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Lecture 8. Complexity Classes and AGT.

Instructor: Ioannis Panageas Scribed by: Rose Zhang, Yiyang Min

This lecture will discuss on the complexity of computing a Nash equilibrium, with review of

basic and function complexity classes.
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1 Standard Complexity Classes - Decision problem, P and NP

Definition 1.1 (Decision Problem). A decision problem is a yes-or-no question on an infinite set

of inputs. 1

Example 1.1 (Decision Problem). Is n a prime number?

Remark. Notice that the input for example 1.1 is log2 n.

Definition 1.2 (Complexity Class P). The set of decision problems for for which some algorithm

can provide an answer in polynomial time.

Remark. Example 1.1 is a problem in P. This is non-trivial to prove: naive n2 algorithms run in

non-polynomial time with respect to input size, which is Θ(2n).

Remark. For algorithms, ”in polynomial time” and ”efficiently” are interchangeable.

Definition 1.3 (Complexity Class NP). The set of decision problems for which a ”yes” answer is

verifiable in polynomial time.

Definition 1.4 (Complexity Class co-NP). The set of decision problems for which a ”no” answer

is verifiable in polynomial time.

Example 1.2 (Travelling salesman problem (TSP)). Given a complete weighted graph, find the

lowest-weight cycle that visits each vertex at least once.

Remark. TSP is not a decision problem, but it can be translated to one.

Example 1.3 (Decision Version of TSP). Given a complete weighted graph, does there exist a cycle

that visits each vertex at least once of weight less than w?

Remark. Decision Version of TSP is in NP: to verify, output an example of one such cycle.

Problems in P must be in NP, but whether vice versa remains one of the hardest problem

nowadays which also provides one of the hardest way to earn one million dollars. 2

2 Function Complexity Classes - function problem, FP, FNP and

TFNP

Definitions of P and NP describe decision problems well, but many problems are not decision

problems and are hard to transform into decision problem. E.g. finding a Nash equilibrium with

given input. Therefore, new definitions are needed.

1https://en.wikipedia.org/wiki/Decision_problem
2http://www.claymath.org/millennium-problems/p-vs-np-problem
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Definition 2.1 (Function Problem (non-rigorous)). A function problem is a computational problem

defined by a function f where the input is some x and the expected output is a y such that f(x) = y.
3

Definition 2.2 (Complexity Class FP). The set of function problems for which some algorithm

can provide an output/answer in polynomial time.

Definition 2.3 (Complexity Class FNP). The set of all function problems for which the validity

of an (input, output) pair can be verified in polynomial time (by some algorithm).

Definition 2.4 (Complexity Class TFNP). Subclass of FNP for which existence of solution is

guaranteed for every input.

We are more interested in class TFNP since finding Nash equilibria is FNP and the existance

of Nash equilibria is proven.

2.1 Non-Constructive Arguments

Four basic common non-constructive arguments, under condition that input in finite:

• Local Search Every directed acyclic graph must have a sink (no outgoing edge).

Imagine the vertices to be cups placed on different hight cylinders, connected with pipe to

lower cups indicated by directional edge. Pour water to any cup and it would flow to the

lowest cup with no lower cup connected.

• Pigeonhole Principle If a function maps n elements to n−1 elements, then there is at least

one collision.

The only way to avoid collision is to assign the n − 1 images one element, which consumes

n− 1 elements in the domain. But one more element un-assigned in domain, assigning which

causes the collision.

• Handshaking lemma If a graph has a node of odd degree, then it must have another.

Total number of outgoing edge should be even, since each edge leads to two outgoing edge on

two vertices.

• End-of-line If a directed path has an unbalanced node, then it must have another.

Total number of incoming edge should be the same to the outgoing edge as each directed edge

contribute a pair of incoming edge and outgoing edge.

2.2 Non-Constructive Classes

Based on these arguments, there are four complexity classes in TFNP:

• PLS All problems in TFNP whose existence proof is implied by Local Search argument.

3https://en.wikipedia.org/wiki/Function_problem
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• PPP All problems in TFNP whose existence proof is implied by the Pigeonhole Principle.

• PPA All problems in TFNP whose existence proof is implied by the Handshaking lemma.

• PPAD All problems in TFNP whose existence proof is implied by the End-of-line argument.

3 Reduction, C-hard and C-complete

Before going detail to TFNP, based on the problems in this script, one can observe that there

are some problems are intuitively harder then the others, e.g. example 1.2, can we find them out?

Moreover, can we give a similar definition similar to the definition of P and NP are given in section

1?

Definition 3.1 (Reduction). A reduction is an algorithm for transforming one problem into another

problem. 4

To the previous question, the answer is ”yes” by using reduction algorithm, which link two

problems by transform the input and output from one to another. Moreover, two problems have a

difficulty comparison relation under reducible.

Definition 3.2 (Reducible). Problem A is reducible to problem B, if an algorithm for solving

problem B efficiently (if it existed) could also be used as a subroutine to solve problem A efficiently.

Denoted as A ≤p B, where subscript p means through a reduction algorithm in polynomial time. 5

If A is reducible, it means A cannot be ”harder” than B. Based on this, the hardest problems

in problem class C is defined as follows.

Definition 3.3 (C-hard). For problem class C, a problem Q is C-hard if ∀P ∈ C,P ≤p Q.

Corollary 3.1. For problem class C, a problem Q is C-hard if Q can be turned into any other C

problem in polynomial time.

Corollary 3.2. For problem class C, a problem Q is C-hard if Q is at least as hard as any C problem.

Definition 3.4 (C-complete). For problem class C, a problem Q is C-complete if Q is C-hard and

Q ∈ C.

Corollary 3.3. For problem class C, a problem Q is C-complete if Q is the hardest problem in C.

3.1 Proven C-complete problems

Showing that a problem is C-hard/complete is a difficult proof likely involving Turing Machines.

Once a problem has been proved to be C-hard/complete, one can easily prove it for another problem

using reductions. Luckily, there are many categories C for which problems have been proven to be

C-hard/complete.

4https://en.wikipedia.org/wiki/Reduction_(complexity)
5https://en.wikipedia.org/wiki/Reduction_(complexity)
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• SAT is an NP-complete problem.

• Nash equilibrium is PPAD-complete.

• Pure Nash equilibrium in congestion games is PLS-complete.

3.2 Relation Between Function Complexity Classes
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