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Lecture 3. LP Duality and Zero-sum games

1 Introduction to Linear Programming

The standard form of a Linear Program (LP) is shown as 2

s.t. Ax ≤ b

x ≥ 0
(1)

The goal of Equation 1 is to find a feasible solution x∗ if there exist one, which is called feasi-

bility problem. Here, we assume x is m× 1 vector, A is n×m matrix, b is n× 1 vector. In other

words, we have n constraints and m variables.

Now suppose our goal is finding the optimal solution of the linear program, or return infeasible

if there doesn’t exist a feasible solution. We can introduce the following standard form:

max cTx

s.t. Ax ≤ b

x ≥ 0

(2)

In this form, cTx is what we can define and this form is called optimization problem.

1.1 Feasibility and Optimization

Lemma 1.1 The feasibility problem(i) and the optimization problem(ii) are polynomial equivalent.

Proof: Suppose we know the solution of (ii) x∗, then x∗1 satisfies all the constraints and thus

is a feasible solution of problem (i).

On the contrary, we want to show if the problem could be reduced to a form that: does A′x ≤ b

has at least one solution? The problem (ii) is equivalent to ask: if there exists the largest q such

that we satisfy cTx ≥ q and Ax ≤ b, where we could binary search to find the best q. Therefore,

the feasibility and optimality problems are polynomial time equivalent.

1.2 Primal and Dual Formulation

Every LP is associated with another LP, called the dual (in this case, the original LP is called the

primal). The standard form of primal and dual is shown as Table(1. In summary, each inequality

constraint in primal is associated with a variable in dual; each variable coefficient in the primal
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objective function is associated with one constraint in dual. If the original problem is not in the

standard form, the common practice is to transform min/max or the inequality sign by multiplying

(-1).

Primal Dual

Objective function Max Z = cTx Min W = bT y

Row (i) ai1xn + ...+ ainxn = bi no sign constraint on yi
Row (i) ai1xn + ...+ ainxn ≤ bi yi ≥ 0

Variable (j) xj ≥ 0 a1jy1 + ...+ amjym ≥ cj
Variable (j) no sign constraint on xj a1jy1 + ...+ amjym = cj

Table 1: Transformation between dual and primal [1]

1.3 Strong and Weak Duality

There are four possible scenarios with respect to the feasibility of primal-dual pairing shown as

follows, where we focus on the 1st case (bold):

• The Primal is bounded and feasible ⇒ The Dual is bounded and feasible.

• The Primal is unbounded and feasible ⇒ The Dual is infeasible.

• The Primal is infeasible ⇒ The Dual is unbounded and feasible.

• The Primal is infeasible ⇒ The Dual is infeasible.

But why do we care about the feasibility/optimality relationship between primal and dual? The

underlying intuition is that, if the primal LP is a maximization problem, the dual can be used to

find upper bounds on its optimal value.

Theorem 1.2 (Weak duality). Assume that primal is feasible and bounded. It holds that

max
x∈P

cTx ≤ min
y∈D

bT y

Proof: Suppose P and D are the domain of primal and dual problems, respectively. For any

feasible x ∈ P and y ∈ D. Then we have

Ax ≤ b ⇒ yT (Ax) ≤ yT b ⇒ xTAT y ≤ yT b (re-arrange the scaler term)

Similarly, based on the feasibility constraint of dual that ATx ≥ c, we have xTAT y ≥ xT c Using

transitivity, we have cTx ≤ xTAT y ≤ yT b for ∀x ∈ P and ∀y ∈ D. Under the assumption that

primal is bounded and feasible, we could conclude maxx∈P cTx ≤ minx∈D bT y

Theorem 1.3 (Strong duality). Assume that primal is feasible and bounded. It holds that

max
x∈P

cTx = min
y∈D

bT y
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We use the zero-sum presidency example (refer to Lecture 1) to verify the strong duality theorem.

In the contexts of zero-sum game, x means the mixed strategy (the probability distribution) of

row player. Accordingly, primal problem represents what row player should act to maximize his/her

utility z if he/she plays first. The dual problem objective function w turns out to be the negation

of how much column player would get. For the specific example below, the optimal solution is

x∗ = (37 ,
4
7), y = (27 ,

5
7), and the optimally matches at z = w = 1

7 .

max 0 · x1 + 0 · x2 + 1 · z

s.t.

(
−3 2 1

1 −1 1

)x1
x2
z

 ≤ 0

x1 + x2 = 1

x1, x2 ≥ 0

min 0 · y1 + 0 · y2 + 1 · w

s.t.

(
−3 1 1

2 −1 1

)y1
y2
w

 ≤ 0

y1 + y2 = 1

y1, y2 ≥ 0

2 Zero-Sum Games as Linear Programs

2.1 Computing Nash in zero-sum game by LP

What do we care about LP apart from its theoretic characteristics? One of the benefits is to help

represent and compute Nash in zero-sum games. Recall the pay-off table Rij ∈ Rn×m in zero-sum

game, where the row player chooses the strategy x ∈ ∆n and column player chooses the strategy

y ∈ ∆m. For given value of x and y, the row play will gets the payoff xTRy while the column player

gets the negation.

Suppose row player plays first and wants to get at least z for all pure strategies of column

player, we have

xTRe⃗j ≥ z ⇒ xTR ≥ z · 1T (3)

where e⃗j is the unit vector (0, ...1, .., 0)T with only the jth position being 1, representing when

column play chooses the jth strategy, 1 is the vector with all elements being 1. Eq (3) implies that

no matter what strategy y plays, the payoff of x is at least z. In addition, we have xT1 = 1 and

non-negative constraints because the probability of each strategy should sum up to 1.

2.2 Interpretation of Primal and Dual

Based on the interpretation above, we have LP for player x as

max z

xTR ≥ z · 1T

xT1 = 1

x ≥ 0

(4)

Equivalently, the above maximum is also a maxmin problem that

max
x∈∆n

min
y∈∆m

xTRy
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Consider the dual of the previous LP (4), we will find it is formulated as

min z′

yT (−R)T ≥ −z′ · 1T

yT1 = 1

y ≥ 0

(5)

If we set z′′ = −z′, we could transform the objective function of (5) from min z′ to -max z′′. That

is exactly the LP (6 as if y play first with sign flipped:

−max z′′

yT (−R)T ≥ z′′ · 1T

yT1 = 1

y ≥ 0

(6)

3 Nash Equilibrium and Linear Programs

A zero-sum game can be formulated by a series of linear programs, where each player can be

represented by a LP. Assume the two players use LP1 and LP2 as their corresponding linear

programs, which is presented in Equation 7 and Equation 8. Here, we introduce the following

Theorem 3.1:

LP1 : max z1

xT1 R ≥ z1 · 1T

xT1 1 = 1

x1 ≥ 0

(7)

LP2 : max z2

xT2 (−R)T ≥ z2 · 1T

xT2 1 = 1

x2 ≥ 0

(8)

Theorem 3.1 Suppose for player 1, the payoff matrix is R. Let (x∗1, z
∗
1) be optimal for LP1 and

(x∗2, z
∗
2) be optimal for LP2. Then (x∗1, x

∗
2) is a Nash Equilibrium of this zero-sum game, and the

payoff of player 1 is z1 and for player 2 is z2 = −z1

Proof: Since the game is zero-sum, it indicates that the payoff matrix for player 2 is −R. Since

(x∗1, z
∗
1) is optimal, according to the definition, it is feasible to LP1, which indicates a new equation,

as shown in Equation 9. Similarly, because (x∗2, z
∗
2) is optimal and feasible to LP2, we observe that
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Equation 10.

x∗1
TRx∗2 ≥ z1 (9)

x∗2
T (−R)Tx∗1 ≥ z2 =⇒ x∗2

TRTx∗1 ≤ −z2 (10)

Now, by Strong duality Theorem 1.3, we can figure out that z1 = −z2. Moreover, Equation 9

implies that if player 1 plays x∗1 against player 2, his payoff is at least z1. With Equation 10, this

is exactly z1. So x∗1 is the best choice for player 1 to play against player 2. Similarly by using the

same argument, we can obtain that if player 2 plays x∗2 against player 1, his payoff is exactly z2
and x∗2 is the best response. Hence, (x∗1, x

∗
2) is a Nash equilibrium and the players’ payoffs are z1

and z2 = −z1 respectively[2].

Theorem 3.2 Let (x∗1, x
∗
2) be a Nash equilibrium and set z∗ = x∗1

TRx∗2. (x
∗
1, z

∗) is optimal solution

for LP1 and (x∗2,−z∗) is optimal solution for LP2.

4 Corollaries

Corollary 4.1 Von Neuman minimax theorem:

max
x∈∆n

min
y∈∆m

x⊺Ry = min
y∈∆m

max
x∈∆n

x⊺Ry

Corollary 4.2 Uniqueness of payoffs: For both the row player and column player of a zero-sum

game, the payoff is the same at all the Nash equilibria points.

Corollary 4.3 Convexity of Nash Equilibria: In a zero-sum game, the set of the Nash equilibria

points is convex.
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