
Optimization for Machine Learning 50.579

Instructor: Ioannis Panageas Scribed by: Yanzhao Zou, Lu Xu

Lecture 8. Introduction to Statistical Learning Theory.

1 Introduction

Perceptron is a linear classifier or binary classifier, which is widely used in supervised learning

to classify the given input data. The simplest perceptron is a single layer neural network, while

multi-layers of perceptron are referred as neural network. Formally, the perceptron is defined as :

y = sign(ωTx− θ), (1)

where ω is the weight vector and θ is the threshold. And the goal is to compute a vector w that

separates the two classes.

Figure 1: A simple perceptron.

Figure 2: An example of Dogs and Cats classification.

1.1 The Perceptron Algorithm

Given (x1, y1), ..., (xT , yT ) ∈ X × {±1} where we assume ‖ x ‖= 1 for all t. Formally γ is defined:
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γ := maxω:‖ω‖=1mini∈[T ](yiω
Txi)+, (2)

where (a)+ = max(a, 0).

Consider the following iterative algorithm, where the goal is to iteratively update ω and optimize

γ:

1. Initialize ω = 0(hypothesis)

2. On round t = 1...T :

Consider (xt, yt) and form prediction ŷt = sign(ωTt xt).

If ŷt 6= yt:

ωt+1 = ωt + ytxt
Else ωt+1 = ωt.

1.2 Analysis of Perceptron

Theorem 1.1 Perceptron makes at most 1/γ2 mistakes and corrections on any sequence with mar-

gin γ.

Proof: Let m be the number of mistakes after T iterations. If a mistake is made at round t then

‖ ωt+1 ‖22 =‖ ωt + ytxt ‖22 (3)

‖ ωt+1 ‖22 =‖ ωt ‖22 + ‖ xt ‖22 +2 yt x
T
t ωt(negative) (4)

‖ ωt+1 ‖22 ≤‖ ωt ‖22 +1 (5)

Since the update is only performed when there is a mistake, the total number of updates is equal

to the number of mistakes made till step T , which is m in this case. When you sum equation 5

from 0 to m and cancel the same terms, we can get the below formula:

‖ ωt ‖22 ≤ m, (6)

Consider a vector ω∗ with margin γ, by definition of γ for all t that there is a mistake:

γ ≤ ytw∗Txt = w∗T (wt+1 − wt) (7)

γ by definition is the the max min of ytw
∗Txt, thus the ≤ relation holds. While by manipulating

the iterative update step 2, we establish ytw
∗Txt = w∗T (wt+1 − wt).

By adding equation 7 from 0 to m we also have that:

mγ ≤ w∗T (wT − w1) = w∗TwT , (8)

=‖ wT ‖2 . (9)

Therefore mγ ≤‖ wT ‖2 ≤
√
m (10)

Therefore m ≤ 1

γ2
. (11)
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2 Random Data and 0-1 Loss Function

What we really showed is that given (x1, y1), ..., (xT , yT ) ∈ X × {±1}, where we assume ‖ x ‖= 1

for all t it holds:
T∑
t=1

1ytωTt xt≤0 ≤
1

γ2
(12)

Given (x1, y1), ..., (xT , yT ) ∈ X × {±1} IID from some distribution P . Run perceptron algorithm

and consider ω1, ...ωn. Then choose ω.

Theorem 2.1 IID Data: Let ω be the choice of the algorithm. It hold that:

E[
1

n

n∑
i=1

1yiωT xi≤0] ≤
1

n
E[

1

γ2
] (13)

Proof: We have proved from before that (and taking expectation)

E[
1

n

n∑
i=1

1yiωT xi≤0] ≤ E[
1

nγ2
] (14)

let S = ((x1, y1), ..., (xn, yn)). The LHS can be expressed as:

Eτ ES [1yτωTτ xτ≤0] = ES Eτ [1yτωTτ xτ≤0] (15)

Observe now that ωτ depdends only on (x1, y1), ..., (xτ−1, yτ−1), hence finally we can express the

LHS in the form of a 0-1 loss function:

ES Eτ [1yτωTτ xτ≤0] = ES Eτ E(x,y)∼P [1yωTτ x≤0] = ES Eτ [L0−1(ωτ )] (16)

where:

L0−1(ω) =
1

n

∑
i

1yiωT xi≤0. (17)

Note that if we keep iterating perceptron algorithm we finally get L0−1(ωτ ) = 0, providing the two

classes are linearly separable.

3 PAC Learning

Now that we have understood the definition of the algorithm and how it generalises to random

data, let us talk about how we can evaluate the performance of the algorithm.

Assume we are given:
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• Domain set X , typically Rd or {0, 1}d. Think of 32x32 pixel images.

• Label set Y, typically binary like {0, 1} or {−1,+1}

• A concept class C = {h : h : X → Y}

Given a learning problem, we analyse the performance of a learning algorithm:

• Training data S = (x1, y1), ..., (xm, ym), where samples S was generated by drawing m IID

samples from the distribution D.

• Output a hypothesis from a hypothesis class H = {h : h : X → Y} of target functions.

We measure the performance through generalization error that is

err(h) = E(x,y)∼D[l0−1(h(x), y)]. (18)

Definition 3.1 (PAC learnable). We call a concept class C of target function is PAC learnable

(w.r.t to H) if there exists an algorithm A and function mA
C : (0, 1)2 → N with the following property:

Assume S = ((x1, y1), ..., (xm, ym)) is a smaple of IID examples generated by some arbitrary

distribution D such that yi = h(xi) for some h ∈ C almost surely. If S is the input of A and

m > mA
C then the algorithm returns a hypothesis hs ∈ H such that, with probability 1− δ (over the

choice of the m training examples):

err(hs) < ε (19)

The function mA
C is referred to as the sample complexity of algorithm A.

To help us understand the definition of concept class, here we list two concrete examples:

Example: (Axis Aligned Rectangles). The first example of a hypothesis class will be of rectangles

aligned to the axis. Here we take the domain X = R2 and we let C include be defined by all

rectangles that are aligned to the axis. Namely for every (z1, z2, z3, z4) consider the following

function over the pane

fz1,z2,z3,z4(x1, x2) =

{
1 z1 ≤ x1 ≤ z2, z3 ≤ x2 ≤ z4
0 else

(20)

Then C = {fz1,z2,z3,z4 : (z1, z2, z3, z4) ∈ R4}.
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Figure 3: Concept Class of Axis Aligned Rectangles.

Example: (Half-space). A second example that is of some importance is defined by hyperplane.

Here we let the domain be X = Rd for some integer d. For every w ∈ Rd, induces a half space by

consider all elements X such that w · x ≥ 0. Thus, we may consider the class of target functions

described as follows:

C = {fw : w ∈ Rd, fw(x) = sign(w · x)} (21)

Figure 4: Concept Class of Half-Space.

4 ERM Algorithm

Now even if a concept class is PAC learnable, there might exist multiple hypothesis classes that meet

the requirement. For the interest of optimization, our real focus is to find the optimal hypothesis

class that gives us the minimum error given all the conditions. And that is where we Empirical Risk
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Minimization (ERM) algorithm comes into play. ERM algorithm is defined as follows: Return:

arg minh∈H errs(h), (22)

where errs(h) = 1
m

∑
l0−1(h(xi), yi).

Luckily, we have some nice guarantees when the concept class is finite.

Theorem 4.1 Finite classes are PAC learnable: Consider a finite class of target function H =

h1, ..., ht over a domain. Then if size of sample S is m > 2
ε2

log 2|H|
δ then with probability 1− δ we

have that:

maxh∈H | errS(h)− err(h) |< ε. (23)

Proof: Applying Hoeffding’s inequality we obtain that for every S and fixed h, since errS(h)

is sum of IID bernoulli with expectation err(h):

PrS [| errS(h)− err(h) |> ε] ≤ 2e−2mε
2

(24)

Applying union bound we obtain that:

PrS [∃h :| errS(h)− err(h) |> ε] ≤ 2 | H | e−2mε2 (25)

We want the RHS to be less than δ. We can achieve that With the appropriate choice of m.

5 VC Dimension

Now that we have see the neat result guarantee when the concept class is finite, what happens

when the concept class is infinite? Does the guarantee still hold true? Let’s first take a look at a

motivating example.

Lemma 5.1 Threshold Function: Consider the Hypothesis class of threshold function on the real

line, that is:

H = ha : a ∈ R, (26)

where ha(x) = 1x<a.H is PAC learnable using ERM algorithm (even if the class is infinite).

Remarks:

• Therefore, it is not necessary that the hypothesis class is of finite cardinality.

• We will show the lemma above , i.e., (ε, δ) - learnable using
log 2

δ
ε samples.

Proof: Let D be the marginal distribution over the domain and fix ε, δ. We need to show that

taking S samples IID of size
log 2

δ
ε suffices so that with probability (1− δ the generalization error is

at most ε.

Let a∗ be a number such that ha∗ has error zero (perfect fit). Moreover, consider a0 < a∗ < a1
such that:

Prx∼D[x ∈ (a0, a
∗)] = Prx∼D[x ∈ (a∗, a1)] = ε. (27)
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Observe that we might have to choose a0 = −∞ or a1 = +∞.

Figure 5: Concept Class of Axis Aligned Rectangles.

Let S be a set of IID samples and assume that the ERM algorithm returns a function hS with

threshold bS .

If b0 is the maximum x with label 1 and b1 the minimum x with label 0 it holds that bS ∈ (b0, b1].

The error of hS is at most ε if and only if (b0, b1] ⊆ (a0, a1).

Let ’s bound the probability of this event. By union bound we have:

PrS∼Dm [(b0 < a0) ∪ (b1 > a1)] ≤ PrS∼Dm [(b0 < a0)] + PrS∼Dm [(b1 > a1)] (28)

PrS∼Dm [(b0 < a0)] ≤ PrS [∀x ∈ S, x /∈ (a0, a
∗)] = (1− ε)m ≤ ε−εm (29)

PrS∼Dm [(b1 > a1)] ≤ PrS [∀x ∈ S, x /∈ (a∗, a1)] = (1− ε)m ≤ ε−εm (30)

By adding equation 29 and 30, we conclude that the error probability is 2ε−εm = δ. Solving for m

we get:

m =
log(2δ )

ε
. (31)

However, note that not all hypothesis classes are learnable. With the help of VC dimension in the

next section, we can get more defined conditions for learnable and unlearnable cases.

5.1 Definition

Definition 5.1 (Restriction). Let H be a class of functions from X to {0,1} and let C = c1, ...cm.

The restriction of H to C is the set of functions from C to {0,1} that can be derived from H. That

is

HC = {h(c1), ..., h(cm)) : h ∈ H}, (32)

where we represent each function from C to {0,1} as a vector in {0, 1}|C|

Definition 5.2 (Shattering). A hypothesis class H shatters a finite set C ⊂ X if the restriction of

H to C is the set of all functions from C to {0, 1}. That is | H |= 2|C|.

Definition 5.3 (VC dimension). The VC-dimension hypothesis class H, denote VCdim(H),is the

maximal size of a set C that can be shattered by H. If H can shatter sets of arbitrarily large size

we say that H has infinite VC-dimension.

Example: Let’s see some examples and their intuitions:
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• The class of threshold functions on real lines has VC dimension 1.

Ans: Any point that lies on the same side of the threshold cannot be labelled as 0 and 1 at

the same time.

• The class of interval functions on real line has VC dimension of 2.

Ans: Any point that lies between two given points with the same label, cannot take the other

label value.

• The class of aligned rectangle functions on the plane has VC dimension 4.

Ans: Refering to Figure 6, any axis aligned rectangle cannot label c5 by 0 and the rest of the

points by 1.

• Any infinite class H hs VC dimension of at most log | H |.
Ans: Because by definition of shattering, | H |= 2|C|

Figure 6: example of VC dimension of 4

5.2 VC Dimension of Halfspaces

Theorem 5.2 (Halfspaces). The VC dimension of the class H of homogenous halfspaces in Rd.
Note that H = {hw(x) : hw(x) := sign(wTx)}.

Proof: We first need to show that VC dimension is at least d by appropriately choosing a set C.

Consider the set of vector e1, ..ed,where for every i the vector ei is the all zeros vector except 1 in

the i-th coordinate. This set is shattered by the class of homogenous halfspaces because for every

binary vector y1, ...yd and for w = (y1, ...yd), we get that hw(ei) = yi.

Next we need to show that VC dimension is less than d+1. Let x1, ...xd+1 be a set of d+1 vectors

in Rd.Then, there must exist real numbers a1, ..., ad+1, not all of them are zero, such that:∑
aixi = 0 linearly dependent. (33)

Let I = {i : ai > 0} and J = {j : aj < 0} (34)

If both I, J are non-empty then ∑
i∈I

aixi =
∑
j∈J
| aj | xj . (35)
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If x1, ..., xd+1 are shattered then there exists a ω such that ωTxi > 0 for i ∈ I and ωTxj < 0 for

j ∈ J . If the above is true, we get that:

0 <
∑
i∈I

aiω
Txi = ωT

∑
i∈I

aixi (36)

= ωT
∑
j∈J
| aj | xj (37)

=
∑
j∈J
| aj | ωTxj < 0, (38)

which is a contradiction. Thus we can conclude that VC dimension is less than d+1. And the

theorem is thereafter proved.

5.3 Example of Infinite VC

As mentioned earlier before introducing the formal definition of VC dimension, it helps us define

what hypothesis classes are not PAC learnable. Let’s see an example of that.

Theorem 5.3 (since has infinite VC). Consider the real line and let

H = {x→ dsin(θx)e : θ ∈ R}. (39)

The VC dimension of the hypothesis class above is infinite.

Proof: We need to show that for for every d one can find d points that are shattered by H.

consider x ∈ (0, 1) and let 0.x1x2x3..., be the binary expansion of x. Then for any natural number

m, dsin(2mπx)e = 1− xm, provided that there exists a k ≥ m such that xk = 1.

Fix d and consider C = {1/2, 1/4, ..., 1/2d} and moreover choose any binary vector of labels

(y1, ..., yd). Set x = 0.y1...yd1 and use the above.

Intuitively, the sign function of sine function, is a square wave function with amplitude 1 and pe-

riod given by 2πcostan−1(θ). Thus by changing the value of θ, the square wave frequency can be

manipulated to produce any labeling for a given set of points. Thus, its VC dimension is infinite.

5.4 The Importance of VC Dimension

Theorem 5.4 Fundamental Theorem of Learnability: The following are equivalent:

• H is PAC learnable.

• Any ERM rule is a successful PAC learner for H.

• H has finite VC dimension.

Remarks: The number of samples needed is O(
d log 1

ε
+log 1

δ
ε ), where d is the VC dimension of the

hypothesis class.
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