
CS295 Topics in Algorithmic Game Theory
Lecture2: Games, Definitions and Existence of Nash

equilibrium

Scribe: Parnian Shahkar Lecturer: Prof. Ioannis Panageas

1 Normal form games

Definition 1 Normal form games are defined as:

• A set of n players specified by [n] = {1, .., n}.

• Each player i has a set of finite strategies/actions Si = {s1i , .., s
ki
i } to choose from.

• By putting the strategies of all players together, we get a set of strategy profiles S =
S1 × ...× Sn.

• We can define the utility of each agent i as a function that takes the strategies of all
players as its input and gives the payoff of player i as output. From now on we
denote Si as the realized strategy of player i, and S as the realized strategy profile
of all players. Therefore we can write ui : S → R

Based on the definition above, many games can be characterized as normal form games.
To better illustrate the notations we introduced above, the following example is shown.

Example 1 Rock-Paper-Scissors (RPS) can be characterized as a Normal form game
because:

• There are two players so n = 2.

• Each player plays rock, paper, or scissors, therefore S1, S2 = {R,P, S}.

• Utility of each player depends on strategies used by both players. Based on the game’s
rules, if both players play the same strategy, they both get zero utility. If one plays
scissors and the other plays rock, rock player wins, u1(R,P ) = 1. If scissors and
paper is played, scissor player wins, u1(S, P ) = 1 . If rock and paper are played,
paper player wins, u1(P,R) = 1. The winner in each scenario gets utility 1 and the
loser gets utility −1. Therefore we can construct a payoff table for player 1, where
player 1 is the row player and player 2 is the column player. The payoff of each
player is determined based on the strategies both players choose.

R P S
R 0 -1 +1
P +1 0 -1
S -1 +1 0

Utility of the second player is u2 = −u1.

1



2 Mixed strategies and Expected utility

Definition 2 Each player can choose a vector of probability mass function over its strat-
egy space, to represent with what probability she will choose each strategy. This vector of
probabilities that assigns a probability to each strategy of player i is her mixed strategy.
The set of all mixed strategies available to each player can be represented as the following:

∆i = {xi :
∑
si∈Si

xi(si) = 1, xi ≥ 0}

We represent the set of mixed strategies of all players with ∆, where:

∆ = ∆1 × ...×∆n

We can also define the notion ∆−i as the set of mixed strategies of all players excluding
i.

Example 2 In the Rock-Paper-Scissors game, the set of mixed strategies for each player
is the green triangle shown below in the strategy space. Each player chooses a point of
its mixed strategy set. For example if player 1 chooses (2

3
, 1
6
, 1
6
), this means that she has

chosen to play the first strategy(Rock) with probability 2
3
, the second strategy(Paper) with

probability 1
6
, and the third strategy(Scissors) with probability 1

6
. Corner points of the

triangles represent the pure strategies.

Definition 3 Given a mixed strategy x ∈ ∆, expected utility of player i is defined as
the following:

ui(x) = Es∼xui(s) =
∑

(s1,..,sn)∈S

ui(s1, .., sn)Π
n
j=1xj(sj)

Example 3 In Rock-Paper-Scissors, if player 1 chooses her strategy to be x1 = (3
6
, 2
6
, 1
6
)

and player 2 chooses his strategy to be x2 = (1
2
, 1
2
, 0), the expected utility of player one

can be computed(using the payoff table drawn in example 1) as below:

u1(x1, x2) =
3

6

1

2
u1(R,R) +

3

6

1

2
u1(R,P ) +

3

6
0u1(R, S) + ...+

1

6
0u1(S, S) = − 1

12

As the expected utility of the second player is minus the expected utility of the first player,
u2(x1, x2) =

1
12
.
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3 Nash Equilibrium

Definition 4 Suppose each player chooses her mixed strategy xi. The mixed strategy of
all players can be described as x ≡ (x1, .., xn) ∈ ∆. x is a Nash Equilibrium if given
the mixed strategies of other players(x−i), agent i does not have any incentive to deviate
from xi. In other words ∀x′

i ∈ ∆i:

ui(xi, x−i) ≥ ui(x
′
i, x−i).

We can extend this definition by defining x to be ϵ-approximate Nash Equilibrium(in
the additive form) if and only if the following holds:

ui(xi, x−i) ≥ ui(x
′
i, x−i)− ϵ.

We can even go further and define x to be ϵ-approximate Nash Equilibrium(in the
multiplicative form) if and only if the following holds:

ui(xi, x−i) ≥ (1− ϵ)ui(x
′
i, x−i).

Theorem 1 (Nash).Every game with finite number of players and actions has a Nash
Equilibrium.

Before proving the above theorem, we need to understand the Brouwer theorem from
topology.

Theorem 2 (Brouwer). Let D be a convex, compact subset of Rd and f : D → D a
continuous function. There always exists x ∈ D such that f(x) = x.

As this theorem states, in any continuous function operated on a convex and compact
domain that maps the outputs to the same domain as input, a fixed point always exists.
Now let’s prove theorem 1 using Brouwer’s theorem.

Proof 1 Consider any finite game and the following continuous function that gets any
point in the mixed strategies space as its input.

fi,si(x) =
xi(si) +max{ui(si;x−i)− ui(x), 0}

1 +
∑

s′∈Si
max{ui(s′;x−i)− ui(x), 0}

For each agent i, we can define the above function for all of her pure strategies si ∈
{si1, .., sim}. By vertically concatenating fi,si(x) for all pure strategies of player i, we get
vector fi(x). Such vector is defined for all agents. Based on these notations, the following
observations can be made:

• In fi,si(x), the denominator is determined in a way that the sum of fi,si(x) over all
pure strategies of player i is 1:

(1 )

∑
si ∈Si

fi,si(x) =

∑
si∈Si

[xi(si) +max{ui(si;x−i)− ui(x), 0}]
1 +

∑
s′∈Si

max{ui(s′;x−i)− ui(x), 0}

=
1 +

∑
si∈Si

[max{ui(si;x−i)− ui(x), 0}]
1 +

∑
s′∈Si

max{ui(s′;x−i)− ui(x), 0}
= 1
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• f is a continuous function. Moreover, since both xi(si) and max{ui(si;x−i)−ui(x), 0}
are non-negative, the output of f is positive.

• fi(x) is a m-dimensional vector where m is the dimension of strategy space of player i.

According to the observations described, f is a continuous function that maps each point
in ∆i to a point in ∆i(∆i is convex and compact). Based on Brouwer’s theorem, this
function has a fixed point. Let x∗ be the fixed point of f . In what follows, we show that
x∗ is a Nash Equilibrium.

Since x∗ is a fixed point, f(x∗) = x∗. Therefore, for each agent i fi(x
∗) = x∗

i . In
other words, for each agent i and s ∈ Si, fi,s(x

∗) = x∗
i (s). Hence:

(2 )x∗
i (s) =

x∗
i (s) +max{ui(s;x

∗
−i)− ui(x

∗), 0}
1 +

∑
s′∈Si

max{ui(s′;x∗
−i)− ui(x∗), 0}

Therefore we have that:

(3 )x∗
i (s)[1 +

∑
s′∈Si

max{ui(s
′;x∗

−i)− ui(x
∗), 0}] = x∗

i (s) +max{ui(s;x
∗
−i)− ui(x

∗), 0}

Which leads to the following:

(4 )x∗
i (s)[

∑
s′∈Si

max{ui(s
′;x∗

−i)− ui(x
∗), 0}] = max{ui(s;x

∗
−i)− ui(x

∗), 0}

Now two cases might happen:

• x∗
i (s) = 0, In this case, the left hand side of equation 4 becomes 0. Thereforemax{ui(s;x

∗
−i)−

ui(x
∗), 0} = 0. This means that ui(s;x

∗
−i) ≤ ui(x

∗).

• x∗
i (s) > 0, then if ui(s;x

∗
−i) < ui(x

∗), this means that the right hand side of equation 4
is 0. Therefore

∑
s′∈Si

max{ui(s
′;x∗

−i) − ui(x
∗), 0} = 0. Since all the terms in the

sum are non-negative, all the terms should be 0. So for all s′ ∈ Si, max{ui(s
′;x∗

−i)−
ui(x

∗), 0} = 0. Hence ui(s
′;x∗

−i) ≤ ui(x
∗).

Since x∗
i ∈ ∆i,

∑
s′ x

∗
i (s

′) = 1. Therefore utility of player i by choosing strategy
x∗
i can be written as the following: ui(x

∗) = 1 × ui(x
∗) =

∑
s′ x

∗
i (s

′)ui(x
∗). In the

case where ui(s;x
∗
−i) < ui(x

∗), we have shown that ∀s′ ∈ Si, ui(s
′;x∗

−i) ≤ ui(x
∗).

Therefore,

ui(x
∗) =

∑
s′

x∗
i (s

′)ui(x
∗) >

∑
s′

x∗
i (s

′)ui(s
′;x∗

−i)

The Right hand side of the above equation is the expected utility of player i if she
chooses to play x∗

i . Therefore ui(x
∗) >

∑
s′ x

∗
i (s

′)ui(s
′;x∗

−i) = ui(x
∗). This is a

contradiction. Therefore, the initial assumption that ui(s;x
∗
−i) < ui(x

∗) is never
true. Hence if x∗

i (s) > 0, then ui(s;x
∗
−i) ≥ ui(x

∗).
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From the definition of expected utility, we know that ui(x
∗) =

∑
s′ ui(s

′;x∗
−i)x

∗
i (s

′). When-
ever x∗

i (s
′) = 0, the ui(s

′;x∗
−i)x

∗
i (s

′) term in the sum becomes zero. In other cases where
x∗
i (s

′) > 0, by using ui(s;x
∗
−i) ≥ ui(x

∗), we get the following:

(5 )

ui(x
∗) =

∑
s′

ui(s
′;x∗

−i)x
∗
i (s

′)

≥
∑
s′

ui(x
∗)x∗

i (s
′)

= ui(x
∗)
∑
s′

x∗
i (s

′)

= ui(x
∗)

Therefore, the inequality used in 5 is equality and we have that ui(s;x
∗
−i) = ui(x

∗) when-
ever x∗

i (s
′) > 0. To summarize, for each player i, the following holds:

• When x∗
i (s) = 0, ui(s;x

∗
−i) ≤ ui(x

∗).

• When x∗
i (s) > 0, ui(s;x

∗
−i) = ui(x

∗).

In order to show that x∗ is a Nash Equilibrium, we need to show that ∀x̃i ∈ ∆i, ui(x
∗
i ;x

∗
−i) ≥

ui(x̃i;x
∗
−i). From the two bullet points above, it can be easily seen that ui(s;x

∗
−i) ≤ ui(x

∗).
Hence x̃i(s)ui(s;x

∗
−i) ≤ x̃i(s)ui(x

∗). By taking the summation we get the following:

(6 )
∑
s

x̃i(s)ui(s;x
∗
−i) ≤

∑
s

x̃i(s)ui(x
∗)

From the definition of expected utility, we know that ui(x̃i, x
∗
−i) =

∑
s x̃i(s)ui(s;x

∗
−i) and

since x̃i ∈ ∆i,
∑

s x̃i(s) = 1, so we have ui(x
∗) =

∑
s x̃i(s)ui(x

∗), Therefore we get the
following:

(7 )

ui(x̃i, x
∗
−i) =

∑
s

x̃i(s)ui(s;x
∗
−i)

≤
∑
s

x̃i(s)ui(x
∗)

= ui(x
∗)

To sum up, we proved that ∀x̃i ∈ ∆i, ui(x
∗
i ;x

∗
−i) ≥ ui(x̃i;x

∗
−i), therefore, x

∗ which was
the fixed point of f , is indeed a Nash Equilibrium.

According to theorem 1, In order to find a Nash Equilibrium of a finite game, we only
need to find the fixed points of the function f as defined above. Finding such fixed
points can generally be computationally hard. In the next section, we introduce a special
form of games where computing a Nash Equilibrium is easy for them by using linear
programming.
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4 Zero-sum games

Definition 5 Zero-sum games can be characterized as below:

• There are two players, namely row-player and column-player.

• Both players have finite strategies to choose from. Without loss of generality the row-
player has n available strategies and the column-player has m available strategies.

• The payoff of two players sum up to zero.

The payoff matrices are n×m matrices that represent the payoff of each player based on
the chosen strategies. Since the payoff of two players sum up to zero, it is enough to show
the payoff matrix of the row-player. The payoff matrix of the column player is derived
from negating the payoff matrix of the row-player(C = −R). In the following figure, R
is the n×m payoff matrix of the row-player.

Example 4 Consider the following zero-sum game: there are two candidates aiming for
presidency. The row-player should choose one strategy between Economy and Education
and the column-player should choose between Tax-cut and Society. Based on different
combinations, each of the candidates receive a specific utility depicted in the following
payoff matrix. Note that in each cell of the matrix, the first value is the utility of the
row-player and the second value is the utility of the column-player.

Consider the following cases:

• Assume that the row player plays Economy with probability x11 and plays Education
with probability x12. Now if the column player plays Tax-cuts, his expected utility
will be −3x11+2x12, and if he chooses Society, his expected utility will be x11−x12.
The column player will choose the strategy that maximizes his utility, therefore his
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utility will be max{−3x11 + 2x12, x11 − x12}. Because this is a zero-sum game,
the utility of the row-player is negation of the utility of the column-player which is
−max{−3x11+2x12, x11−x12} = min{3x11−2x12,−x11+x12}. Now the row-player
will choose (x11, x12) in a way that she maximizes her own utility, therefore:

(8 )(x∗
11, x

∗
12) = arg max

x11,x12

min{3x11 − 2x12,−x11 + x12}

This optimization problem can be written in the form of the following LP:

• Assume that the column-player plays Tax-cuts with probability x21 and Society with
probability x22. If row-player plays Economy her expected utility will be 3x21 − x22

and if she plays Education her expected utility will be −2x21+x22. Row-player’s best
response would result in the following utility for her: max{3x21−x22,−2x21+x22}.
Because this is a zero-sum game, column player’s utility is the negation of the row-
player’s utility, which is min{−3x21 + x22, 2x21 − x22}. The column-player chooses
his strategy in a way to maximize his utility, therefore:

(9 )(x∗
21, x

∗
22) = arg max

x21,x22

min{−3x21 + x22, 2x21 − x22}

This optimization problem can be written in the form of the following LP:

In the next lecture, we will see that the two linear programs shown above are dual and
they will both give us the same solution, which is the Nash Equilibrium.

The Nash Equilibrium of other Zero-sum games with even higher dimension of strategy
spaces can be found using similar techniques used in the example above. In other words,
for all zero-sum games, the problem of finding the Nash Equilibrium can be reduced to
solving a linear program. Since we can solve these LPs fast, finding Nash Equilibrium in
Zero-sum games are not computationally hard.
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