
Markov games 
Multiple agents interact with each other in a dynamically changing environment.
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Motivation

           
Auctions                     Self-driving cars



           

Robotics                     E-Sports
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Mathematical definition 

A Markov game is a tuple 

a finite number of states 
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Mathematical definition 

A Markov game is a tuple 

a finite number of states 

a finite number of players 

each agent  gets a finite number of actions 

a reward function 
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r ​ :i S × A ​ ×1 ⋯ A ​ →n [−1, 1]
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Mathematical definition 

A Markov game is a tuple 

a finite number of states 

a finite number of players 

each agent  gets a finite number of actions 

a reward function 

a probability transition function 

a discount factor 
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Mathematical definition 

A Markov game is a tuple 

a finite number of states 

a finite number of players 

each agent  gets a finite number of actions 

a reward function 

a probability transition function 

a discount factor 

 an initial state distribution.
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S

N

i ∈ N A ​i

r ​ :i S × A ​ ×1 ⋯ A ​ →n [−1, 1]

P : S × A ​ ×1 ⋯ A ​ →n Δ(S)

γ ∈ [0, 1)

μ ∈ Δ(S)
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Policy and value function 

The objective of each agent  is to maximize their own value function:

​ ​

V ​(μ)i
π = E ​[r ​ + γr ​ + γ r ​ + … ]π i

(1)
i
(2) 2

i
(3)

= E ​[ ​ γ r ​(s , a ​, … , a ​) ∣ s ​ ∼ μ].π

t=0

∑
∞

t
i

(t)
1
(t)

n
(t)

0

Where each agent  controls their own policy, i.e.,

π ​ :i S → Δ(A ​).i

Also, the policy profile is denoted .
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π = (π ​, … , π ​)1 n
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Existence of Nash equilibria in -player Markov games 

Theorem. (Fink 1964) There always exists a Nash equilibrium for every Markov
game .
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Existence of Nash equilibria in -player Markov games 

Theorem. (Fink 1964) There always exists a Nash equilibrium for every Markov
game .



Equivalently, there exists :

V ​(μ) ≥i
π∗

V ​(μ),  ∀π ​.i

π ​,π ​i
′

−i
∗

i
′
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Markov games are at least as hard as normal-form games

Let the time horizon be equal to  and only one possible state in the game.

Then, the Markov game becomes a normal-form game.

Hence, they cannot be easier than normal-form games.
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Some tractable instances of Markov games 

Two-player zero-sum games
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Some tractable instances of Markov games 

Two-player zero-sum games

Markov potential games
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Two-player zero-sum Markov games  

a Markov game ,
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Two-player zero-sum Markov games  

a Markov game ,

two players ,

two finite action set ,
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Two-player zero-sum Markov games  

a Markov game ,

two players ,

two finite action set ,

the sum of the rewards is always equal to ,

i.e., .
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0
r(s, a, b) = r ​(s, a, b) =2 −r ​(s, a, b)1

Lect: Fivos Kalogannis



Two-player zero-sum Markov games  

a Markov game ,

two players ,

two finite action set ,

the sum of the rewards is always equal to ,

i.e., .




Conventions

We call player  the maximizer and player  the minimizer.

Define the value function of the maximizer .
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Γ(N , A, {r ​} ​,P , γ,μ)i i∈N

N = {1, 2}

A, B

0
r(s, a, b) = r ​(s, a, b) =2 −r ​(s, a, b)1

2 1

V (s)π ​,π ​1 2
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A crucial property

Theorem. (Shapley 1953): In any two-player zero-sum game:

​ ​ V (μ) =
π ​1

min
π ​2

max π ​,π1 2
​ ​ V (μ).

π ​2
max

π ​1
min π ​,π1 2
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A crucial property

Theorem. (Shapley 1953): In any two-player zero-sum game:

V =∗
​ ​ V (μ) =

π ​1
min

π ​2
max π ​,π ​1 2

​ ​ V (μ).
π ​2
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min π ​,π ​1 2






The "duality gap" is equal to zero. (Remember two-pl. normal-form games!)
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A crucial property

Theorem. (Shapley 1953): In any two-player zero-sum game:

V =∗
​ ​ V (μ) =

π ​1
min

π ​2
max π ​,π ​1 2

​ ​ V (μ).
π ​2

max
π ​1

min π ​,π ​1 2






The "duality gap" is equal to zero. (Remember two-pl. normal-form games!)

It does not matter who commits first to a policy.
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Proof.

Define the operator on matrices :
given a matrix, it outputs the minimax value of that matrix.

e.g. 

Markov Games

val(⋅)

val( ​ ) =[
−1, 1
1, −1] 0.
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Proof. (cont.)

Initialize a vector  arbitrarily.

We define the following iterative process:

v (s) =(k+1) val(r(s, ⋅, ⋅) + γ ​ P (s ∣s, ⋅, ⋅)v (s )), ∀s ∈
s′

∑ ′ (k) ′ S.

For shorthand, we define the operator :

v =(k+1) T v .(k)

Markov Games
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Proof. (cont.)

Let .

Observe that:

∥T w − T v∥∞ ≤ ​ ​val(γ P (s ∣s, ⋅, ⋅)w(s )) − val(γ P (s ∣s, ⋅, ⋅)v(s ))
s

max
∣

∣
∑ ′ ′ ∑ ′ ′

∣

∣
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∣
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∣

∣
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∣

∣
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∣
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∣
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∣
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Proof. (cont.)

Let .
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∣
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Proof. (cont.)

Let .

Observe that:
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∣
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∣

∣

≤ γ ​ ​P (⋅∣s, a, b) ​ ​ ​w(s ) − v(s ) ​

s,a,b
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∣

∣

∣

∣
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max

∣

∣
′ ′

∣

∣

≤ γ∥w − v∥ ​ = γ∥T v − v∥ ​.∞ ∞
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Proof. (cont.)

Hence,

∥T v −2 T v∥ ​ ≤∞ γ∥T v − v∥,  for all v ∈ R .∣S∣

I.e., the operator  is a contraction

From Banach's fixed point theorem,  has a unique fixed point!

This unique fixed point, ,

V =∗
​ ​ V (μ) =

π ​1
min

π ​2
max π ​,π ​1 2

​ ​ V (μ).
π ​2

max
π ​1

min π ​,π ​1 2
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