L09(partb) Introduction to Multi-armed Bandits

50.579 Optimization for Machine Learning Ioannis Panageas ISTD, SUTD

Recap of framework (stochastic)

Setting. We are given K arms and time window T (known). At each time step t = 1...T.

- *Player chooses arm a*_t.
- Observes reward $r_t \in [0, 1]$ for the chosen arm.
- The algorithm observes only the reward for the selected action, and nothing else.
- The reward for each action is IID. For each arm $a \in [K]$, there is a distribution D_a over reals, called the reward distribution (unknown). Every time this action is chosen, the reward is sampled independently from this distribution.

Goal: Minimize the regret

$$R(T) = \mu^* T - \sum_{t=1}^T \mu(a_t) \text{ or } \mathbb{E}[R(T)].$$

Optimization for Machine Learning

Upper Confidence Bounds

Definition (Confidence bounds). *We define upper/lower confidence bounds for every arm a and round t*

$$UCB_t(a) = \hat{\mu}_t(a) + r_t(a), \ LCB_t(a) = \hat{\mu}_t(a) - r_t(a),$$

where $\hat{\mu}_t(a)$ is the average reward of arm *a* so far, $r_t(a) = \sqrt{\frac{2 \log T}{n_t(a)}}$ (confidence radius) and $n_t(a)$ is the number of samples from arm *a* in round 1, ..., *t*,

Upper Confidence Bounds

Definition (Confidence bounds). We define upper/lower confidence bounds for every arm a and round t

 $UCB_t(a) = \hat{\mu}_t(a) + r_t(a), \ LCB_t(a) = \hat{\mu}_t(a) - r_t(a),$

where $\hat{\mu}_t(a)$ is the average reward of arm *a* so far, $r_t(a) = \sqrt{\frac{2 \log T}{n_t(a)}}$ (confidence radius) and $n_t(a)$ is the number of samples from arm *a* in round 1, ..., *t*,

Definition (UCB). *Consider the following algorithm:*

Try each arm once.
 In each round t, pick arg max_a UCB_t(a).

Analysis of UCB

Remarks:

• An arm *a* has the largest *UCB_t* for two reasons: The empirical reward is large (hence it is likely *a* has high reward) or confidence radius is large, thus the arm has not been explored much.

Either reason makes this arm worth choosing!

Analysis of UCB

Remarks:

• An arm *a* has the largest *UCB_t* for two reasons: The empirical reward is large (hence it is likely *a* has high reward) or confidence radius is large, thus the arm has not been explored much.

Either reason makes this arm worth choosing!

Theorem (**Regret**). *UCB* algorithm achieves regret

 $\mathbb{E}[R(T)]$ to be $O(\sqrt{KT \log T})$.

Theorem (Regret v2). UCB algorithm achieves regret

$$\mathbb{E}[R(T)] \le O(\log T) \left(\sum_{a:\mu(a) < \mu(a^*)} \frac{1}{\mu(a^*) - \mu(a)} \right).$$

Let us define the "clean" event (we condition on that)

$$\mathcal{E} = \{ \forall j, a \mid \hat{\mu}_j(a) - \mu(a) \mid \leq r_j(a) \}.$$

Let a^* be an optimal arm and assume that we chose arm a_t at time t then:

 $\mu(a_t) + 2r_t(a_t) \ge \hat{\mu}_t(a_t) + r_t(a_t)$ clean event

Let us define the "clean" event (we condition on that)

$$\mathcal{E} = \{ \forall j, a \mid \hat{\mu}_j(a) - \mu(a) \mid \leq r_j(a) \}.$$

Let a^* be an optimal arm and assume that we chose arm a_t at time t then:

$$\mu(a_t) + 2r_t(a_t) \ge \hat{\mu}_t(a_t) + r_t(a_t) \text{ clean event}$$
$$= \text{UCB}_t(a_t)$$

Let us define the "clean" event (we condition on that)

$$\mathcal{E} = \{ \forall j, a \mid \hat{\mu}_j(a) - \mu(a) \mid \leq r_j(a) \}.$$

Let a^* be an optimal arm and assume that we chose arm a_t at time t then:

$$\mu(a_t) + 2r_t(a_t) \ge \hat{\mu}_t(a_t) + r_t(a_t) \text{ clean event}$$
$$= \text{UCB}_t(a_t)$$
$$\ge \text{UCB}_t(a^*) \text{ since we chose } a_t$$

Let us define the "clean" event (we condition on that)

$$\mathcal{E} = \{ \forall j, a \mid \hat{\mu}_j(a) - \mu(a) \mid \leq r_j(a) \}.$$

Let a^* be an optimal arm and assume that we chose arm a_t at time t then:

$$\mu(a_t) + 2r_t(a_t) \ge \hat{\mu}_t(a_t) + r_t(a_t) \text{ clean event}$$

= UCB_t(a_t)
$$\ge \text{UCB}_t(a^*) \text{ since we chose } a_t$$

= $\mu_t(a^*) + r_t(a^*) \ge \mu(a^*) \text{ clean event}$

Let us define the "clean" event (we condition on that)

$$\mathcal{E} = \{ \forall j, a \mid \hat{\mu}_j(a) - \mu(a) \mid \leq r_j(a) \}.$$

Let a^* be an optimal arm and assume that we chose arm a_t at time t then:

$$\mu(a_t) + 2r_t(a_t) \ge \hat{\mu}_t(a_t) + r_t(a_t) \text{ clean event}$$
$$= \text{UCB}_t(a_t)$$
$$\ge \text{UCB}_t(a^*) \text{ since we chose } a_t$$
$$= \mu_t(a^*) + r_t(a^*) \ge \mu(a^*) \text{ clean event}$$

Hence it holds

$$2r_t(a_t) \geq \mu(a^*) - \mu(a_t) = \Delta(a_t).$$

Hence it holds

$$2r_t(a_t) \geq \mu(a^*) - \mu(a_t) = \Delta(a_t).$$

For each arm *a* consider the last time τ that *a* was pulled, then we get $n_T(a) = n_\tau(a)$ and $r_T(a) = r_\tau(a)$. We conclude that

Hence it holds

$$2r_t(a_t) \geq \mu(a^*) - \mu(a_t) = \Delta(a_t).$$

For each arm *a* consider the last time τ that *a* was pulled, then we get $n_T(a) = n_\tau(a)$ and $r_T(a) = r_\tau(a)$. We conclude that

$$2\sqrt{\frac{2\log T}{n_T(a)}} = 2r_T(a) \ge \mu(a^*) - \mu(a) = \Delta(a).$$

Hence it holds

$$2r_t(a_t) \geq \mu(a^*) - \mu(a_t) = \Delta(a_t).$$

For each arm *a* consider the last time τ that *a* was pulled, then we get $n_T(a) = n_\tau(a)$ and $r_T(a) = r_\tau(a)$. We conclude that

$$2\sqrt{\frac{2\log T}{n_T(a)}} = 2r_T(a) \ge \mu(a^*) - \mu(a) = \Delta(a).$$

The contribution of arm *a* to the total regret is

$$\Delta(a) \times n_T(a) \leq 2\sqrt{2n_T(a)\log T}.$$

Hence it holds

$$2r_t(a_t) \geq \mu(a^*) - \mu(a_t) = \Delta(a_t).$$

For each arm *a* consider the last time τ that *a* was pulled, then we get $n_T(a) = n_\tau(a)$ and $r_T(a) = r_\tau(a)$. We conclude that

$$2\sqrt{\frac{2\log T}{n_T(a)}} = 2r_T(a) \ge \mu(a^*) - \mu(a) = \Delta(a).$$

The contribution of arm *a* to the total regret is

$$\Delta(a) \times n_T(a) \leq 2\sqrt{2n_T(a)\log T}.$$

Hence the regret is bounded by

$$2\sqrt{2\log T}\sum_{a}\sqrt{n_T(a)}.$$

Optimization for Machine Learning

Hence the regret is bounded by

$$2\sqrt{2\log T}\sum_{a}\sqrt{n_T(a)}.$$

Finally observe that \sqrt{x} is a concave function hence, by Jensen's inequality we get

$$\frac{1}{K}\sum_{a}\sqrt{n_{T}(a)} \leq \sqrt{\frac{1}{K}\sum_{a}n_{T}(a)} \leq \sqrt{\frac{T}{K}}.$$

Hence the regret is bounded by

$$2\sqrt{2\log T}\sum_{a}\sqrt{n_T(a)}.$$

Finally observe that \sqrt{x} is a concave function hence, by Jensen's inequality we get

$$\frac{1}{K}\sum_{a}\sqrt{n_{T}(a)} \leq \sqrt{\frac{1}{K}\sum_{a}n_{T}(a)} \leq \sqrt{\frac{T}{K}}.$$

We conclude that the regret is bounded by

 $O(\sqrt{TK\log T}).$

Optimization for Machine Learning

Recall that we showed

$$2\sqrt{\frac{2\log T}{n_T(a)}} = 2r_T(a) \ge \mu(a^*) - \mu(a) = \Delta(a).$$

This implies that

$$n_T(a) \le \frac{8\log T}{\Delta(a)^2}$$

Recall that we showed

$$2\sqrt{\frac{2\log T}{n_T(a)}} = 2r_T(a) \ge \mu(a^*) - \mu(a) = \Delta(a).$$

This implies that

$$n_T(a) \le rac{8\log T}{\Delta(a)^2}$$

The contribution of arm *a* to the total regret is

$$\Delta(a) \times n_T(a) \leq \frac{8\log T}{\Delta(a)}.$$

Hence the regret is bounded by

$$O(\log T)\sum_{a}\frac{1}{\Delta(a)}.$$

Optimization for Machine Learning

Framework (adversarial bandits)

Setting. We are given K arms and time window T (known). At each time step t = 1...T.

- *Player* chooses arm a_t .
- *Adversary* picks cost $c_t(a)$ for each arm a.
- *Player* observes cost $c_t(a_t) \in [0, 1]$ for the chosen arm.
- The player observes only the cost for the selected action, and nothing else.

Goal: Minimize the regret

Framework (adversarial bandits)

Setting. We are given K arms and time window T (known). At each time step t = 1...T.

- *Player* chooses arm a_t .
- *Adversary* picks cost $c_t(a)$ for each arm a.
- *Player* observes cost $c_t(a_t) \in [0, 1]$ for the chosen arm.
- The player observes only the cost for the selected action, and nothing else.

Goal: Minimize the regret

$$R(T) = \sum_{t \in [T]} c_t(a_t) - \min_a \sum_{t \in [T]} c_t(a) \text{ or } \mathbb{E}[R(T)].$$

Optimization for Machine Learning

MWU (recap)

Algorithm (MWUA). *We define the following algorithm:*

- 1. Initialize $w_i^0 = 1$ for all $i \in [n]$.
- 2. For $t=1 \dots T$ do
- 3. **Choose** action *i* with probability proportional to w_i^{t-1} .
- 4. For each action i do
- 5. $w_i^t = (1 \epsilon)^{c_i^t} w_i^{t-1}.$
- 6. End For
- 7. End For

Remarks:

- We choose *i* with probability $p_i^t = \frac{w_i^{t-1}}{\sum_i w_i^{t-1}}$.
- c^t_i is the cost of action *i* at time *t* chosen by the adversary.

Can we use this for adversarial bandits? Reduction

Optimization for Machine Learning

Exp3 Algorithm

Algorithm (Exp3). *We define the following algorithm:*

- 1. Initialize $w_i^0 = 1$ for all $i \in [n]$.
- 2. For $t=1 \dots T$ do
- 3. **Choose** action *i* with probability proportional to w_i^{t-1} .
- 4. **Only for** the chosen action (say i) **do**

5.
$$w_i^t = (1 - \epsilon)^{c_i^t/p_i^t} w_i^{t-1}.$$

- 6. End For
- 7. End For

Remarks:

- We choose *i* with probability $p_i^t = \frac{w_i^{t-1}}{\sum_i w_i^{t-1}}$.
- c_i^t is the cost of action *i* at time *t* chosen by the adversary.
- Essentially, we assume that all the actions got cost zero except the chosen action that got cost $\hat{c}_i^t \coloneqq c_i^t/p_i^t$.

Exp3 Algorithm

Algorithm (Exp3). *We define the following algorithm:*

- 1. Initialize $w_i^0 = 1$ for all $i \in [n]$.
- 2. For $t=1 \dots T$ do
- 3. **Choose** action *i* with probability proportional to w_i^{t-1} .
- 4. **Only for** the chosen action (say i) **do**

5.
$$w_i^t = (1 - \epsilon)^{c_i^t/p_i^t} w_i^{t-1}.$$

- 6. End For
- 7. End For

Remarks:

- We choose *i* with probability $p_i^t = \frac{w_i^{t-1}}{\sum_i w_i^{t-1}}$.
- c_i^t is the cost of action *i* at time *t* chosen by the adversary.
- Essentially, we assume that all the actions got cost zero except the chosen action that got cost $\hat{c}_i^t \coloneqq c_i^t/p_i^t$.

What is the cost of every action? Each a r.v that is an unbiased estimator!

Formally we ensure that $\mathbb{E}[\hat{c}_i^t | p^t] = c_i^t$ for all *i*.

Exp3 Algorithm

Algorithm (Exp3). *We define the following algorithm:*

- 1. Initialize $w_i^0 = 1$ for all $i \in [n]$.
- 2. For $t=1 \dots T$ do
- 3. **Choose** action *i* with probability proportional to w_i^{t-1} .
- 4. **Only for** the chosen action (say i) **do**

5.
$$w_i^t = (1 - \epsilon)^{c_i^t / p_i^t} w_i^{t-1}.$$

- 6. End For
- 7. End For

Remarks:

- We choose *i* with probability $p_i^t = \frac{w_i^{t-1}}{\sum_i w_i^{t-1}}$.
- c_i^t is the cost of action *i* at time *t* chosen by the adversary.
- Essentially, we assume that all the actions got cost zero except the chosen action that got cost $\hat{c}_i^t \coloneqq c_i^t/p_i^t$.

What is the cost of every action? Each a r.v that is an unbiased estimator!

Formally we ensure that $\mathbb{E}[\hat{c}_i^t | p^t] = c_i^t$ for all *i*.

We will choose $\epsilon = \sqrt{\frac{2 \log K}{TK}}$ and we will get regret $O(\sqrt{TK \log K})$. Optimization for Machine Learning

Recall that for the analysis of MWU we defined a potential function Φ_t (sum of weights).

We set
$$\Phi_t = -\frac{1}{\epsilon} \log \sum_i e^{-\epsilon \sum_{\tau=1}^{t-1} \hat{c}_i^{\tau}}$$
.

Recall that for the analysis of MWU we defined a potential function Φ_t (sum of weights).

We set
$$\Phi_t = -\frac{1}{\epsilon} \log \sum_i e^{-\epsilon \sum_{\tau=1}^{t-1} \hat{c}_i^{\tau}}$$
.

$$\Phi_{t+1} - \Phi_t = -rac{1}{\epsilon}\lograc{\sum_i e^{-\epsilon L_i^t}}{\sum_i e^{-\epsilon L_i^{t-1}}}$$

Recall that for the analysis of MWU we defined a potential function Φ_t (sum of weights).

We set
$$\Phi_t = -\frac{1}{\epsilon} \log \sum_i e^{-\epsilon \sum_{\tau=1}^{t-1} \hat{c}_i^{\tau}}$$
.

$$\Phi_{t+1} - \Phi_t = -\frac{1}{\epsilon} \log \frac{\sum_i e^{-\epsilon L_i^t}}{\sum_i e^{-\epsilon L_i^{t-1}}}$$
$$= -\frac{1}{\epsilon} \log \frac{\sum_i e^{-\epsilon L_i^{t-1}} e^{-\epsilon \hat{c}_i^t}}{\sum_i e^{-\epsilon L_i^{t-1}}}$$

Recall that for the analysis of MWU we defined a potential function Φ_t (sum of weights).

We set
$$\Phi_t = -\frac{1}{\epsilon} \log \sum_i e^{-\epsilon \sum_{\tau=1}^{t-1} \hat{c}_i^{\tau}}$$
.

Set $L_i^t = \sum_{\tau=1}^t \hat{c}_i^{\tau}$. Observe that

$$\begin{split} \Phi_{t+1} - \Phi_t &= -\frac{1}{\epsilon} \log \frac{\sum_i e^{-\epsilon L_i^t}}{\sum_i e^{-\epsilon L_i^{t-1}}} \\ &= -\frac{1}{\epsilon} \log \frac{\sum_i e^{-\epsilon L_i^{t-1}} e^{-\epsilon \hat{c}_i^t}}{\sum_i e^{-\epsilon L_i^{t-1}}} \\ &= -\frac{1}{\epsilon} \log \mathbb{E}_{i \sim p^t} [e^{-\epsilon \hat{c}_i^t}] \end{split}$$

Optimization for Machine Learning

Recall that for the analysis of MWU we defined a potential function Φ_t (sum of weights).

We set
$$\Phi_t = -\frac{1}{\epsilon} \log \sum_i e^{-\epsilon \sum_{\tau=1}^{t-1} \hat{c}_i^{\tau}}$$

$$\begin{split} \Phi_{t+1} - \Phi_t &= -\frac{1}{\epsilon} \log \frac{\sum_i e^{-\epsilon L_i^t}}{\sum_i e^{-\epsilon L_i^{t-1}}} \\ &= -\frac{1}{\epsilon} \log \frac{\sum_i e^{-\epsilon L_i^{t-1}} e^{-\epsilon \hat{c}_i^t}}{\sum_i e^{-\epsilon L_i^{t-1}}} \\ &= -\frac{1}{\epsilon} \log \mathbb{E}_{i \sim p^t} [e^{-\epsilon \hat{c}_i^t}] \\ \end{split}$$
Since $e^{-x} \leq 1 - x + \frac{1}{2}x^2$.
 $\geq -\frac{1}{\epsilon} \log \mathbb{E}_{i \sim p^t} [1 - \epsilon \hat{c}_i^t + \frac{1}{2}\epsilon^2 \hat{c}_i^{t-2}]$

$$\begin{split} \Phi_{t+1} - \Phi_t &\geq -\frac{1}{\epsilon} \log \mathbb{E}_{i \sim p^t} [1 - \epsilon \hat{c}_i^t + \frac{1}{2} \epsilon^2 \hat{c}_i^{t \ 2}] \\ &= -\frac{1}{\epsilon} \log \left(1 - \mathbb{E}_{i \sim p^t} [\epsilon \hat{c}_i^t - \frac{1}{2} \epsilon^2 \hat{c}_i^{t \ 2}] \right) \end{split}$$

$$\begin{split} \Phi_{t+1} - \Phi_t &\geq -\frac{1}{\epsilon} \log \mathbb{E}_{i \sim p^t} [1 - \epsilon \hat{c}_i^t + \frac{1}{2} \epsilon^2 \hat{c}_i^{t \ 2}] \\ &= -\frac{1}{\epsilon} \log \left(1 - \mathbb{E}_{i \sim p^t} [\epsilon \hat{c}_i^t - \frac{1}{2} \epsilon^2 \hat{c}_i^{t \ 2}] \right) \\ &\geq \frac{1}{\epsilon} \mathbb{E}_{i \sim p^t} [\epsilon \hat{c}_i^t - \frac{1}{2} \epsilon^2 \hat{c}_i^{t \ 2}] \end{split}$$

$$\begin{split} \Phi_{t+1} - \Phi_t &\geq -\frac{1}{\epsilon} \log \mathbb{E}_{i \sim p^t} [1 - \epsilon \hat{c}_i^t + \frac{1}{2} \epsilon^2 \hat{c}_i^{t \, 2}] \\ &= -\frac{1}{\epsilon} \log \left(1 - \mathbb{E}_{i \sim p^t} [\epsilon \hat{c}_i^t - \frac{1}{2} \epsilon^2 \hat{c}_i^{t \, 2}] \right) \\ &\geq \frac{1}{\epsilon} \mathbb{E}_{i \sim p^t} [\epsilon \hat{c}_i^t - \frac{1}{2} \epsilon^2 \hat{c}_i^{t \, 2}] \\ &= \sum_i p_i^t \hat{c}_i^t - \frac{1}{2} \epsilon \sum_i p_i^t \hat{c}_i^{t \, 2} \end{split}$$

$$\begin{split} \Phi_{t+1} - \Phi_t &\geq -\frac{1}{\epsilon} \log \mathbb{E}_{i \sim p^t} [1 - \epsilon \hat{c}_i^t + \frac{1}{2} \epsilon^2 \hat{c}_i^{t\,2}] \\ &= -\frac{1}{\epsilon} \log \left(1 - \mathbb{E}_{i \sim p^t} [\epsilon \hat{c}_i^t - \frac{1}{2} \epsilon^2 \hat{c}_i^{t\,2}] \right) \\ &\geq \frac{1}{\epsilon} \mathbb{E}_{i \sim p^t} [\epsilon \hat{c}_i^t - \frac{1}{2} \epsilon^2 \hat{c}_i^{t\,2}] \\ &= \sum_i p_i^t \hat{c}_i^t - \frac{1}{2} \epsilon \sum_i p_i^t \hat{c}_i^{t\,2} \end{split}$$

By taking expectation we get

$$\mathbb{E}[\Phi_{t+1} - \Phi_t] \ge \sum_i p_i^t c_i^t - \frac{1}{2} \epsilon \sum_i c_i^{t \ 2} \ge \sum_i p_i^t c_i^t - \frac{K\epsilon}{2}$$

Optimization for Machine Learning

We conclude that (telescopic sum)

$$\mathbb{E}[\Phi_T - \Phi_1] \geq \sum_{t=1}^T \sum_i p_i^t c_i^t - rac{KT\epsilon}{2}$$

We conclude that (telescopic sum)

$$\mathbb{E}[\Phi_T - \Phi_1] \geq \sum_{t=1}^T \sum_i p_i^t c_i^t - \frac{KT\epsilon}{2}$$

Finally

$$\mathbb{E}[\Phi_T - \Phi_1] \leq \mathbb{E}[L_{i^*}^T - (-\frac{1}{\epsilon}\log K)] = \sum_t c_{i^*}^t + \frac{1}{\epsilon}\log K.$$

Hence

$$\mathbb{E}[R(T)] = \sum_{t} \sum_{i} p_{i}^{t} c_{i}^{t} - \sum_{t} c_{i^{*}}^{t} \le \frac{KT\epsilon}{2} + \frac{1}{\epsilon} \log K$$

We conclude that (telescopic sum)

$$\mathbb{E}[\Phi_T - \Phi_1] \geq \sum_{t=1}^T \sum_i p_i^t c_i^t - rac{KT\epsilon}{2}$$

Finally

$$\mathbb{E}[\Phi_T - \Phi_1] \le \mathbb{E}[L_{i^*}^T - (-\frac{1}{\epsilon}\log K)] = \sum_t c_{i^*}^t + \frac{1}{\epsilon}\log K.$$

Hence

$$\mathbb{E}[R(T)] = \sum_{t} \sum_{i} p_{i}^{t} c_{i}^{t} - \sum_{t} c_{i^{*}}^{t} \le \frac{KT\epsilon}{2} + \frac{1}{\epsilon} \log K$$

We choose $\epsilon = \sqrt{\frac{2 \log K}{TK}}$ and it follows that $\mathbb{E}[R(T)]$ is $O(\sqrt{TK \log K})$.

Optimization for Machine Learning

Conclusion

- Introduction to Multi-armed bandits.
 - UCB.
 - Exp3
- Next lecture we will talk about basics in Markov Decision Processes.