
CS295 Introduction to Algorithmic Game Theory

Instructor: Ioannis Panageas Scribed by: Yu-Chen Wang

Lecture 4. Online Learning and a proof of Minimax Theorem

1 Introduction

In this lecture, we will discuss about connections between online learning and Minimax Theorem [2].
We will first introduce Experts Game and have an algorithm called Weighted Majority Algorithm
to solve it. We will then have a generalization version of Expert Game and introduce another
algorithm called Multiplicative Weights Update Algorithm [3] to solve it. We will also introduce
No-Regret Learning. At last, we will prove the Minimax Theorem with No-Regret Learning.

2 Expert Game and Weighted Majority Algorithm

Firstly we take a look at the following game.

Definition 2.1 Expert Game We have a game of T rounds, for each round t = 1...T , we have
to choose between two alternatives A, B. The rule of game is the following:

• Choose A or B according to some rules.

• One of the alternatives realizes.

• If we make a correct choice, we will not be penalized, otherwise we will lose 1 point.

• There are n experts there to give us some hints. In each day, they will give us some recom-
mendations.

Our goal in this game is to make as less mistakes as possible. Suppose we know there is a best
expert, then it is easy to know that our best strategy is to follow the advice of this expert since the
expectation of penalty will be minimized for each of the round. However, in this game we do not
know who is the best expert at the first place. We need to introduce online learning to learn who
is the best expert. Because of this we introduce the Weighted Majority Algorithm [1] as in 2.

Now we have our first algorithm, next we will show that the number of mistakes we will make
if we applied this algorithm is bounded.

Theorem 2.1 Let MT , MB
T be the total number of mistakes the algorithm shown in 2 and the best

expert make until step T , respectively. It holds that:

MT ≤ 2(1 + ϵ)MB
T +

log n

ϵ
(1)
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Algorithm 1 Weighted Majority Algorithm
Require: n > 0, T > 0, 0 < wi ≤ 1, 0 < ϵ < 1

Ensure: wi = 1

for t = 1...T do
if

∑
i choose Awt−1

i ≥
∑

i choose B wt−1
i then

We choose A, otherwise we choose B.
end if
For all experts that make a mistake, we have wt = (1− ϵ)wt−1, otherwise we have wt = wt−1

end for

Proof:
Let’s define the following function ϕt =

∑
iw

t
i . According to the initialization and update rules

of 2, we will have that ϕ0 = n and ϕt ≤ ϕt−1.
We will have the following lemma.

Lemma 2.2 In the iteration t of Algorithm 2, if we make a mistake, we will have:

ϕt ≤
(
1− ϵ

2

)
ϕt−1 (2)

According to the update rule of 2, we will have:

ϕt = (1− ϵ)
∑

Experts mistake
wt−1 +

∑
Experts no mistake

wt−1 (3)

Since we make a mistake, we know
∑

Experts mistake w
t−1 ≥ ϕt−1/2, thus we have:

ϕt ≤
(
1− ϵ

2

)
ϕt−1

Since we make MT mistakes until iteration T , apply 2.2 MT times and we will have:

ϕT ≤
(
1− ϵ

2

)MT

ϕ0 =
(
1− ϵ

2

)MT

N (4)

Since MB
T is the number of mistakes that the best expert makes. We will know that in iteration

T , the weight of the best expert is (1− ϵ)M
B
T . Since ϕT is the sum of weights, we will have:

ϕT > (1− ϵ)M
B
T (5)

Then we will have:
(1− ϵ)M

B
T <

(
1− ϵ

2

)MT

N (6)

Taking the log, we will have:

log (1− ϵ)MB
T < MT log (1− ϵ/2) + log n (7)

Since we have the following inequality −x− x2 < log (1− x) and log (1− x/2) > −x/2, we will
have:

(−ϵ− ϵ2)MB
T < − ϵ

2
MT + log n (8)

We clean it up and we will finish the proof.
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3 A Generalization of Expert Game and Multiplicative Weights
Update

Now suppose we have the following game setting.

Definition 3.1 Suppose we have T rounds in this game. At each time step t = 1...T , we have:

• Player choose xt ∈ ∆n, where ∆n is the space of strategies.

• Adversary choose ut ∈ [−1, 1]n.

• Player gets payoff xTt ut and observe ut.

The goal of player is to minimize the following object function:

1

T

[
max
x∈∆n

T∑
t=1

xTut −
∑
t=1

xTt ut

]
Note that we also call this object function Regret.

Definition 3.2 No Regret Algorithm If we have Regret → 0 as T → ∞, the algorithm is called
no-regret.

Firstly we want to show the following lemma:

Lemma 3.1 The object function of the game described in 3.1 have:

1

T

[
max
x∈∆n

T∑
t=1

xTut −
∑
t=1

xTt ut

]
=

1

T

[
max
i∗∈[n]

T∑
t=1

ut,i −
∑
t=1

xTt ut

]
Proof Outline:
Suppose i∗ is the index of best expert. By definition, we will have:

T∑
t=1

ut,i∗ ≥
T∑
t=1

ut,i

Since x is a probability expectation, it is obvious that always choosing the best expert is the best
we can do if we use a same strategy for all rounds. In this way, this object function becomes can
we have a series of strategies that make our pay off close to the performance of the best expert.

Now consider the following algorithm.
Similar to Weighted Majority Algorithm, we will show that our payoff given by Weighted Ma-

jority Algorithm described in 3 is bounded. That is, we will show the following theorem.

Theorem 3.2 The algorithm shown in 3 holds that:

1

T

∑
t

uTt p
t ≥ max

x

∑
t

xTut −
log n

ϵT
− ϵ
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Algorithm 2 Weighted Majority Algorithm
Require: n > 0, T > 0, 0 < wi ≤ 1, 0 < ϵ < 1

Ensure: wi = 1

for t = 1...T do
Choose an action with respect to a pdf D = {pti = wt

i/
∑

iw
t
i}

for each i that gives payoff ut,i do
wt+1
i = wt

i(1 + ϵut,i) ▷ Update the weights
end for

end for

Proof:
Let’s define the following function ϕt =

∑
iw

t
i .

For ϕt+1, we have that:
ϕt+1 =

∑
i

wt+1
i =

∑
i

wt
i(1 + ϵut,i)

Since we have pti = wt
i/ϕt, we will have:

ϕt+1 = ϕt

∑
i

pti(1 + ϵut,i) (9)

Since we have the following inequality: 1 + x ≤ ex, we have:

ϕt+1 ≤ ϕte
ϵuT

t pt

Apply this recursive equation repeatedly, we will have:

ϕt+1 ≤ ϕ0e
ϵ
∑

t u
T
t pt = neϵ

∑
t u

T
t pt (10)

On the other hand, suppose the index of best expert is i∗, we will have:

ϕT > wT
i∗ =

T∏
t=0

(1 + ϵut,i) (11)

We apply the fact that 1 + x ≤ ex−x2 when x is small. Then we will have that:

ϕT > e
ϵ
∑T

t=0 us,i∗−ϵ2
∑T

t=1 u
2
s,i∗ (12)

Combine 10 and 12, we will have that:

e
ϵ
∑T

t=0 us,i∗−ϵ2
∑T

t=1 u
2
s,i∗ < neϵ

∑
t u

T
t pt (13)

Taking log from both sides, we will have that:

ϵ

T∑
t=0

us,i∗ − ϵ2
T∑
t=1

u2s,i∗ < log n+ ϵ
∑
t

uTt p
t

Divide both sides by ϵT and clean it up, we will conclude this theorem.
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4 A Proof of Minimax Theorem with No-Regret Learning

In the previous sections, we talked about a generalization of experts game and an online learning
algorithm to get good results in these games. In this section, we will revisit Von Neumann’s Mini-
max Theorem again and show a proof of it based on No-Regret Learning.

First let’s take a look at Minimax Theorem.

Theorem 4.1 Minimax Theorem Let A a matrix n · m to be a payoff matrix of a two player
game. ∆n and ∆m is the set of actions of the row player and the column player, respectively. We
have:

min
x∈∆n

max
y∈∆m

xTAy = max
y∈∆m

min
x∈∆n

xTAy

Proof:
First we will prove the following inequality:

min
x∈∆n

max
y∈∆m

xTAy ≥ max
y∈∆m

min
x∈∆n

xTAy (14)

Suppose we have g(y) = infx x
TAy, then we know that for all y, we have xTAy ≥ g(y). Then

we have:
sup
y

g(y) ≤ sup
y

xTAy

Taking minimum for the right side, we will conclude this inequality.
Next, we want to prove the following inequality:

min
x∈∆n

max
y∈∆m

xTAy ≤ max
y∈∆m

min
x∈∆n

xTAy (15)

Suppose we have the following game setting:

• In each iteration t, player choose the best strategy xt and yt.

• Players will play at the same time, that is, they do not know each other’s strategy in each
iteration, however, they will observe opponents’ in the current iteration.

Since A is the payoff matrix of Player 1, the goal of Player A is to find maxx∗∈∆x x
∗Ay. For

the player B, the goal is to find maxy∗∈∆y xAy
∗. Take a look at v = 1

T

∑T
t=1 x

tAyt.
Suppose xt and yt are from MWU, by the properties of regret, in the place of Player A, we will

have:

v ≥ 1

T
max
x∈∆x

t∑
i=1

xAyt − ϵ ≥ min
y∈∆m

max
x∈∆n

xAy − η

In the place of Player B, we will have:

v ≤ 1

T
min
y∈∆m

t∑
i=1

xtAy + ϵ ≤ max
x∈∆n

min
y∈∆m

xAy + η
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Put the above 2 inequalities together, we will have:

min
y∈∆m

max
x∈∆n

xAy − η ≤ max
x∈∆n

min
y∈∆m

xAy + η (16)

If we have ϵ → 0 and combine equation 14 and 16, we will conclude this theorem.
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