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Playing the experts game

Definition. For each day t = 1...T, you have to choose between alternatives A, B
(e.g., rain or not rain).

e Choose A or B according to some rule.
e One of the alternatives realizes.
e If you choose correctly you are not penalized otherwise you lose one point.

e [magine that there are n experts who on each day t, recommend either A or B.
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Playing the experts game

Definition. For each day t = 1...T, you have to choose between alternatives A, B
(e.g., rain or not rain).

e Choose A or B according to some rule.
e One of the alternatives realizes.
e If you choose correctly you are not penalized otherwise you lose one point.

e [magine that there are n experts who on each day t, recommend either A or B.

Can you be correct all the time? What is the “right” objective?

Perform close to best expert!
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Playing the experts game

Algorithm (Weighted Majority). We define the following algorithm:

1. Initialize w) =1 for all i € [n]. Rem?rksz _
* € isthe stepsize (to be

2. For t=1 ... T do chosen later).

300 IEY doose AW > D hoose B WS * Performs almost as good
4. Choose A, otherwise B. as. best” expert (fewest

mistakes)

5. End If

6. For expert ¢ that made a mistake do

7. wt = (1 — e)wi .

8. End For

9. For expert ¢ that did not make a mistake do
10. wl = wf_l.
11. End For
12. End For
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Playing the experts game

Theorem (Weighted Majority). Let My, ME be the total number of mistakes the
algorithm and best expert make until step T, respectively. It holds that

Mr <2(1+e)ME + 10?”.

Proof. Let’s define the potential function ¢ = Y, w?.
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Playing the experts game

Theorem (Weighted Majority). Let My, ME be the total number of mistakes the
algorithm and best expert make until step T, respectively. It holds that

Mr <2(1+e)ME + log

Proof. Let’s define the potential function ¢ = >, w!
® Qo =n.

® Cbt—{—l S d)t (Why?)

Intro to AGT



Playing the experts game

Theorem (Weighted Majority). Let My, ME be the total number of mistakes the
algorithm and best expert make until step T, respectively. It holds that

1
Mr < 2(1+e)MB + Of”’.

Proof. Let’s define the potential function ¢ = Y, w?.
® ¢p =mn.

® Cbt—kl S d)t (Why?)

Observe that if we make a mistake at time ¢ then the majority was wrong, that
is at least % will be multiplied by (1 — €).

Hence, if we make a mistake then ¢, < (1 — 6)% - % = (1 — <)oy
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Playing the experts game

Theorem (Weighted Majority). Let My, ME be the total number of mistakes the
algorithm and best expert make until step T, respectively. It holds that

1
Mr < 2(1+e)MB + Of”’.

Proof. Let’s| That is ¢441 < (1 — §)¢: when we do a mistake, otherwise
® ¢

* P ¢ < (1 — %)MT P1.

Observe tha - that
is at least % will be multiplied by (1 — €).

just ¢r11 < @¢. Since we have M7 mistakes, then

Hence, if we make a mistake then ¢, < (1 — 6)% - % = (1—5)o¢
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Playing the experts game

Proof cont. Moreover, assuming the best expert (say i*) did MF mistakes, we
have .
O >w3,: = (I—G)MT.
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Playing the experts game

Proof cont. Moreover, assuming the best expert (say i*) did MF mistakes, we
have .
O >w3,: = (I—G)MT.

We conclude that

(1— e)M’IJ? < (1 — E)MT n.

By taking the log, M5 log(1 — ¢€) < log(1 — €/2) M7 + log n.
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Playing the experts game

Proof cont. Moreover, assuming the best expert (say i*) did MF mistakes, we
have .
O >w3,: = (I—G)MT.

We conclude that

(1— e)M’IJ? < (1 — E)MT n.

By taking the log, M5 log(1 — ¢€) < log(1 — €/2) M7 + log n.

Since —x — 22 < log(l — z) < —z,|MF(—€ — €*) < —Mye/2 + logn.
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The general setting

Definition. At each time step t = 1...T.
® Player chooses x; € Ay.
e Adversary chooses uy € [—1,1]".

e Player gets payoff x, u; and observes u;.
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The general setting

Definition. At each time step t = 1...T.
® Player chooses x; € Ay.
e Adversary chooses uy € [—1,1]".

e Player gets payoff x, u; and observes u;.

Player’s goal is to minimize the (time average) Regret, that is:

— | max E z ! Up — E x, Ug | -
[a:EA t
maX E x ! Ut — E T, ut] .
) E

If Regret = 0 as T — oo, the algorithm is called no-regret.
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Multiplicative Weights Update

Algorithm (MWU). We define the following algorithm:

Remarks:
* €isthe stepsize (to be

1. Initialize pY = & for all i € [n].
chosen later).

Ze il e e ¢ Performs almost as good
3. For ecach ¢ that gives payoff u;; do as best” expert (fewest
" P+l pp L mistakes)_. |

’ ‘  The algorithm is also
5. End For called Multiplicative
6. End For Weights Update!

 ZE=Fpt(l+eug)is

renormalization
constant.
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Multiplicative Weights Update

Theorem (MWU). It holds that

1 log n
T;u:ptzmj?xzt:xTut— egT — €.

Proof. Let’s define the potential function ¢, = >, w} where
w; = szo(l + €l i)
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Multiplicative Weights Update

Theorem (MWU). It holds that

— u >max xut logn — €.
th Z: eT

Proof. Let’s define the potential function ¢, = >, w} where
w; = szo(l + €U ;).
Let the best strategy be ¢*, we have

T 2 T 2
P > wh > e 2us=0Usi* 7€ Doz Ui

Now ¢rp1 = Y wi ' =D wi(l+ euy,;)
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Multiplicative Weights Update

Theorem (MWU). It holds that

— u >max xut logn — €.
th Z: eT

Proof. Let’s define the potential function ¢, = >, w} where
w; = szo(l + €U ;).
Let the best strategy be ¢*, we have

T 2 T 2
P > wh > e 2us=0Usi* 7€ Doz Ui

Now ¢rp1 = Y wi ' =D wi(l+ euy,;)

= > &P} (1 + €ur ;)
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Multiplicative Weights Update

Theorem (MWU). It holds that

— u >max xut log 7 — €.
th Z: eT

Proof. Let’s define the potential function ¢, = > . w! where
w; = szo(l + €U ;).
Let the best strategy be ¢*, we have

b > wh > e Lm0 Yot —€ Lamo Ui v
Now gri1 = L wi™ = wi(l + eur,)
t+1 ? 7 t,7

= > oepi (1 + euy ;)
= ¢ > pH(1 + euyy)

Intro to AGT



Multiplicative Weights Update

Proof cont. Therefore

P41 = O (1 + € pruzt)
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Multiplicative Weights Update

Proof cont. Therefore
P41 = O (1 + € pruzt)

_
< ¢ref 2 Pitie = prett P’
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Multiplicative Weights Update

Proof cont. Therefore
P41 = O (1 + € pruzt)

_
< ¢ref 2 Pitie = prett P’

Telescopic product gives

. B
dr < poet 2P = el P
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Multiplicative Weights Update

Proof cont. Therefore

Pt+1 = Py (1 T Zpguz',t)

_
< Cf)teezipzui’t = et P’

Telescopic product gives

T t B
O < et e P = pefi e P

T 2T 2 T ¢ )
Therefore e€2os=0 %a.i* =€ 2s=0%si* < et P or equivalently

€OPT — T < eOPT — 23!, uZ;, <logn+ed>,u/lp.
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Multiplicative Weights Update

Proof cont. Therefore

,
Sete > |— and we get regret

\/7 (No-regret!)

Telescopic product gives

T, t Tt
b1 < poet U P = pefli i P

2 T 2

T .
Therefore €€ 2a=0 %e.i* ~€ Za—o Us,ix < e s Ui P’ , or equivalently

€eOPT — 2T < eOPT — € ZS:O uZ;, <logn+ed>,u/lp.
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Minimax Theorem

Theorem (Minimax by John von Neumann). Let A a matrix of size n X m.

min max x ' Ay = max min x ' Ay
XEA, YEA, YEA, XEA,

Remarks
 The above is the value of the game.
* Note that It is always true (min-max inequality):

infxepc’ Supyey f(x;y) 2 Supyey infxEX f(x’ y)
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Minimax Theorem

Theorem (Minimax by John von Neumann). Let A a matrix of size n X m.

min max x ' Ay = max min x ' Ay
xXeEAL yEA, YEAL XEA,

Remarks
 The above is the value of the game.
* Note that It is always true (min-max inequality):

Define g(2) = ing'v f(z,w).
we

infyex sup,cy f(X,¥) 2 SUp,eyiry, v, . < f(zw)

— Yw, sup ¢g(z) < sup f(z,w)

— sup g(z) < infsup f(z, w)

— supinf f(z,w) < infsup f(z, w)

z
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Minimax Theorem

Theorem (Minimax by John von Neumann). Let A a matrix of size n X m.

min max x ' Ay = max min x ' Ay
xXeEAL yEA, YEAL XEA,

Proof. Let’s use no-regret learning for both ”players”!
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Minimax Theorem

Theorem (Minimax by John von Neumann). Let A a matrix of size n X m.
. T o . T
min max x Ay = max min x Ay
xXeEAL yEA, YEAL XEA,

Proof. Let’s use no-regret learning for both ”players”!

Let zcl,..;ﬁ xr and yi,...,yr be the iterates as advised by MWU and define
A A T
t=7>, rand g=+> . y;and T = @(n%)

Choose any z, then from the no-regret property for x we get that
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Minimax Theorem

Theorem (Minimax by John von Neumann). Let A a matrix of size n X m.
. T o . T
min max x Ay = max min x Ay
xXeEAL yEA, YEAL XEA,

Proof. Let’s use no-regret learning for both ”players”!

Let zcl,..;ﬁ xr and yi,...,yr be the iterates as advised by MWU and define
A A T
t=7>, rand g=+> . y;and T = @(n%)

Choose any z, then from the no-regret property for x we get that

ISl Ay < 25, 2T Ay 41
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Minimax Theorem

Theorem (Minimax by John von Neumann). Let A a matrix of size n X m.
. T o . T
min max x Ay = max min x Ay
xXeEAL yEA, YEAL XEA,

Proof. Let’s use no-regret learning for both ”players”!

Let zcl,..;ﬁ xr and yi,...,yr be the iterates as advised by MWU and define
A A T
t=7>, rand g=+> . y;and T = @(n%)

Choose any z, then from the no-regret property for x we get that
Tt Ay < 7250 Ay +

=zl A (%) +n.
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Minimax Theorem

Proof cont.

Choose any y, then from the no-regret property for y we get that

%Zt'x;rAyt > %Ztﬂ?;z‘ly—n

- (%) -
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Minimax Theorem

Proof cont.

Choose any y, then from the no-regret property for y we get that

%th;rAyt > %Ztﬂf;z‘ly—n
T
= (3) 4y -

We conclude that for all x,y we have

(%)TAy —m<z'A (Z,}yt) :
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Minimax Theorem

Proof cont.

Choose any y, then from the no-regret property for y we get that

%th;rAyt > %thCtTAy—??
T
= (%) 4y -

We conclude that for all x,y we have

—
max, (ZTxt) Ay — 2n < min,z' A (Z%yt) :

Zy ’yt)
T

Finally we get max, min, ' Ay > min, z' A (
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Minimax Theorem

Proof cont.

Choose any y, then from the no-regret property for y we get that

%th;rAyt > %thCtTAy—??
T
= (%) 4y -

We conclude that for all x,y we have

—
max, (ZTxt) Ay — 2n < min,z' A (Z%yt) :

Finally we get max, min, ' Ay > min, z' A (Z%yt)
1
> maxy, (%) Ay — 2n
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Minimax Theorem

Proof cont.

Choose any y, then from the no-regret property for y we get that

%Zt'x;rAyt > %Ztﬂ?;z‘ly—n
T
= (%) 4y -

We conclude that for all x,y we have

—
max, (ZTxt) Ay — 2n < min,z' A (Z,}yt) :

Finally we get max, min, ' Ay > min, z' A (#)
1
> maxy, (%) Ay — 2n

> min, max, z' Ay — 2n
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Minimax Theorem

Proof cont.

Choose a Set 7 — 0 and we are done!  §

%th;rAyt > %ZtQZ:Ay—'r]
T
= (%) 4y -

We conclude that for all x,y we have

T T

—
max, (th) Ay — 2np < min,z' A (Zt yt) :

Finally we get max, min,, x' Ay > ming z' A (z%yt)
T
> max, (%) Ay — 27

> min, max, x' Ay — 2n

Intro to AGT



