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Lecture 7. Price of Anarchy.

1 Introduction

Definition 1.1 Price of Anarchy (PoA) = performance of worst case Nash Equillibrium
optimal performance if agents do not decide on their own

The Price of Anarchy can be understood as the worst case “price” of letting agents rationally

(selfishly) decide their own actions in a game. It is the ratio of the cost of the worst performing

NE and the cost of the best outcome possible if agents are “told” what to do (i.e. not neccessarily

rational choices). A PoA > 1 means that agents could rationally choose to play one or more

strategies which give outcomes worse than the optimal outcome. Many theorems which bound the

PoA for specific types of games have been proven, a number of which are presented below.

Example 1.1 Braess’s Paradox

To illustrate the idea of PoA, take the following graph for example:

Suppose 100 drivers want to get from vertice A to vertice B. They can either take the top or

bottom path. The time it takes for a driver to travel either path is 1 + x
100 hours, where x is the

number of drivers who choose that path. Each driver wants to minimize their own commute time.

If 50 drivers choose each path, than the commute time for all drivers is 1.5 hours. In this case,

no driver has any incentive to deviate, as doing so would increase their commute to 1.51 hours. As

such, 50 drivers routed along each path is the unique equilibrium flow for this example. The “cost”

of this flow (later defined as the social cost) is 150 total hours of driving.

Now, suppose that an additional edge is added to the graph as in the following:
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With this new “fast link”, the previous equilibrium flow no longer holds: each driver from the

top path is incentivized to take the fast link and decrease their commute to 1.01 hours. The new

equilibrium flow is for all of the drivers to traverse from A to B as such:

The cost of this new equilibrium is 200 hours of driving, as each driver’s commute is 2 hours.

Although the previous routing would still result in a better commute time for all drivers (150

hours), because of the new fast link this now is the only routing such that no driver is incentivized

to change their route. The Price of Anarchy captures the ratio between the cost of the worst-case

rational scenario and the cost best case scenario. The PoA in this routing game is

200

150
=

4

3
.

2 Non-atomic Selfish Routing

The above game is an example of a non-atomic sefish routing game.

Definition 2.1 A non-atomic selfish routing game is defined by:

• Graph G(V, E)

• Source destination pairs (s1, t1), ..., (sk, tk)

• ri traffic from si → ti

• ce(f) ≥ 0 cost function for edge e, continuous and non-descreasing
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• Social cost ∑
e∈E

ce(fe)

Equilibrium flow is routed such that the social cost is minimized. In non-atomic selfish routing

games, equilibrium flow exists and is unique.

Example 2.1 Pigou network

The Pigou network is a simple non-atomic selfish routing game illustrated in the graph below:

The traffic from A to B is 1. The cost of the top edge is always 1, whereas the cost of the

bottom edge is equal to the flow through that edge. The optimal flow is 1
2 on each edge:

This gives a social cost of
1

2
· ctop(

1

2
) +

1

2
· cbottom(

1

2
) =

1

2
· 1 +

1

2
· 1

2
=

3

4
However, this is not an equilibrium flow, because the cost of the bottom edge is greater than

the cost of the top edge. In fact, until all 1 flow is directed through the bottom edge, it’s cost

function is cheaper than the top edge. As such, this is the equilibrium flow; there is no longer any

cheaper edge to route flow along.
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This gives a social cost of

0 · ctop(0) + 1 · cbottom(1) =

0 · 1 + 1 · 1 = 1

The PoA in this game is 1
3
4

= 4
3 , same as in Example 1.1. This is no coincidence!

Definition 2.2 Linear costs: costs of the form ce(f) = ae · f + be

Theorem 2.2 Roughgarden-Tardos 00’, PoA for linear costs.

For every network with linear costs:

cost of Nash flow ≤ 4
3 · cost of optimal flow.

This means that in a non-atomic selfish routing game with linear cost functions, the Price of

Anarchy is bounded: no matter what network is used for the game, the cost of any Nash flow is

no more than 4
3 the cost of the optimal flow. Both Example 1.1 and Example 2.1 show the worst

possible PoA for non-atomic selfish routing games with linear cost functions.

Proof: Let f∗ be a Nash flow and f be another flow. We first show the variational inequality∑
e

f∗e ce(f
∗
e ) ≤

∑
e

fece(f
∗
e )

Observe that if f∗ is an equilibrium flow, if f∗p > 0 then cp′(f
∗) ≤ cp(f

∗) for all paths p
′
.

Therefore all paths p so that f∗p > 0 have the same cost, say L. Hence
∑

p f
∗
p cp(f

∗) = L · F where

F =
∑

p f
∗
p is the total flow. Since cp(f

∗) ≥ L we conclude
∑

p fpcp(f
∗) ≥ L

∑
p fp = L · F

Combining the above we get the variational inequality:∑
e

fece(f
∗) =

∑
p

fpcp(f
∗) ≥ L · F =

∑
p

f∗p cp(f
∗) =

∑
e

f∗e ce(f
∗) ≡

∑
e

f∗e ce(f
∗
e ) ≤

∑
e

fece(f
∗
e )

We then get that ∑
e

f∗e ce(f
∗
e ) ≤

∑
e

fece(fe) +
∑
e

fe(ce(f
∗
e )− ce(fe))
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Additionally, we have that∑
e

fe(ce(f
∗
e )− ce(fe)) ≤

1

4

∑
e

f∗e ce(f
∗
e )

based off the following two cases:

• Case 1: ce(f
∗) < ce(f). Trivially, fe(ce(f

∗ − ce(f)) ≤ 1
4f
∗
e ce(f

∗)

• Case 2: ce(f
∗) ≥ ce(f) → f∗e ≥ fe. Because edge costs are linear, LHS = aefe(f

∗
e − fe) and

RHS ≥ 1
4aef

∗2
e since xy − y2 ≤ x2

4

Thus, we conclude that∑
e

f∗e ce(f
∗
e ) ≤

∑
e

fece(fe) +
1

4

∑
e

f∗e ce(f
∗
e ) ≡

∑
e

f∗e ce(f
∗
e ) ≤ 4

3

∑
e

fece(fe)

Theorem 2.3 Roughgarden 02’, PoA for polynomial costs

For every network with polynomial costs of maximum degree d:

cost of Nash flow ≤ θ( d
log d)· cost of optimal flow.

3 Congestion Games

Definition 3.1 A congestion game is defined by:

• n set of players

• E set of edges/facilities/bins

• Si ⊂ 2E: the set of strategies of player i.

• ce : {1, ..., n} → R+ cost function of edge e

• for each strategy s = (s1, ..., sn)

– le(s): number of players (load) that use edge e

– ci(s) =
∑

e∃si ce(le): the cost function of player i

Congestion games capture atomic routing games.

Theorem 3.1 Chistodoulou-Koutsoupias, PoA for linear costs

For every congestion game with linear costs:
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cost of Nash flow ≤ 5
2 · cost of optimal flow.

Proof: Let l∗ be a Nash equilibrium in which i uses path Pi and assume i deviates to path P̃i.

The following variational inequality holds:∑
e∈Pi

ce(l
∗
e) ≤

∑
e∈Pi∩P̃i

ce(l
∗
e) +

∑
e∈P̃iPi

ce(l
∗
e + 1) ≡

∑
e∈Pi

ce(l
∗
e) ≤

∑
e∈Pi∩P̃i

ce(l
∗
e + 1) +

∑
e∈P̃iPi

ce(l
∗
e + 1) ≡

∑
e∈Pi

ce(l
∗
e) ≤

∑
e∈P̃i

ce(l
∗
e + 1)

Consider any configuration l̃, where each agent j uses path P̃j . Summing for all agents i∑
i∈[n]

∑
e∈Pi

ce(l
∗
e) ≤

∑
i∈[n]

∑
e∈P̃i

ce(l
∗
e + 1)

∑
i∈[n]

∑
e∈Pi

ce(l
∗
e) ≤

∑
e

l̃ece(l
∗
e + 1)

Because costs are linear we have∑
i∈[n]

∑
e∈Pi

ce(l
∗
e) ≤

∑
e

ae l̃e(l
∗
e + 1) + be l̃e

Since y(z + 1) ≤ 5
3y

2 + 1
3z

2 for naturals y, z∑
i∈[n]

∑
e∈Pi

ce(l
∗
e) ≤

∑
e

ae(
5

3
l̃e
2

+
1

3
l∗e

2) + be l̃e

Observe that

5

3
C(l̃) =

5

3

∑
i∈[n]

∑
e∈P̃i

ce(l̃e) =
∑
e

5

3
ae l̃e

2
+

5

3
be l̃e ≥

∑
e

5

3
ae l̃e

2
+ be l̃e

Therefore

C(l∗) ≤ 5

3
C(l̃) +

1

3

∑
e

ael
∗
e
2

C(l∗) ≤ 5

3
C(l̃) +

1

3
C(l∗)

C(l∗) ≤ 5

2
C(l̃)
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4 PoA of Balls & Bins

Definition 4.1 Balls & Bins is defined as follows:

• set of n balls and n bins {e1, ...en}.

• each ball i chooses a bin j and pays the load of the bin j, lj.

• social cost = maximum bin load = maxj∈[n](lj)

Balls & Bins is a congestion game:

Theorem 4.1 Koutsoupias-Papadimitriou, PoA for balls & bins

The PoA is Ω( lnn
ln lnn)

Proof: We will use the second moment method.

• The optimal social cost is one: each ball is in its own bin.

• A uniform strategy ( 1
n , ...,

1
n) for each ball is a Nash equilibrium.

• With high probability, we how that the uniform strategy gives max load Ω( lnn
ln lnn) which

implies the expected max load is Ω( lnn
ln lnn).

Claim: Bin i had at least k << n balls with probability at least:(
n

k

)
1

nk
(1− 1

n
)n−k ≥ 1

nk
(
n

k
)k

1

e
=

1

en1/3

Suppose k = lnn
3 ln lnn . We then have kk ≤ (lnn)k = (lnn)

lnn
3 ln lnn = n1/3 Thus, bin i has at least

lnn
3 ln lnn balls with probability at least 1

en1/3 .

Let Xi be the indicator that bin i has at least lnn
3 ln lnn balls and X be the expected number of

all bins with at least lnn
3 ln lnn balls.

X =
∑
i

Xi → E[X] =
∑
i

E[Xi]
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Observe that E[X] ≥ n2/3

e � 1 but this does not impy X ≥ 1 with high probability. We need to

argue about the variance (second moment).

Chebyshev’s inequality gives

Pr[|X − E[X]| ≥ tE[X]] ≤ V ar[X]

t2E2[X]

thus

Pr[X = 0] ≤ Pr[|X − E[X]| ≥ tE[X]] ≤ V ar[X]

t2E2[X]

From negative correlation we have that V ar[X] ≤
∑

i V ar[Xi].

Moreover, V ar[Xi] = E[X2
i ]− E2[Xi] ≤ E[X2

i ] = E[Xi] ≤ 1. We conclude that

Pr[X = 0] ≤ n

e2n4/3
=
n−1/3

e2
.

8


	1 Introduction
	2 Non-atomic Selfish Routing
	3 Congestion Games
	4 PoA of Balls & Bins

