Markov games 으 으 (6)

Multiple agents interact with each other in a dynamically changing environment.

Motivation

Auctions

Robotics

Self-driving cars

E-Sports

Mathematical definition $\%$ [82

A Markov game is a tuple $\Gamma=\left(\mathcal{S}, \mathcal{N}, \mathcal{A},\left\{r_{i}\right\}, P, \gamma, \mu\right)$:

- a finite number of states \mathcal{S}

Mathematical definition $\%$ [82

A Markov game is a tuple $\Gamma=\left(\mathcal{S}, \mathcal{N}, \mathcal{A},\left\{r_{i}\right\}, P, \gamma, \mu\right)$:

- a finite number of states \mathcal{S}
- a finite number of players \mathcal{N}

Mathematical definition $\%{ }_{34}^{2}$

A Markov game is a tuple $\Gamma=\left(\mathcal{S}, \mathcal{N}, \mathcal{A},\left\{r_{i}\right\}, P, \gamma, \mu\right)$:

- a finite number of states \mathcal{S}
- a finite number of players \mathcal{N}
- each agent $i \in \mathcal{N}$ gets a finite number of actions \mathcal{A}_{i}

Mathematical definition

A Markov game is a tuple $\Gamma=\left(\mathcal{S}, \mathcal{N}, \mathcal{A},\left\{r_{i}\right\}, P, \gamma, \mu\right)$:

- a finite number of states \mathcal{S}
- a finite number of players \mathcal{N}
- each agent $i \in \mathcal{N}$ gets a finite number of actions \mathcal{A}_{i}
- a reward function $r_{i}: \mathcal{S} \times \mathcal{A}_{1} \times \cdots \mathcal{A}_{n} \rightarrow[-1,1]$

Mathematical definition $\%$ 瑗

A Markov game is a tuple $\Gamma=\left(\mathcal{S}, \mathcal{N}, \mathcal{A},\left\{r_{i}\right\}, P, \gamma, \mu\right)$:

- a finite number of states \mathcal{S}
- a finite number of players \mathcal{N}
- each agent $i \in \mathcal{N}$ gets a finite number of actions \mathcal{A}_{i}
- a reward function $r_{i}: \mathcal{S} \times \mathcal{A}_{1} \times \cdots \mathcal{A}_{n} \rightarrow[-1,1]$
- a probability transition function $P: \mathcal{S} \times \mathcal{A}_{1} \times \cdots \mathcal{A}_{n} \rightarrow \Delta(\mathcal{S})$

Mathematical definition

A Markov game is a tuple $\Gamma=\left(\mathcal{S}, \mathcal{N}, \mathcal{A},\left\{r_{i}\right\}, P, \gamma, \mu\right)$:

- a finite number of states \mathcal{S}
- a finite number of players \mathcal{N}
- each agent $i \in \mathcal{N}$ gets a finite number of actions \mathcal{A}_{i}
- a reward function $r_{i}: \mathcal{S} \times \mathcal{A}_{1} \times \cdots \mathcal{A}_{n} \rightarrow[-1,1]$
- a probability transition function $P: \mathcal{S} \times \mathcal{A}_{1} \times \cdots \mathcal{A}_{n} \rightarrow \Delta(\mathcal{S})$
- a discount factor $\gamma \in[0,1)$

Mathematical definition

A Markov game is a tuple $\Gamma=\left(\mathcal{S}, \mathcal{N}, \mathcal{A},\left\{r_{i}\right\}, P, \gamma, \mu\right)$:

- a finite number of states \mathcal{S}
- a finite number of players \mathcal{N}
- each agent $i \in \mathcal{N}$ gets a finite number of actions \mathcal{A}_{i}
- a reward function $r_{i}: \mathcal{S} \times \mathcal{A}_{1} \times \cdots \mathcal{A}_{n} \rightarrow[-1,1]$
- a probability transition function $P: \mathcal{S} \times \mathcal{A}_{1} \times \cdots \mathcal{A}_{n} \rightarrow \Delta(\mathcal{S})$
- a discount factor $\gamma \in[0,1)$
- $\mu \in \Delta(\mathcal{S})$ an initial state distribution.

Policy and value function N

The objective of each agent i is to maximize their own value function:

$$
\begin{aligned}
V_{i}^{\pi}(\mu) & =\mathbb{E}_{\pi}\left[r_{i}^{(1)}+\gamma r_{i}^{(2)}+\gamma^{2} r_{i}^{(3)}+\ldots\right] \\
& =\mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{i}\left(s^{(t)}, a_{1}^{(t)}, \ldots, a_{n}^{(t)}\right) \mid s_{0} \sim \mu\right]
\end{aligned}
$$

Where each agent i controls their own policy, i.e.,

$$
\pi_{i}: \mathcal{S} \rightarrow \Delta\left(\mathcal{A}_{i}\right)
$$

Also, the policy profile is denoted $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$.

Existence of Nash equilibria in n-player Markov games \triangle

Theorem. (Fink 1964) There always exists a Nash equilibrium for every Markov game Γ.

Existence of Nash equilibria in n-player Markov games \triangle

Theorem. (Fink 1964) There always exists a Nash equilibrium for every Markov game Γ.

Equivalently, there exists $\pi^{*}=\left(\pi_{1}^{*}, \ldots, \pi_{n}^{*}\right)$:

$$
V_{i}^{\pi^{*}}(\mu) \geq V_{i}^{\pi_{i}^{\prime}, \pi_{-i}^{*}}(\mu), \forall \pi_{i}^{\prime}
$$

Markov games are at least as hard as normal-form games

- Let the time horizon be equal to 1 and only one possible state in the game.
- Then, the Markov game becomes a normal-form game.
- Hence, they cannot be easier than normal-form games.

Some tractable instances of Markov games \times 표

- Two-player zero-sum games

Some tractable instances of Markov games 토을

- Two-player zero-sum games
- Markov potential games

Two-player zero-sum Markov games \because

- a Markov game $\Gamma\left(\mathcal{N}, \mathcal{A},\left\{r_{i}\right\}_{i \in \mathcal{N}}, P, \gamma, \mu\right)$,

Two-player zero-sum Markov games \because

- a Markov game $\Gamma\left(\mathcal{N}, \mathcal{A},\left\{r_{i}\right\}_{i \in \mathcal{N}}, P, \gamma, \mu\right)$,
- two players $\mathcal{N}=\{1,2\}$,

Two-player zero-sum Markov games \because

- a Markov game $\Gamma\left(\mathcal{N}, \mathcal{A},\left\{r_{i}\right\}_{i \in \mathcal{N}}, P, \gamma, \mu\right)$,
- two players $\mathcal{N}=\{1,2\}$,
- two finite action set \mathcal{A}, \mathcal{B},

Two-player zero-sum Markov games

- a Markov game $\Gamma\left(\mathcal{N}, \mathcal{A},\left\{r_{i}\right\}_{i \in \mathcal{N}}, P, \gamma, \mu\right)$,
- two players $\mathcal{N}=\{1,2\}$,
- two finite action set \mathcal{A}, \mathcal{B},
- the sum of the rewards is always equal to 0 , i.e., $r(s, a, b)=r_{2}(s, a, b)=-r_{1}(s, a, b)$.

Two-player zero-sum Markov games \because

- a Markov game $\Gamma\left(\mathcal{N}, \mathcal{A},\left\{r_{i}\right\}_{i \in \mathcal{N}}, P, \gamma, \mu\right)$,
- two players $\mathcal{N}=\{1,2\}$,
- two finite action set \mathcal{A}, \mathcal{B},
- the sum of the rewards is always equal to 0 ,
i.e., $r(s, a, b)=r_{2}(s, a, b)=-r_{1}(s, a, b)$.

Conventions

- We call player 2 the maximizer and player 1 the minimizer.
- Define the value function of the maximizer $V^{\pi_{1}, \pi_{2}}(s)$.

A crucial property

Theorem. (Shapley 1953): In any two-player zero-sum game:

$$
\min _{\pi_{1}} \max _{\pi_{2}} V^{\pi_{1}, \pi_{2}}(\mu)=\max _{\pi_{2}} \min _{\pi_{1}} V^{\pi_{1}, \pi_{2}}(\mu)
$$

A crucial property

Theorem. (Shapley 1953): In any two-player zero-sum game:

$$
V^{*}=\min _{\pi_{1}} \max _{\pi_{2}} V^{\pi_{1}, \pi_{2}}(\mu)=\max _{\pi_{2}} \min _{\pi_{1}} V^{\pi_{1}, \pi_{2}}(\mu)
$$

- The "duality gap" is equal to zero. (Remember two-pl. normal-form games!)

A crucial property

Theorem. (Shapley 1953): In any two-player zero-sum game:

$$
V^{*}=\min _{\pi_{1}} \max _{\pi_{2}} V^{\pi_{1}, \pi_{2}}(\mu)=\max _{\pi_{2}} \min _{\pi_{1}} V^{\pi_{1}, \pi_{2}}(\mu)
$$

- The "duality gap" is equal to zero. (Remember two-pl. normal-form games!)
- It does not matter who commits first to a policy.

Proof.

- Define the operator on matrices $\operatorname{val}(\cdot)$:
- given a matrix, it outputs the minimax value of that matrix.
- e.g. $\operatorname{val}\left(\left[\begin{array}{l}-1,1 \\ 1,-1\end{array}\right]\right)=0$.

Proof. (cont.)

- Initialize a vector $v^{(0)} \in \mathbb{R}^{|\mathcal{S}|}$ arbitrarily.
- We define the following iterative process:

$$
v^{(k+1)}(s)=\operatorname{val}\left(r(s, \cdot, \cdot)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, \cdot, \cdot\right) v^{(k)}\left(s^{\prime}\right)\right), \forall s \in \mathcal{S}
$$

- For shorthand, we define the operator \mathcal{T} :

$$
v^{(k+1)}=\mathcal{T} v^{(k)}
$$

Proof. (cont.)

- Initialize a vector $v^{(0)} \in \mathbb{R}^{|\mathcal{S}|}$ arbitrarily.
- We define the following iterative process:

$$
v^{(k+1)}(s)=\operatorname{val}\left(r(s, \cdot, \cdot)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, \cdot, \cdot\right) v^{(k)}\left(s^{\prime}\right)\right), \forall s \in \mathcal{S}
$$

- For shorthand, we define the operator \mathcal{T} :

$$
v^{(k+1)}=\mathcal{T} v^{(k)}
$$

Proof. (cont.)

- Let $w=\mathcal{T} v$.
- Observe that:

$$
\|\mathcal{T} w-\mathcal{T} v\|_{\infty} \leq \max _{s}\left|\operatorname{val}\left(\gamma \sum P\left(s^{\prime} \mid s, \cdot, \cdot\right) w\left(s^{\prime}\right)\right)-\operatorname{val}\left(\gamma \sum P\left(s^{\prime} \mid s, \cdot, \cdot\right) v\left(s^{\prime}\right)\right)\right|
$$

Proof. (cont.)

- Let $w=\mathcal{T} v$.
- Observe that:

$$
\begin{aligned}
\|\mathcal{T} w-\mathcal{T} v\|_{\infty} & \leq \max _{s}\left|\operatorname{val}\left(\gamma \sum P\left(s^{\prime} \mid s, \cdot, \cdot\right) w\left(s^{\prime}\right)\right)-\operatorname{val}\left(\gamma \sum P\left(s^{\prime} \mid s, \cdot, \cdot\right) v\left(s^{\prime}\right)\right)\right| \\
& \leq \max _{s} \max _{a, b}\left|\gamma \sum P\left(s^{\prime} \mid s, a, b\right) w\left(s^{\prime}\right)-\gamma \sum P\left(s^{\prime} \mid s, a, b\right) v\left(s^{\prime}\right)\right|
\end{aligned}
$$

Proof. (cont.)

- Let $w=\mathcal{T} v$.
- Observe that:

$$
\begin{aligned}
\|\mathcal{T} w-\mathcal{T} v\|_{\infty} & \leq \max _{s}\left|\operatorname{val}\left(\gamma \sum P\left(s^{\prime} \mid s, \cdot, \cdot\right) w\left(s^{\prime}\right)\right)-\operatorname{val}\left(\gamma \sum P\left(s^{\prime} \mid s, \cdot, \cdot\right) v\left(s^{\prime}\right)\right)\right| \\
& \leq \max _{s} \max _{a, b}\left|\gamma \sum P\left(s^{\prime} \mid s, a, b\right) w\left(s^{\prime}\right)-\gamma \sum P\left(s^{\prime} \mid s, a, b\right) v\left(s^{\prime}\right)\right| \\
& \leq \gamma \max _{s, a, b}|P(\cdot \mid s, a, b)| \max _{s^{\prime}}\left|w\left(s^{\prime}\right)-v\left(s^{\prime}\right)\right|
\end{aligned}
$$

Proof. (cont.)

- Let $w=\mathcal{T} v$.
- Observe that:

$$
\begin{aligned}
\|\mathcal{T} w-\mathcal{T} v\|_{\infty} & \leq \max _{s}\left|\operatorname{val}\left(\gamma \sum P\left(s^{\prime} \mid s, \cdot, \cdot\right) w\left(s^{\prime}\right)\right)-\operatorname{val}\left(\gamma \sum P\left(s^{\prime} \mid s, \cdot, \cdot\right) v\left(s^{\prime}\right)\right)\right| \\
& \leq \max _{s} \max _{a, b}\left|\gamma \sum P\left(s^{\prime} \mid s, a, b\right) w\left(s^{\prime}\right)-\gamma \sum P\left(s^{\prime} \mid s, a, b\right) v\left(s^{\prime}\right)\right| \\
& \leq \gamma \max _{s, a, b}|P(\cdot \mid s, a, b)| \max _{s^{\prime}}\left|w\left(s^{\prime}\right)-v\left(s^{\prime}\right)\right| \\
& \leq \gamma\|w-v\|_{\infty}
\end{aligned}
$$

Proof. (cont.)

- Let $w=\mathcal{T} v$.
- Observe that:

$$
\begin{aligned}
\|\mathcal{T} w-\mathcal{T} v\|_{\infty} & \leq \max _{s}\left|\operatorname{val}\left(\gamma \sum P\left(s^{\prime} \mid s, \cdot, \cdot\right) w\left(s^{\prime}\right)\right)-\operatorname{val}\left(\gamma \sum P\left(s^{\prime} \mid s, \cdot, \cdot\right) v\left(s^{\prime}\right)\right)\right| \\
& \leq \max _{s} \max _{a, b}\left|\gamma \sum P\left(s^{\prime} \mid s, a, b\right) w\left(s^{\prime}\right)-\gamma \sum P\left(s^{\prime} \mid s, a, b\right) v\left(s^{\prime}\right)\right| \\
& \leq \gamma \max _{s, a, b}|P(\cdot \mid s, a, b)| \max _{s^{\prime}}\left|w\left(s^{\prime}\right)-v\left(s^{\prime}\right)\right| \\
& \leq \gamma\|w-v\|_{\infty}=\gamma\|\mathcal{T} v-v\|_{\infty} .
\end{aligned}
$$

Proof. (cont.)

- Hence,

$$
\left\|\mathcal{T}^{2} v-\mathcal{T} v\right\|_{\infty} \leq \gamma\|\mathcal{T} v-v\|, \text { for all } v \in \mathbb{R}^{|\mathcal{S}|}
$$

- I.e., the operator \mathcal{T} is a contraction
- From Banach's fixed point theorem, \mathcal{T} has a unique fixed point!
- This unique fixed point, $\mathcal{T} V^{*}=V^{*}$,

$$
V^{*}=\min _{\pi_{1}} \max _{\pi_{2}} V^{\pi_{1}, \pi_{2}}(\mu)=\max _{\pi_{2}} \min _{\pi_{1}} V^{\pi_{1}, \pi_{2}}(\mu)
$$

