
CS295 Introduction to Algorithmic Game Theory

Instructor: Ioannis Panageas Scribed by:
Jingming Yan

Nikolas Patris
Lecture 10. Other Notions of Equilibria.

1 Introduction

Nash equilibrium is the central concept in Game Theory. Much of its importance and attractiveness

comes from its universality: by Nash’s Theorem, every finite game has at least one. The result that

finding a Nash equilibrium is PPAD-complete, and therefore intractable casts this universality in

doubt, since it suggests that there are games whose Nash equilibria, though existent, are in any

practical sense inaccessible. Therefore, for a meaningful equilibrium analysis of games, we need to

enlarge the set of equilibria. We introduce two relaxations of Nash equilibria, each more permissive

and computationally tractable than the previous one. Both of these relaxed equilibrium concepts

are guaranteed to exist in all finite games, similarly to the case of mixed Nash equilibria.

2 Correlated Equilibrium and Coarse Correlated Equilibrium

First, we introduce an important class of equilibiria, namely corellated equilibiria, that may re-

garded as a relaxation of the strictest class of Nash equilibria.

Definition 2.1 (Correlated Equilibrium) A joint distribution µ over S = S1 × · · ·Sn is a cor-

related equilibrium if and only if for every agent i and (deviation) strategy x′i ∈ ∆i,

E
x∽µ

[ui(xi;x−i)|xi] ≥ E
x∽µ

[ui(x
′
i;x−i)|xi] (1)

There is also a useful equivalent definition of CE in terms of swapping function. A swap function

is defined as f : Si → Si, where Si denotes the strategy space of player i. Then, an alternative

definition of CE is the following:

E
x∽µ

[ui(xi;x−i)] ≥ E
x∽µ

[ui(f(xi);x−i)] (2)

Despite the positive results of the CE, we can enlarge the set of equilibria even further, to an

even more tractable concept; we define the set of coarse correlated equilibria, (CCE).

Definition 2.2 (Coarse Correlated Equilibrium) A joint distribution µ over S = S1 × · · ·Sn

is a correlated equilibrium if and only if for every agent i and (deviation) strategy x′i ∈ ∆i,

E
x∽µ

[ui(xi;x−i)] ≥ E
x∽µ

[ui(x
′
i;x−i)] (3)

1

At first glance, Definition (2.2) is the same as that for a mixed Nash equilibrium, except without

the restriction that µ is a product distribution. Compared to Definition (2.1), a CCE only protects

against unconditional unilateral deviations, as opposed to the unilateral deviations conditioned on

xi. Put it differently, when agent i contemplates a deviation x′i, they know only the distribution µ

and not the component xi of the realization.

In Lemma 2.1, we examine the relationships between different sets of equilibria, see Figure 1.

Lemma 2.1 The set of Nash equilibria is a subset of the set of correlated equilibrium, which in

turn is a subset of the set of coarse Correlated Equilibrium. Specifically,

NE ⊆ CE ⊆ CCE

Proof: Note that if µ is a product distribution, then we have E
x∽µ

[ui(xi;x−i)|xi] = E
x∽µ

[ui(xi;x−i)]

and E
x∽µ

[ui(x
′
i;x−i)|xi] = E

x∽µ
[ui(x

′
i;x−i)]. Thus, it proves the left-side inclusion NE ⊆ CE. More-

over, by the Law of Total Expectation we conclude

E
[
E

x∽µ
[ui(xi;x−i)|xi]

]
= E

x∽µ
[ui(xi;x−i)]

and

E
[
E

x∽µ
[ui(x

′
i;x−i)|si = xi]

]
= E

x∽µ
[ui(x

′
i;x−i)]

If µ is a CE, then

E
x∽µ

[ui(xi;x−i)|si = xi] ≥ E
x∽µ

[ui(x
′
i;x−i)|si = xi] for all x′i

Finally, we conclude E
x∽µ

[ui(xi;x−i)] ≥ E
x∽µ

[ui(x
′
i;x−i)] which satisfy the requirement of CCE.

The classic example of Chicken game [1] could be proven quite useful to illustrate that notion

of CCE even better and indicate a case where a CCE is not necessarily a Nash equilibrium for the

game.

Example 2.2 Consider a Chicken game defined as the following:

Dare Chicken out

Dare 0, 0 7, 2

Chicken out 2, 7 6, 6

In each entry, the first number denotes the utility for player1, whereas the second number de-

notes the utility for player2. Note that it is not a case of two-player zero-sum game. Let µ be a joint

distribution, such that µ(C,C) = µ(C,D) = µ(D,C) = 1
3 , µ(D,D) = 0 is a correlated equilibrium.

We could readily verify that µ is a CCE for the Chicken game.

2

Figure 1: A hierarchy of equilibrium concepts: pure Nash equilibria (PNE), mixed Nash equilibria

(MNE), correlated equilibria (CE), and coarse correlated equilibria (CCE).

Suppose that player1 is assigned with Chicken out, based on the joint distribution χ, player2
is equally likely to play Chicken out or Dare if he or she follows the joint distribution, given that

player1 is assigned with Chicken out. Then, we can calculate the expected utility for player1,

E[u1(C, x2) |C] = 2× 1

2
+ 6× 1

2
= 4

If player1 chooses to deviate and play Dare instead, we have

E[u1(D,x2) |C] = 0× 1

2
+ 7× 1

2
= 3.5

Note that E[u1(C, x2) |C] ≥ E[u1(D,x2) |C]. Now suppose player1 is assigned with Dare, based

on the joint distribution µ, player2 can only play Chicken out if he or she follows the joint distri-

bution. Then the utility for player1 is

E[u1(D,x2) |D] = 7× 1 = 7

Now suppose player1 deviates and plays Chicken, we have

E[u1(C, x2) |D] = 6× 1 = 6

Again we have E[u1(D,x2) |D] ≥ E[u1(C, x2) |D]. Similar argument also apply to player2.

Therefore we claim that the joint distribution µ is a Correlated Equilibrium for the game. Note

that since µ is a joint distribution, it is not a Nash Equilibrium. However, there exists Nash

Equilibrium for this game, for example, x1 = (1, 0) and x2 = (0, 1) is a Nash Equilibrium.

3 Algorithms

In this section we discuss an important family of algorithms in online learning: no-regret algorithms.

Furthermore we demonstrate why no-regret algorithms efficiently compute a certain class of equi-

3

libria. To introduce no-regret algorithm, we first need to show the definition of online learning

algorithm in games. Generally, an online learning algorithm can be defined as follows:

Definition 3.1 (Online Learning) At each time step t = 1, 2, . . . , T :

• Each player i chooses x
(t)
i ∈ ∆i, where ∆i is the simplex over the strategies of player i.

• Each player experience utility ui(x
(t)) and observe all player’s strategies x

(t)
j .

In online learning algorithm, each player i chooses x
(t)
i in order to minimize their regret, which

can be defined as following:

Regret =
1

T

[
max
x∈∆i

T∑
t=1

ui(x, x
(t)
−i)−

T∑
t=1

ui(x
(t))

]
. (4)

Note that the best strategy x is fixed for all t = 1, 2, . . . , T , so the regret can be treated as utility

gap between the chosen strategy and the best pure strategy of all time. An online decision-making

algorithm A has no regret if for every ϵ > 0 there exists a sufficiently large time horizon T = T (ϵ)

such that the regret 4 is at most ϵ.

Bellow, we introduce the Projected Gradient Descent algorithm.

Definition 3.2 (Projected Gradient Descent) Let ℓt : D → S be a family of convex, differen-

tiable, and L-Lipschitz functions over the compact set S with diameter D. We define Projected

Gradient Descent as the following:

Algorithm 1 Projected Gradient Descent

Initialize x0
For t = 1, 2, . . . , T :

yt = xt − αt∇ℓt(xt)

xt+1 = Πχ(yt)

where αt is the step size at t, ΠS denotes the projection operator over S. In the setting of online

learning, we frequently adopt the notation that ℓt = −ui(x
(t)). We prove that Projected Gradient

Descent is a no-regret algorithm.

Theorem 3.1 (Projected Gradient Descent) For the algorithm defined in 3.2, it holds that

1

T

[
T∑
t=1

ℓt(xt)−min
x

T∑
t=1

ℓt(x)

]
≤ 3

2

LD√
T
.

where L is the Lipschitz constant for ℓt, D is the diameter of set S, and T is the total number

of iterations.

4

Proof: Set x∗ = argmin(
∑

ℓt(x)), since ℓt is convex, for any xt, we have

ℓt(xt)− ℓt(x
∗) ≤ ∇ℓt(xt)

T (xt − x∗). (5)

In the Projected Gradient Descent algorithm, we have yt = xt − αt∇ℓt(xt), therefore

∇ℓt(xt)
T (xt − x∗) =

1

αt
(xt − yt)

T (xt − x∗). (6)

By Law of Consines, ||yt − x∗||22 = ||xt − yt||22 + ||xt − x∗||22 − 2(xt − yt)
T (xt − x∗). Therefore

1

αt
(xt − yt)

T (xt − x∗) =
1

2αt
(||xt − yt||22 + ||xt − x∗||22 − ||yt − x∗||22). (7)

Since yt = xt − αt∇ℓt(xt),

1

2αt
(||xt − yt||22 + ||xt − x∗||22 − ||yt − x∗||22) =

1

2αt
(||xt − x∗||22 − ||yt − x∗||22) +

αt

2
||∇ℓt(xt)||22. (8)

Combine equation (5), (6), (7), (8), we have

ℓt(xt)− ℓt(x
∗) ≤ ∇ℓt(xt)

T (xt − x∗) =
1

2αt
(||xt − x∗||22 − ||yt − x∗||22) +

αt

2
||∇ℓt(xt)||22. (9)

Moreover, since ℓt is L-Lipschitz,
αt

2
||∇ℓt(xt)||22 ≤

αtL
2

2
. (10)

Since ΠS is the projection operator, we have

||yt − x∗||22 ≥ ||xt+1 − x∗||22. (11)

From equation (9), (10), and (11) we conclude that

ℓt(xt)− ℓt(x
∗) ≤ 1

2αt
(||xt − x∗||22 − ||xt+1 − x∗||22) +

αtL
2

2
.

Taking the sum and consider the fact that ||xt − x∗||22 ≤ D2, we get

T∑
t=1

(ℓt(xt)− ℓt(x
∗)) ≤

T∑
t=1

(
1

2αt
(||xt − x∗||22 − ||xt+1 − x∗||22) +

αtL
2

2
)

=
T∑
t=1

||xt − x∗||22(
1

2αt
− 1

2αt−1
) +

L2

2

T∑
t=1

αt

≤ D2

2

T∑
t=1

(
1

αt
− 1

αt−1
) +

L2

2

T∑
t=1

αt

≤ D2

2αT
+

L2

2

T∑
t=1

αt.

5

Figure 2: Error between output policy of projected gradient descent and Nash Equilibrium

Set αt =
D√
tL

and use the fact that
∑ 1√

t
≤ 2

√
T , we have

T∑
t=1

(ℓt(xt)− ℓt(x
∗)) ≤ LD

2

√
T +

T∑
t=1

LD

2
√
t

≤ LD

2

√
T +

LD

2
2
√
T

=
3

2

LD√
T
.

Usually, D =
√
n and we set αt =

√
n√
tL
, we have Regret = 3

2
L
√
n√
T
. Observe that Regret → 0 as

T → ∞. We conclude that Projected Gradient Descent algorithm is no-regret algorithm. Moreover,

let ℓt = −ui(x
(t)), let σt be the product distribution of x(t), let σ denote the uniform distribution

over {σ1, σ2, . . . , σT }, then σ is a joint distribution. Specifically, we have

1

T

T∑
t=1

E
s∽σt

[ui(s)] = E
s∽σ

[ui(s)],

and

max
s′∈S

1

T

T∑
t=1

Es∽σt [ui(s
′, s−i)] = max

s′∈S
E
s∽σ

[ui(s
′, s−i)].

Using Theorem 3.1, we have that

max
s′∈S

E
s∽σ

[ui(s
′, s−i)]− E

s∽σ
[ui(s)] =

3

2

LD√
T

→ 0 as T → ∞.

6

Note this matches with the definition of CCE, therefore we conclude that running Projected

Gradient Descent algorithm defined in 3.2 on MARL games will result a CCE.

Remark 3.3 It is worth noting that if we run projected gradient descent algorithm in two-player

zero-sum games, the output policy will converge to Nash equilibrium. In order to verify this, we

implemented an experiment using projected gradient descent over the game defined in example ??.

The implementation of projection follows the code from [2] and the output policy converges to a

Nash Equilibrium. The error to Nash Equilibirum is plotted in figure [2].

References

[1] Robert Sugden et al. The economics of rights, co-operation and welfare. Springer, 2004.

[2] Yunmei Chen and Xiaojing Ye. Projection Onto A Simplex. 2011. doi: 10.48550/ARXIV.

1101.6081. url: https://arxiv.org/abs/1101.6081.

7

https://doi.org/10.48550/ARXIV.1101.6081
https://doi.org/10.48550/ARXIV.1101.6081
https://arxiv.org/abs/1101.6081

	1 Introduction
	2 Correlated Equilibrium and Coarse Correlated Equilibrium
	3 Algorithms

