F is K-Lipschitz and accuracy ϵ.

Output: A (rational) point x so that

$$
\|F(x)-x\|_{\infty} \leq \epsilon
$$

i.e., x is an approximate fixed point.

BROUWER

Definition (BROUWER). The problem BROUWER is defined below:
Input: A poly-time algorithm Π_{F} for the evaluation of a function
$F:[0,1]^{m} \rightarrow[0,1]^{m}$, a constant K such that F is K-Lipschitz and accuracy ϵ.

Output: A (rational) point x so that

$$
\|F(x)-x\|_{\infty} \leq \epsilon
$$

i.e., x is an approximate fixed point.

We will show that

BROUWER \rightarrow SPERNER

2D BROUWER reduction to SPERNER

Let $F:[0,1]^{2} \rightarrow[0,1]^{2}$. By uniform continuity
there exists a $\delta(\epsilon)$ so that

$$
\|x-y\|_{\infty} \leq \delta \Rightarrow\|F(x)-F(y)\|_{\infty} \leq \epsilon .
$$

2D BROUWER reduction to SPERNER

Let $F:[0,1]^{2} \rightarrow[0,1]^{2}$. By uniform continuity
there exists a $\delta(\epsilon)$ so that

$$
\|x-y\|_{\infty} \leq \delta \Rightarrow\|F(x)-F(y)\|_{\infty} \leq \epsilon
$$

2D BROUWER reduction to SPERNER

Let $F:[0,1]^{2} \rightarrow[0,1]^{2}$. By uniform continuity there exists a $\delta(\epsilon)$ so that

$$
\|x-y\|_{\infty} \leq \delta \Rightarrow\|F(x)-F(y)\|_{\infty} \leq \epsilon
$$

Color the nodes of the triangulation according to the direction of $f(x)-x$.

Tie-break at the boundary angles, so that the resulting coloring respects the boundary conditions!

2D BROUWER reduction to SPERNER

Claim. Choose $\delta=\min (\delta(\epsilon), \epsilon)$ and let v^{y} be the yellow vertex of a trichromatic triangle. It holds that

$$
\left\|F\left(v^{y}\right)-v^{y}\right\|_{\infty} \leq 2 \epsilon .
$$

Color the nodes of the triangulation according to the direction of $f(x)-x$.

Tie-break at the boundary angles, so that the resulting coloring respects the boundary conditions!

2D BROUWER reduction to SPERNER

Color the nodes of the triangulation according to the direction of $f(x)-x$.

Tie-break at the boundary angles, so that the resulting coloring respects the boundary conditions!

NASH reduction to BROUWER

We will not see the proof, just an idea.

NASH reduction to BROUWER

We will not see the proof, just an idea.
Consider the 2×2 mathcing pennies.

Consider the function f from the proof of Nash.

$$
f_{i s_{i}}(x)=\frac{x_{i}\left(s_{i}\right)+\max \left\{u_{i}\left(s_{i} ; x_{-i}\right)-u_{i}(x), 0\right\}}{1+\sum_{s^{\prime} \in S_{i}} \max \left\{u_{i}\left(s^{\prime} ; x_{-i}\right)-u_{i}(x), 0\right\}}
$$

NASH reduction to BROUWER

$$
f_{i s_{i}}(x)=\frac{x_{i}\left(s_{i}\right)+\max \left\{u_{i}\left(s_{i} ; x_{-i}\right)-u_{i}(x), 0\right\}}{1+\sum_{s^{\prime} \in S_{i}} \max \left\{u_{i}\left(s^{\prime} ; x_{-i}\right)-u_{i}(x), 0\right\}}
$$

$$
1,-1
$$

$-1,1$
1,-1

Draw the vector field for $f(x)-x$.

NASH reduction to BROUWER

$$
f_{i s_{i}}(x)=\frac{x_{i}\left(s_{i}\right)+\max \left\{u_{i}\left(s_{i} ; x_{-i}\right)-u_{i}(x), 0\right\}}{1+\sum_{s^{\prime} \in S_{i}} \max \left\{u_{i}\left(s^{\prime} ; x_{-i}\right)-u_{i}(x), 0\right\}}
$$

$1,-1$	$-1,1$
$-1,1$	$1,-1$

Draw the vector field for $f(x)-x$. Color the points according to

NASH reduction to BROUWER

$$
f_{i s_{i}}(x)=\frac{x_{i}\left(s_{i}\right)+\max \left\{u_{i}\left(s_{i} ; x_{-i}\right)-u_{i}(x), 0\right\}}{1+\sum_{s^{\prime} \in S_{i}} \max \left\{u_{i}\left(s^{\prime} ; x_{-i}\right)-u_{i}(x), 0\right\}}
$$

$1,-1$	$-1,1$
$-1,1$	$1,-1$

Draw the vector field for $f(x)-x$. Color the points according to

NASH reduction to BROUWER

$$
f_{i s_{i}}(x)=\frac{x_{i}\left(s_{i}\right)+\max \left\{u_{i}\left(s_{i} ; x_{-i}\right)-u_{i}(x), 0\right\}}{1+\sum_{s^{\prime} \in S_{i}} \max \left\{u_{i}\left(s^{\prime} ; x_{-i}\right)-u_{i}(x), 0\right\}}
$$

$1,-1$	$-1,1$
$-1,1$	$1,-1$

Draw the vector field for $f(x)-x$. Color the points according to

Inclusions we showed

 $\mathrm{NP} \cap c o-\mathrm{NP}$

NASH

Theorem ((NASH is PPAD-complete) Daskalakis, Goldberg, Papadimitriou). NASH is PPAD-complete.

PPAD \longrightarrow SPERNER \longrightarrow BROUWER
 NASH

Inclusions: The full picture NP^co-NP

NASH

