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Lecture 11. Intro to Mechanism Design.

1 Motivation

Definition 1.1 Single-item allocation problem

• one indivisible item

• n agents competing for the item

• each agent i has a personal valuation vi for the item

The goal of the single-item allocation problem is to maximize the social surplus, which is defined

as the valuation of the agent that receives the item.

Protocol 1.1 Highest bidder

Suppose the agents are asked to report bids bi, and the item is given to the agent i∗ with the highest

bid (i.e. i∗ = argmaxi bi).

With this mechanism, the agents have no incentive to bid truthfully. In particular, any agent

with a vi > 0 is incentivized to bid as highly as possible. Therefore, this mechanism will produce

very unpredictable outcomes and will not do a good job of maximizing the social surplus.

Protocol 1.2 Lottery

Suppose an agent is chosen uniformly at random and given the item.

Clearly, this mechanism also does a poor job of maximizing the social surplus. To reason about

how poor, we must define the concept of approximation ratios for mechanisms.

Definition 1.2 Approximation ratio of a mechanism

approximation ratio =
optimal social surplus

E[social surplus of mechanism outcome]

Theorem 1.3 Lottery is an n-approximation

Proof: The worst-case scenario is that one agent has a high valuation and all others have

valuations of almost 0.
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Suppose v1 >> ϵ and vi = ϵ for all i ≥ 2. The optimal social surplus is clearly v1. The expected

social surplus of the lottery mechanism is:

1

n
(v1 + (n− 1)ϵ)

The approximation ratio is:
v1

1
n(v1 + (n− 1)ϵ)

which approaches n as ϵ → 0.

2 Auctions

In order to create mechanisms with predictable and desirable behavior, we must introduce pay-

ments, which will discourage agents from making untruthfully high bids.

Protocol 2.1 First-price auction

Just as in Protocol 1.1, agents report bids bi, and the item is given to the agent i∗ with the highest

bid (i.e. i∗ = argmaxi bi). However, i
∗ must also pay the amount they bid, bi∗ .

Definition 2.1 Agent utility in an auction

If agent i gets the item and pays pi, then their utility is ui = vi−pi. Otherwise, their utility is ui = 0.

This protocol represents a significant improvement over Protocol 1.1, since agents are at least

never incentivized to bid higher than their valuations. Other than that, though, it is hard to reason

about first-price auctions. Agents want to bid lower than their valuations to maximize their utility,

but they don’t want to bid lower than the other agents and miss out on winning the item. For the

auction designer, it is hard to predict what will happen.

Protocol 2.2 Second-price auction, aka Vickrey auction

• agents report bids bi

• the item is given to the highest bidder i∗ = argmaxi bi

• i∗ pays the amount of the second highest bid pi∗ = maxj ̸=i∗ bj

Theorem 2.3 Second-price auctions are truthful

In a second-price auction, it is a dominant strategy for every agent to bid exactly their true

valuation (i.e. bi = vi). Recall the definition of dominant: an agent’s strategy is dominant if

it always maximizes the utility of that agent regardless of what the other agents do. Dominant

strategies are better than Nash equilibria, because they obviate the need for agents to predict other

agents’ behaviors.

Proof:

Consider any agent i and define B = maxj ̸=i bj .
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• Case 1. vi < B:

– If bi = vi (i.e. i bids truthfully), then agent i will not win the item. ui = 0.

– If bi < vi, then agent i will still not win. ui = 0.

– If B > bi > vi, then agent i will still not win. ui = 0.

– If bi ≥ B > vi, then agent i will win, but their utility will be negative. ui = vi −B < 0.

• Case 2. vi ≥ B:

– If bi = vi (i.e. i bids truthfully), then agent i will win the item. ui = vi −B ≥ 0.

– If bi > vi, then agent i will still win and pay the same amount. ui = vi −B ≥ 0.

– If vi > bi ≥ B, then agent i will still win and pay the same amount. ui = vi −B ≥ 0.

– If vi ≥ B > bi, then agent i will not win. ui = 0.

In no case can agent i increase their utility by doing something other than bidding truthfully.

Below we provide an alternative proof of the second-price auctions are DSIC.

Theorem 2.4 Vickrey is truthful. In second price auctions, every bidder i has a dominant

strategy that is bid truthfully (set the bid bi = vi). Dominant means the bid maximize the utility

bi = argmaxb̂i(vi − pi)I(b̂i = bi∗).

Proof: Fix an agent i and set B = maxj ̸=i bj to be the second highest bid. Consider the two cases:

1. bi < B then the utility (vi − pi)I(bi = bi∗) = 0.

Therefore no matter what bi is, the utility will be the same.

2. bi > B then the utility (vi − pi)I(bi = bi∗) = (vi −B).

• Suppose bi > B > vi , the utility will be negative

• Suppose bi > vi > B, the utility will be vi −B ≥ 0.

• Suppose bi < vi, the utility will be vi −B ≥ 0.

• Suppose truthful bi = vi, the utility will be vi −B ≥ 0

Therefore, the utility of truthful report is (vi−B)I(vi > B), optimistic report bi > vi is (vi−B)I(bi >
B), conservative report bi < vi is (vi−B)I(bi > B). To see why truthful report gets the max utility,

considering any fixed B, vi, (vi − B)I(vi > B) ≥ (vi − B)I(bi > B) and the equality holds if and

only if vi = bi.

3 Quasi-Linear Environments

Inspired by the properties that the second-price auction preserved, now we are ready to introduce

the framework for general auction. In fact, the general auction should preserve three properties:

• Dominant strategy incentive compatible (DSIC), i.e., truthtelling is dominant strategy.

3



• If bidders are truthful, auction maximizes surplus
∑n

i=1 vixi, where xi = I(i wins the item)

• The auction can be implemented in polynomial time.

Example 3.1 Problem: Consider a society of n citizens and public good G.

• Each agent has valuation vi for the good.

• Cost of building G is C.

• G should be built if
∑n

i=1 vi > C

Goal: Design a mechanism that charges citizens in a way the G is built only if
∑n

i=1 vi > C.

Solution: Charge citizen i the amount pi := max(0, C −
∑

j ̸=i bi). Similarly can be shown that is

DSIC.

Definition 3.1 Quasi-linear environment, aka Vickrey-Clarke-Groves (VCG) environment:

• n agents,

• Set of outcomes X

• Each agent i has a valuation vi : X → R+

• Each agent has utility ui = vi − pi where pi is the receive payment (positive or negative).

Definition 3.2 Vickrey-Clarke-Groves (VCG) mechanism. The family of mechanisms is

defined as follows:

• Agents have valuations vi and report their bids bi.

• Set x∗ = argmaxx∈X
∑n

i=1 bi(x).

• Each agent pays pi := hi(b−i)−
∑

j ̸=i bj(x
∗)

• Each agent has utility ui = vi(x
∗)− pi(x

∗).

Theorem 3.2 VCG is DSIC. Every VCG mechanism is DSIC

Proof: Fix an agent i and let x∗ = argmaxni=1 vi(x). Assume that i reports bi ̸= vi and x′

be the maximum if i report untruthfully bi. X ′ = argmax
∑

j ̸=i v
′
j(x). Considering the utility of

different allocation outcomes ui(x
∗), ui(x

′)

ui(x
∗) = vi(x

∗) +
∑
j ̸=i

vj(x
∗)− hi(v−i)ui(x

′) = vi(x
′) +

∑
j ̸=i

vj(x
′)− hi(v−i)

It is not hard to see ui(x
∗)− ui(x

′) ≥ 0. Therefore, we proofed the truthful report is the dominant

strategy in VCG mechanism.
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Corollary 3.3 The payment method pi := max(0, C −
∑

j ̸=i bi) is VCG mechanism, since if we

change the hi(b−i) = C in Definition 3.2 the results hold.

Next we will show hold to choose an appropriate hi for the mechanism design. And the intuitive

idea lies in the utility should not be negative.

Definition 3.3 Clarke pivot This suggest we use hi(b−i) = maxx
∑

j ̸=i bi(x)

Remark 3.4 .

1. The utility of the highest valuation is non-negative. This could be seen from ui(x
∗) =∑n

j=1 vi(x
∗)−maxx

∑
j ̸=i bi(x) = maxx

∑
j∈[n] vi(x)−maxx

∑
j ̸=i vi(x) ≥ 0

2. The second-price auction is a special case of Clarke pivot.
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