
CS295 Introduction to Algorithmic Game Theory

Instructor: Ioannis Panageas Scribed by: Yiwen Ma, Yushen Sun

Lecture 5. Computing NE in two player games.

1 A trivial algorithm

The most natural way to find a Nash Equilibrium (NE) in a two player game is ”brute force”. As

long as this is a finite game, we should be able to enumerate all the possible ”supports” of the

Nash. For those supports, if we can find a strategy combination of the players, that should be the

NE of the game.

1.1 Initial Idea: If the support of the Nash is known

Let’s first consider the case when we know the support of a Nash. To figure out what’s the situation

under such case, let’s make some assumptions first.

Assumptions:

• R and C are pay-off matrices of row and column players respectively, with size m× n

• S and T are supports of the Nash

Then we have some properties:

• For x

– xi ≤ 0 for ∀i ∈ [n]

– xi = 0 for ∀i /∈ S

– Σi∈Sxi = 1

– (CTx)i ≤ (CTx)j for ∀i ∈ T, j ∈ [m]

• For y

– yi ≤ 0 for ∀i ∈ [m]

– yi = 0 for ∀i /∈ T

– Σi∈T yi = 1

– (Ry)i ≤ (Ry)j for ∀i ∈ S, j ∈ [n]

1

1.2 Linear Program: Derive the Nash Equilibrium

From the properties we derived previously, it’s natural to come into a conclusion that given a set of

support S and T , it actually generates a linear program problem. As long as we can find a feasible

solution (x, y) for the linear program, it is a Nash Equilibrium.

Fortunately, the possible combinations of S and T is finite, which is 2n×2m = 2m+n. Therefore,

we can enumerate each possible set of supports, and solve the corresponding linear program problem,

until we find a feasible solution (x, y).

However, the drawbacks of this algorithm is also obvious. For the worst case, the number

of linear program problems we need to solve is O(2m+n), which means this algorithm is super

expensive in terms of calculation. Therefore, this algorithm only reveals the feasibility to derive

Nash Equilibrium, but not a practical or general way to compute NE.

2 Lemke-Howson Algorithm

2.1 Introduction

Lemke-Howson Algorithm is an effective algorithm that finds a Nash Equilibrium(NE) in two player

games. The basic idea is to maintain a single guess of the supports, and in each iteration we change

the guess only a little bit. In the algorithm we assume that the two payoff matrices have non-

negative entries. And no loss of generality, NE are invariant under shifting.

2.2 Preparations

In the algorithm we represent the two polytopes P1 and P2 by:

P1 = {x ∈ Rn : ∀i ∈ [n] xi ≥ 0&∀j ∈ [m] (xTC)j ≤ 1}

P2 = {y ∈ Rm : ∀i ∈ [m] yi ≥ 0&∀j ∈ [n] (Ry)j ≤ 1}

Def. Then we define the normalization of x and y as:

nrml(x) = (Σi∈[n]xi)
−1x

nrml(y) = (Σi∈[m]yi)
−1y

Def. We define ”label” as:

x has label i if xi = 0 or (xTC)i = 1. y has label j if yi = 0 or (Ry)j = 1.

Lemma. Let x∗ ∈ P1, y
∗ ∈ P2, x

∗, y∗ have all labels together and assume x∗, y∗ are not zero

vectors. It holds that (nrml(x∗), nrml(y∗)) is a Nash Equilibrium.

Proof.

2

• For each i ∈ [n], either x∗i = 0 or (Ry∗)i = 1 (i is best response of row player to nrml(y∗)).

• For each j ∈ [m], either y∗j = 0 or (x∗
T
C)j = 1 (j is best response of row player to nrml(x∗)).

So we can conclude that:

if x∗i > 0 =⇒ (Ry∗)i ≥ (Ry∗)j ∀j ∈ [n]

if y∗j > 0 =⇒ (x∗
T
C)i ≥ (x∗

T
C)j ∀j ∈ [m]

So we can conclude that x∗, y∗ is a Nash Equilibrium. Since (nrml(x∗), nrml(y∗)) is the nor-

malization form we defined, (nrml(x∗), nrml(y∗)) is also a Nash Equilibrium. And x∗, y∗ satisfy

LP(Supp(x∗),Supp(y∗)), which we discussed in part 1.

Def. We define ”Vertex” as: A vertex of polytope P1 is given by n linearly independent equali-

ties (the rest constrains of P1 are strict inequalities). A vertex of polytope P2 is given by m linearly

independent equalities (the rest constrains of P2 are strict inequalities). For P1
⋃
P2 is n+m. This

is the non-degenerate case.

2.3 The algorithm

Algorithm 1 Lemke-Howson Algorithm

1: Initialize x = 0 and y = 0.

2: k = k0 = 1.

3: Loop

4: In P1 find the neighbor vertex x’ of x with label k’ instead of k. Remove label k and add

label k’.

5: Set x=x’.

6: If k’=1 STOP.

7: In P2 find the neighbor vertex y’ of y with label k” instead of k’. Remove label k’ and add

label k”.

8: Set y=y’.

9: If k”=1 STOP.

10: Set k=k”.

Theorem. The Lemke-Howson algorithm outputs a Nash Equilibrium.

Proof. Define a graph with vertices in P1
⋃
P2. Each vertex (x,y) has:

• One duplicate label. This vertex is adjacent to exactly two other vertices, since we can remove

the duplicate label from x and pivot in P1, or remove the duplicate label from y and pivot in

P2.

3

• They have all labels exactly once. This vertex has only one neighbor (remove label 1 from

whichever vector has it.)

Figure 1: Process of Lemke-Howson algorithm

Since each vertex in the graph has degree 1 or 2, the graph is a union of cycles and paths. Then

we know that:

1. Lemke-Howson algorithm begins at the configuration (0,0).

2. (0,0) has all labels and is therefore an endpoint of a path component.

3. The algorithm will terminate at the other endpoint of the path.

4. The other point is not (0,0) and cannot be (x,0) or (0,y).

According to the Lemma in 2.2, we can conclude that the point is a Nash Equilibrium.

3 The Odd-number Corollary of Lemke-Howson Algorithm

3.1 Definition

The definition of the odd-number corollary says that for non-degenerate games, the number

of NE is odd.

3.2 Proof

From the analysis of Lemke-Howson Algorithm, we can notice that finding NE with Lemke-Howson

Algorithm is actually finding some ”special nodes” in a graph. More specifically, the graph is

composed of simply cycles and paths, and these ”special nodes” must exist at the end of a path.

In other words, a NE must be a node in the graph which has odd degree (i.e. number of

neighbours). Then we can try to calculate the number of nodes with odd degree. In fact, the

number of such nodes must be even, given that:

Σdv = 2 · E

4

which means the total number of degrees in a graph is even. Therefore we have even number of

odd-degree nodes including (0, 0).However, (0, 0) cannot be a NE, so it’s excluded, which means

that there will be odd-number of NE for this graph, or the game.

4 Approximating a Nash Equilibrium

We’ve already known that it’s very expensive to get the exact NE of a game. Therefore, a reasonable

idea is to look for approximates of NE. There exists a theorem which points out the existence of

approximates of NE, which says For any two-player game, let ϵ > 0, there always exists a

k-uniform ϵ-approximate NE for k = 12logn
ϵ2

.The definition of k-uniform is as follow:

for strategy x, if every coordinate of x is multiple of 1
k , then x is k-uniform

Besides, it has already been proved that we can get such approximation of Nash Equilibrium

with nO(logn
ϵ2

) time, which we think makes it more feasible to apply Nash Equilibrium into analysis

of practical problems.

References

[1] C. E. Lemke and J. T. Howson. Equilibrium points of bimatrix games. SIAM Journal on

Applied Mathematics. 12 (2): 413–423. doi:10.1137/0112033.

5

	1 A trivial algorithm
	1.1 Initial Idea: If the support of the Nash is known
	1.2 Linear Program: Derive the Nash Equilibrium

	2 Lemke-Howson Algorithm
	2.1 Introduction
	2.2 Preparations
	2.3 The algorithm

	3 The Odd-number Corollary of Lemke-Howson Algorithm
	3.1 Definition
	3.2 Proof

	4 Approximating a Nash Equilibrium

