Markov games 🤖🤖🎲🎲

Multiple agents interact with each other in a dynamically changing environment.
Motivation

Auctions

Self-driving cars

Robotics

E-Sports

Lect: Fivos Kalogannis
Mathematical definition

A Markov game is a tuple $\Gamma = (S, \mathcal{N}, \mathcal{A}, \{r_i\}, P, \gamma, \mu)$:

- a finite number of states S
Mathematical definition

A Markov game is a tuple $\Gamma = (S, \mathcal{N}, A, \{r_i\}, P, \gamma, \mu)$:

- a finite number of states S
- a finite number of players \mathcal{N}
Mathematical definition 🤔☁️1234

A Markov game is a tuple \(\Gamma = (\mathcal{S}, \mathcal{N}, \mathcal{A}, \{ r_i \}, P, \gamma, \mu) \):

- a finite number of states \(\mathcal{S} \)
- a finite number of players \(\mathcal{N} \)
- each agent \(i \in \mathcal{N} \) gets a finite number of actions \(\mathcal{A}_i \)
Mathematical definition

A Markov game is a tuple $\Gamma = (\mathcal{S}, \mathcal{N}, \mathcal{A}, \{r_i\}, P, \gamma, \mu)$:

- a finite number of states \mathcal{S}
- a finite number of players \mathcal{N}
- each agent $i \in \mathcal{N}$ gets a finite number of actions \mathcal{A}_i
- a reward function $r_i : \mathcal{S} \times \mathcal{A}_1 \times \cdots \mathcal{A}_n \rightarrow [-1, 1]$
A Markov game is a tuple $\Gamma = (S, N, A, \{ r_i \}, P, \gamma, \mu)$:

- a finite number of states S
- a finite number of players N
- each agent $i \in N$ gets a finite number of actions A_i
- a reward function $r_i : S \times A_1 \times \cdots A_n \to [-1, 1]$
- a probability transition function $P : S \times A_1 \times \cdots A_n \to \Delta(S)$
Mathematical definition

A Markov game is a tuple \(\Gamma = (S, \mathcal{N}, \mathcal{A}, \{r_i\}, P, \gamma, \mu) : \)

- a finite number of states \(S \)
- a finite number of players \(\mathcal{N} \)
- each agent \(i \in \mathcal{N} \) gets a finite number of actions \(\mathcal{A}_i \)
- a reward function \(r_i : S \times \mathcal{A}_1 \times \cdots \mathcal{A}_n \to [-1, 1] \)
- a probability transition function \(P : S \times \mathcal{A}_1 \times \cdots \mathcal{A}_n \to \Delta(S) \)
- a discount factor \(\gamma \in [0, 1) \)
Mathematical definition

A Markov game is a tuple \(\Gamma = (\mathcal{S}, \mathcal{N}, \mathcal{A}, \{r_i\}, P, \gamma, \mu) \):

- a finite number of states \(\mathcal{S} \)
- a finite number of players \(\mathcal{N} \)
- each agent \(i \in \mathcal{N} \) gets a finite number of actions \(\mathcal{A}_i \)
- a reward function \(r_i : \mathcal{S} \times \mathcal{A}_1 \times \cdots \times \mathcal{A}_n \rightarrow [-1, 1] \)
- a probability transition function \(P : \mathcal{S} \times \mathcal{A}_1 \times \cdots \times \mathcal{A}_n \rightarrow \Delta(\mathcal{S}) \)
- a discount factor \(\gamma \in [0, 1) \)
- \(\mu \in \Delta(\mathcal{S}) \) an initial state distribution.
Policy and value function

The objective of each agent i is to maximize their own value function:

$$V_i^\pi(\mu) = \mathbb{E}_\pi \left[r_i^{(1)} + \gamma r_i^{(2)} + \gamma^2 r_i^{(3)} + \ldots \right]$$

$$= \mathbb{E}_\pi \left[\sum_{t=0}^{\infty} \gamma^t r_i(s^{(t)}, a_1^{(t)}, \ldots, a_n^{(t)}) \mid s_0 \sim \mu \right].$$

Where each agent i controls their own policy, i.e.,

$$\pi_i : S \rightarrow \Delta(A_i).$$

Also, the policy profile is denoted $\pi = (\pi_1, \ldots, \pi_n)$.
Existence of Nash equilibria in \(n \)-player Markov games

Theorem. (Fink 1964) There always exists a Nash equilibrium for every Markov game \(\Gamma \).
Existence of Nash equilibria in n-player Markov games

Theorem. (Fink 1964) There always exists a Nash equilibrium for every Markov game Γ.

Equivalently, there exists $\pi^* = (\pi_1^*, \ldots, \pi_n^*)$:

$$V_{i}^{\pi^*}(\mu) \geq V_{i}^{\pi'_i, \pi_{-i}^*}(\mu), \forall \pi'_i.$$
Markov games are at least as hard as normal-form games

- Let the time horizon be equal to 1 and only one possible state in the game.
- Then, the Markov game becomes a normal-form game.
- Hence, they cannot be *easier* than normal-form games.
Some tractable instances of Markov games 📱×🧩 délai

- Two-player zero-sum games
Some tractable instances of Markov games

- Two-player zero-sum games
- Markov potential games
Two-player zero-sum Markov games 🐱 🐭

- a Markov game $\Gamma(\mathcal{N}, \mathcal{A}, \{r_i\}_{i \in \mathcal{N}}, P, \gamma, \mu)$.
Two-player zero-sum Markov games 🐱 🐭

- a Markov game $\Gamma(\mathcal{N}, \mathcal{A}, \{r_i\}_{i \in \mathcal{N}}, P, \gamma, \mu)$.
- two players $\mathcal{N} = \{1, 2\}$.
Two-player zero-sum Markov games 🐱 🐭

- a Markov game $\Gamma(\mathcal{N}, \mathcal{A}, \{r_i\}_{i \in \mathcal{N}}, P, \gamma, \mu)$.
- two players $\mathcal{N} = \{1, 2\}$.
- two finite action set \mathcal{A}, \mathcal{B}.
Two-player zero-sum Markov games 🐱 🐭

- a Markov game $\Gamma(\mathcal{N}, \mathcal{A}, \{r_i\}_{i \in \mathcal{N}}, P, \gamma, \mu)$,
- two players $\mathcal{N} = \{1, 2\}$,
- two finite action set \mathcal{A}, \mathcal{B},
- the sum of the rewards is always equal to 0,
 \[r(s, a, b) = r_2(s, a, b) = -r_1(s, a, b). \]
Two-player zero-sum Markov games 🐱 🐭

- a Markov game $\Gamma(\mathcal{N}, \mathcal{A}, \{r_i\}_{i \in \mathcal{N}}, P, \gamma, \mu)$.
- two players $\mathcal{N} = \{1, 2\}$.
- two finite action set \mathcal{A}, \mathcal{B}.
- the sum of the rewards is always equal to 0,
 i.e., $r(s, a, b) = r_2(s, a, b) = -r_1(s, a, b)$.

Conventions

- We call player 2 the maximizer and player 1 the minimizer.
- Define the value function of the maximizer $V^{\pi_1, \pi_2}(s)$.
A crucial property

Theorem. (Shapley 1953): In any two-player zero-sum game:

\[\min_{\pi_1} \max_{\pi_2} V^{\pi_1, \pi_2} (\mu) = \max_{\pi_2} \min_{\pi_1} V^{\pi_1, \pi_2} (\mu). \]
A crucial property

Theorem. (Shapley 1953): In any two-player zero-sum game:

\[
V^* = \min_{\pi_1} \max_{\pi_2} V^{\pi_1, \pi_2}(\mu) = \max_{\pi_2} \min_{\pi_1} V^{\pi_1, \pi_2}(\mu).
\]

- The "duality gap" is equal to zero. (Remember two-pl. normal-form games!)
A crucial property

Theorem. (Shapley 1953): In any two-player zero-sum game:

\[
V^* = \min_{\pi_1} \max_{\pi_2} V^{\pi_1, \pi_2}(\mu) = \max_{\pi_2} \min_{\pi_1} V^{\pi_1, \pi_2}(\mu).
\]

- The "duality gap" is equal to zero. (Remember two-pl. normal-form games!)
- It does not matter who commits first to a policy.
Proof.

- Define the operator on matrices $\text{val}(\cdot)$:
 - given a matrix, it outputs the minimax value of that matrix.
 - e.g. $\text{val}\left(\begin{bmatrix}-1, 1 \\ 1, -1\end{bmatrix}\right) = 0$.

Lect: Fivos Kalogannis
Proof. (cont.)

- Initialize a vector $v^{(0)} \in \mathbb{R}^{|\mathcal{S}|}$ arbitrarily.
- We define the following iterative process:

$$v^{(k+1)}(s) = \text{val} \left(r(s, \cdot, \cdot) + \gamma \sum_{s'} P(s'|s, \cdot, \cdot) v^{(k)}(s') \right), \forall s \in \mathcal{S}.$$

- For shorthand, we define the operator \mathcal{T}:

$$v^{(k+1)} = \mathcal{T}v^{(k)}.$$
Proof. (cont.)

- Initialize a vector $v^{(0)} \in \mathbb{R}^{|S|}$ arbitrarily.
- We define the following iterative process:

 $$v^{(k+1)}(s) = \text{val} \left(r(s, \cdot, \cdot) + \gamma \sum_{s'} P(s'|s, \cdot, \cdot)v^{(k)}(s') \right), \forall s \in S.$$

- For shorthand, we define the operator T:

 $$v^{(k+1)} = T v^{(k)}.$$
Proof. (cont.)

- Let \(w = \mathcal{T}v \).
- Observe that:

\[
\|\mathcal{T}w - \mathcal{T}v\|_\infty \leq \max_s \left| \text{val} \left(\gamma \sum P(s'|s,\cdot,\cdot)w(s') \right) - \text{val} \left(\gamma \sum P(s'|s,\cdot,\cdot)v(s') \right) \right|
\]
Proof. (cont.)

- Let $w = T v$.
- Observe that:

$$
\|T w - T v\|_\infty \leq \max_s \left| \text{val} \left(\sum \gamma P(s'|s, \cdot, \cdot)w(s') \right) - \text{val} \left(\sum \gamma P(s'|s, \cdot, \cdot)v(s') \right) \right|
$$

$$
\leq \max_s \max_{a,b} \left| \sum \gamma P(s'|s, a, b)w(s') - \sum \gamma P(s'|s, a, b)v(s') \right|
$$
Proof. (cont.)

- Let \(w = \mathcal{T} v \).
- Observe that:

\[
\| \mathcal{T} w - \mathcal{T} v \|_\infty \leq \max_s \left| \operatorname{val} \left(\gamma \sum P(s'|s,\cdot,\cdot)w(s') \right) - \operatorname{val} \left(\gamma \sum P(s'|s,\cdot,\cdot)v(s') \right) \right|
\]

\[
\leq \max_s \max_{a,b} \left| \gamma \sum P(s'|s,a,b)w(s') - \gamma \sum P(s'|s,a,b)v(s') \right|
\]

\[
\leq \gamma \max_{s,a,b} \left| P(\cdot|s,a,b) \max_{s'} w(s') - v(s') \right|
\]
Proof. (cont.)

- Let $w = \mathcal{T}v$.
- Observe that:

$$
\|\mathcal{T}w - \mathcal{T}v\|_\infty \leq \max_s \left| \text{val} \left(\gamma \sum P(s'|s,\cdot,\cdot)w(s') \right) - \text{val} \left(\gamma \sum P(s'|s,\cdot,\cdot)v(s') \right) \right| \\
\leq \max_s \max_{a,b} \left| \gamma \sum P(s'|s,a,b)w(s') - \gamma \sum P(s'|s,a,b)v(s') \right| \\
\leq \gamma \max_{s,a,b} \left| P(\cdot|s,a,b) \max_{s'} w(s') - v(s') \right| \\
\leq \gamma \|w - v\|_\infty
$$
Proof. (cont.)

- Let \(w = \mathcal{T} v \).
- Observe that:

\[
\| \mathcal{T} w - \mathcal{T} v \|_\infty \leq \max_s \left| \text{val} \left(\gamma \sum P(s' | s, \cdot, \cdot) w(s') \right) - \text{val} \left(\gamma \sum P(s' | s, \cdot, \cdot) v(s') \right) \right| \\
\leq \max_s \max_{a,b} \left| \sum P(s' | s, a, b) w(s') - \sum P(s' | s, a, b) v(s') \right| \\
\leq \gamma \max_{s,a,b} \left| P(\cdot | s, a, b) \max_{s'} w(s') - v(s') \right| \\
\leq \gamma \| w - v \|_\infty = \gamma \| \mathcal{T} v - v \|_\infty .
\]
Proof. (cont.)

- Hence,
 \[\| \mathcal{T}^2 v - \mathcal{T} v \|_\infty \leq \gamma \| \mathcal{T} v - v \|, \text{ for all } v \in \mathbb{R}^{|\mathcal{S}|}. \]

- I.e., the operator \mathcal{T} is a contraction

- From Banach's fixed point theorem, \mathcal{T} has a unique fixed point!

- This unique fixed point, $\mathcal{T}V^* = V^*$,

\[V^* = \min_{\pi_1} \max_{\pi_2} V^{\pi_1, \pi_2}(\mu) = \max_{\pi_2} \min_{\pi_1} V^{\pi_1, \pi_2}(\mu). \]