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Motivation

Real world problems are often sequential

Going through states requires taking actions. Taking action now affects the future

The Markov Decision Process (MPD) captures the above aspects and provides a general
framework for sequential decision-making.



Formalism
The Markov Decision Process is represented as a discrete-time dynamicsl system
reactive to the actions taken by the agent. Formally, MDP 

A finite state space 

A finite action space 

A transition model 

A reward function 

A discount factor 

An initial state distribution 

M = (S, A,P , r, γ,μ)

S

A

P : S × A → Δ(S)

r : S × A → [0, 1]

γ ∈ [0, 1)

μ ∈ Δ(S)



Policies
A decision-making protocol, a strategy in which the agent chooses actions.

Below is a deterministic policy:

Policies can also be stochastic, here is a stochastic one:

 100%  100%  100%

 50%,  50%  50%,  50%  50%,  50%  100%



Policies

Policies can use history: 

Or be Markovian: 

Policies can be stationary: 

Or be non-stationary: 

π : H → Δ(A)

π : S → Δ(A)

π  =t π, ∀t

∃ t, t :′ π  =t  π  t′



Values
Pick a policy, how good is that policy at every state?

V (s) =π E  γ r(s  , a  )∣π, s  = 0[
t=0

∑
∞

t
t t 0 ]

The value is the expected discounted sum of rewards collected under policy .

Values allow to query the quality of the current situation instead of waiting to
observe the long-run outcome.

π



Our Goal 
Given a state , the goal of the agent is to find a Markovian policy  that maximizes
the value:

 V (s)
π

max π

The  operator is over all (possibly non-stationary and randomized) policies.

Access to  yields optimal behavior if:

π (s) =⋆
 r(s, a) + γ  P (s ∣s, a)V (s )

a∈A

arg max {
s ∈S′

∑ ′ ′ }

s π

max()

V ⋆



Examples
Navigation

State: Current location

Actions: 4 cardinal directions

Transitions: Deterministic

Rewards: 1 if goal reached, else 0



Optimal policy: Shortest path from initial to goal state

Optimal value 

 

γd



Optimal Policies
Definition: Recall that  if and only if 

An optimal policy  is one which is as good as or better than any other policy . The
value function associated with that policy achieves maximum value in every state :

V (s) =π⋆
E  [  γ r(s  , a  )∣s  =π⋆

t=0

∑
∞

t
t t t s] =  V (s) ∀s ∈

π
max π S

All optimal policies have the same optimal value function which we denote by 

π  ≥1 π  2 v  (s) ≥π  1 v  (s) ∀s ∈π  2 S

π⋆ π′

s

V ⋆



Bellman Equations
bike

The Bellman equations allow us to relate the value of the current state with the value of
future states without waiting to observe rewards.

V (s) = r(s,π) + γ  P (s ∣s,π)V (s )
s ∈ S′

∑ ′ ′



Bellman Evaluation Operator
The Bellman evaluation operator  defined by its action on

 via any  in the following way:

(T V )(s) =π r(s,π(s)) + γ  P (s ∣s,π(s))V (s )
s ∈S′

∑ ′ ′

Notice the fixed point of this operator 

T V =π π V π

 is an affine linear operator yielding a linear system of equations.

T :π (S → R) → (S → R)
S V : S → R

V π

T π



Contraction and Monotonicity of 
Basic definitions:

Distance function: For value functions  we define their distance as the maximum
absolute value of the differences between values:

d(V ,V ) =′
 ∣V (s) −

s∈S
max V (s )∣′

Contraction Mapping: A function  is a contraction mapping if:

∃ k ∈ [0, 1) : d(f(x), f(y)) ≤ kd(x, y) ∀x, y

T  π

V ,V ′

f



Claim: The contraction property holds for Bellman evaluation operator . 
Proof: For any value  and any policy  we have:

  

d(T  V , T  V )π π
′ =  ∣γ  P (s ∣s,π(s))(V (s ) − V (s ))∣

s∈S
max

s ∈S′

∑ ′ ′ ′ ′

≤  γ  P (s ∣s,π(s))∣(V (s ) − V (s ))∣
s∈S

max
s ∈S′

∑ ′ ′ ′ ′

≤  γ  ∣(V (s ) − V (s ))∣
s∈S

max
s ∈S′
max ′ ′ ′

= γd(V ,V )′

Therefore,  is a contraction mapping.

T  ∀ ππ

V ,V ′ π

T  π



Bellman Optimality Equations
The optimal value is given by the Bellman Optimality Equation defined below:

By substituting  into the Bellman equation and leveraging the fact that an optimal
deterministic policy always exists, we replace the policy distribution over actions with
best action:

V (s) =⋆
 r(s, a) + γ  P (s ∣s, a)V (s ) ,  ∀s ∈

a
max (

s ∈S′

∑ ′ ⋆ ′ ) S

π⋆



Bellman Optimality Operator
Similarly to the Bellman evaluation operator, the Bellman optimality operator  is
defined as:

(T V )(s) =  r(s, a) + γ  P (s ∣s, a)V (s )
a∈A
max {

s ∈S′

∑ ′ ′ }

The optimal value  is a fixed point of the operator .

T

V ⋆ T



Contraction property of 
Consider an arbitrary  and we can write:

Case 1: (T  V )(s) ≤π (T  V )(s) +π
′ γd(V ,V )′

Case 2: (T  V )(s) ≤π
′ (T  V )(s) +π γd(V ,V )′

For any fixed , we take the  on both sides in Case 1 (same for Case 2):

 {T  V (s)} =
π∈Π
max π  {T  V (s)} ≤

π(s)∈A
max π  {T  V (s)} +

π(s)∈A
max π

′ γd(V ,V )′

⇒ T V (s) ≤ T V (s) +′ γd(V ,V )′

Similarly, Case 2 yields . 
Therefore: 

T

V ,V , ∀π′

s max

T V (s) ≤′ T V (s) + γd(V ,V )′

∣T V (s) − T V (s)∣ ≤′ γd(V ,V ) ∀s ∈′ S



The optimal value is unique!

When ,  is a max-norm contraction

The fixed-point equation  has a unique solution by the Banach Fixed
Point Theorem.

Unique solution is exactly !

γ ∈ (0, 1) T π

T V =π V

V π



Why bother?

The uniqueness of the optimal value  provides a guarantee that no matter out
initialization, given that the Bellman operator is a contraction mapping, converges
to the (unique) optimal value!

An algorithm that iteratively applies the Bellman operator, will always converge,
and the values in each state will be simultaneously optimal at every state .

V ⋆

s



How to solve MDPs
There are many ways to solve MDPs, each with their own benefits and drawbacks.

Dynamic Programming (DP). 
(+) Well developed mathematically 
(-) It requires the full description of the model of the environment (functions 

)

Monte Carlo methods (MC) 
(+) Do not require full model and are conceptually simple (just sample trajectories) 
(-) Noisy 
(-) Update are always done at the
Temporal Difference Methods (a combination of DP and MC), and more...

P , r, ∀s, a ∈ S × A



Value Iteration (DP)
Idea: We build a sequence of value functions. Let  be an initial vector, then we iterate
the application of the optimal Bellman operator so that given V_k at iteration k we
compute:

V  =k+1 TV  k

which means, :

  

V  (s)k+1 =  E[r  + γV  (s  )∣s  = s, a  = a]
a∈A
max t+1 k t+1 t t

=   P (s ∣s, a)[r(s, a) + γV  (s )]
a∈A
max

s′

∑ ′
k

′

 will converge to  and the value at the fixed point  is optimal.

V  0

∀s ∈ S

{V  }k V ⋆ V ⋆



Value Iteration (DP)

We know that the Bellman optimality operator  has a unique fixed point. We
found one above and the uniqueness of it is settles from the contraction property
of the Bellman operator.

 is a fixed point of  by the Bellman optimality equation

By the Banach fixed point theorem, value iteration converges to  at a geometric
rate.

T ⋆

V ⋆ T ⋆

V ⋆



The policy will be given at every iteration as:

π  =k  r(s, a) +
a

arg max γ  P (s ∣s, a)V  (s )
s′

∑ ′
k

′

After  steps, we have error .k =  log  

γ
1

log  ϵ
1

ϵ


