# L07 Introduction to Min-max Optimization

50.579 Optimization for Machine Learning Ioannis Panageas ISTD, SUTD

# Recap (GANs)

In Generative Adversarial Networks (GANs) one would like to solve

$$\min_{\theta} \max_{w} \mathbb{E}_{x \sim Q}[D_w(x)] - \mathbb{E}_{z \sim F}[D_w(G_\theta(z))]$$

- $D_w$  is the discriminator,  $G_{\theta}$  the generator.
- *Q* is the data distribution, *F* say Gaussian (noise)
- $D_w$  might (or not) capture the probability to classify data point as true!
- The aforementioned min-max problem is really hard! Many challenges!

In their seminal paper, Goodfellow et al. defined the following min-max problem:

$$\min_{\theta} \max_{w} \mathbb{E}_{x \sim p_{\text{data}}} [\log D_w(x)] + \mathbb{E}_{z \sim p_{\text{noise}}} [\log(1 - D_w(G_\theta(z)))]$$

- $D_w$  is the discriminator,  $G_{\theta}$  the generator.
- $p_{data}$  is the data distribution,  $p_{noise}$  say Gaussian (noise).
- $D_W$  captures the probability to classify data point as true!
- *D* is trying to maximize prob to assign correct label to both samples from data and from *G*.

In their seminal paper, Goodfellow et al. defined the following min-max problem:

$$\min_{\theta} \max_{w} \mathbb{E}_{x \sim p_{\text{data}}}[\log D_w(x)] + \mathbb{E}_{z \sim p_{\text{noise}}}[\log(1 - D_w(G_\theta(z)))]$$

**Lemma** (Optimality). For G fixed, the optimal discriminator D has density

$$D_{w^*}(x) = \frac{p_{data}(x)}{p_{data}(x) + p_G(x)},$$

where  $p_G$  is the *implicit distribution* of the Generator over the data.

In their seminal paper, Goodfellow et al. defined the following min-max problem:

$$\min_{\theta} \max_{w} \mathbb{E}_{x \sim p_{\text{data}}} [\log D_w(x)] + \mathbb{E}_{z \sim p_{\text{noise}}} [\log(1 - D_w(G_\theta(z)))]$$

Lemma (Optimality). For G fixed, the optimal discriminator D has density

$$D_{w^*}(x) = \frac{p_{data}(x)}{p_{data}(x) + p_G(x)},$$

where  $p_G$  is the implicit distribution of the Generator over the data. Proof. For fixed G, D is trying to maximize

$$\int_{x} \log D(x) p_{\text{data}}(x) dx + \int_{z} \log(1 - D(G(z)) p_{\text{noise}}(z) dz.$$

**Optimization for Machine Learning** 

*Proof.* For fixed G, D is trying to maximize

$$\int_{x} \log D(x) p_{\text{data}}(x) dx + \int_{z} \log(1 - D(G(z)) p_{\text{noise}}(z) dz.$$

The above is nothing but (set x = G(z))

$$\int_{x} \log D(x) p_{\text{data}}(x) dx + \int_{x} \log(1 - D(x) p_G(x) dx.$$

*Proof.* For fixed G, D is trying to maximize

$$\int_{x} \log D(x) p_{\text{data}}(x) dx + \int_{z} \log(1 - D(G(z)) p_{\text{noise}}(z) dz.$$

The above is nothing but (set x = G(z))

$$\int_{x} \log D(x) p_{\text{data}}(x) dx + \int_{x} \log(1 - D(x) p_G(x) dx.$$

Finally, observe that function

$$f(y) = a \log y + b \log(1 - y)$$

achieves maximum at  $\frac{a}{a+b}$ .

*Proof.* For fixed G, D is trying to maximize

$$\int_{x} \log D(x) p_{\text{data}}(x) dx + \int_{z} \log(1 - D(G(z)) p_{\text{noise}}(z) dz.$$

The above is nothing but (set x = G(z))

$$\int_{x} \log D(x) p_{\text{data}}(x) dx + \int_{x} \log(1 - D(x) p_G(x) dx.$$

F Define cost function C(G) $C(G) := \mathbb{E}_{x \sim p_{\text{data}}} \left[ \log \frac{p_{\text{data}}}{p_{\text{data}} + p_G} \right] + \mathbb{E}_{x \sim p_G} \left[ \log \frac{p_G}{p_{\text{data}} + p_G} \right].$ 

#### **Optimization for Machine Learning**

**Theorem (Global solution).** *The global minimum of* C(G) *is achieved if and only if* 

 $p_G = p_{data}$ .

Proof.

**Theorem (Global solution).** *The global minimum of* C(G) *is achieved if and only if* 

$$p_G = p_{data}$$
.

*Proof.* Observe that for  $p_{data} = p_G$  we get that  $C(G) = -\log 4$ .

Quick recap KL(p||q) =  $\mathbb{E}_{x \sim p} \left[ \log \frac{p(x)}{q(x)} \right]$  is non-negative!

**Theorem (Global solution).** *The global minimum of* C(G) *is achieved if and only if* 

$$p_G = p_{data}$$
.

*Proof.* Observe that for  $p_{data} = p_G$  we get that  $C(G) = -\log 4$ .

Quick recap KL(p||q) =  $\mathbb{E}_{x \sim p} \left[ \log \frac{p(x)}{q(x)} \right]$  is non-negative!

Finally observe that

$$C(G) = -\log 4 + \mathrm{KL}\left(p_{\mathrm{data}}||\frac{p_{\mathrm{data}} + p_G}{2}\right) + \mathrm{KL}\left(p_G||\frac{p_{\mathrm{data}} + p_G}{2}\right)$$

# Min-max Optimization

GANs motivate the study of min-max optimization (in general harder than minimization), i.e., for some continuous function f we want to solve

 $\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} f(x, y)$ 

Remarks

- Domains are typically compact.
- In general the above problem might not have a solution.
- There are guarantees when domains are compact and f is convex-concave.

**Theorem** (Minimax by John von Neumann). Let  $\mathcal{X} \subset \mathbb{R}^n$  and  $\mathcal{Y} \subset \mathbb{R}^m$  be *compact convex sets. If f is a continuous function that is convex-concave it holds* 

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} f(x, y) = \max_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} f(x, y)$$

Remarks

- Many applications, especially in Game Theory.
- If  $f = x^T A y$ , and the domains are  $\Delta_n$ ,  $\Delta_m$  it captures classic zero sum games
- The above is the value of the game.
- Note that It is always true (min-max inequality):

$$\inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} f(x, y) \ge \sup_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} f(x, y)$$

**Theorem** (Minimax by John von Neumann). Let  $\mathcal{X} \subset \mathbb{R}^n$  and  $\mathcal{Y} \subset \mathbb{R}^m$  be *compact convex sets. If f is a continuous function that is convex-concave it holds* 

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} f(x, y) = \max_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} f(x, y)$$

Remarks

- Many applications, especially in Game Theory.
- If  $f = x^T A y$ , and the domains are  $\Delta_n$ ,  $\Delta_m$  it captures classic zero sum games
- The above is the value of the game.
- Note that It is always true (min-max inequality): Define  $g(z) \triangleq \inf_{w \in W} f(z, w)$ .

$$orall w, orall z, g(z) \leq f(z,w)$$

$$\inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} f(x, y) \geq \sup_{y \in \mathcal{Y}} \operatorname{ir} \Longrightarrow \forall w, \sup_{z} g(z) \leq \sup_{z} f(z, w)$$

$$\Longrightarrow \sup_{z} g(z) \leq \inf_{w} \sup_{z} f(z,w)$$

$$\Longrightarrow \sup_{z} \inf_{w} f(z,w) \leq \inf_{w} \sup_{z} f(z,w)$$

**Theorem** (Minimax by John von Neumann). Let  $\mathcal{X} \subset \mathbb{R}^n$  and  $\mathcal{Y} \subset \mathbb{R}^m$  be *compact convex sets. If f is a continuous function that is convex-concave it holds* 

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} f(x, y) = \max_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} f(x, y)$$

*Proof.* Let's use no-regret learning for both "players"!

# **Online Gradient Descent (Recap)**

**Definition** (Online Gradient Descent). Let  $f : \mathbb{R}^n \to \mathbb{R}$  be convex function, differentiable and L-Lipschitz in some compact convex set  $\mathcal{X}$  of diameter D. Online GD is defined:



# Analysis of Online GD for *L*-Lipschitz (Recap)

**Theorem (Online Gradient Descent).** Let  $f : \mathbb{R}^n \to \mathbb{R}$  be convex function, differentiable and L-Lipschitz in some compact convex set  $\mathcal{X}$  of diameter D. It holds

$$\left(\frac{1}{T}\sum_{t=1}^{T}\ell_t(x_t) - \min_x\sum_{t=1}^{T}\ell_t(x)\right) \leq \frac{3}{2}\frac{LD}{\sqrt{T}},$$

with appropriately choosing  $\alpha = \frac{D}{L\sqrt{t}}$ .

**Remarks:** 

• If we want error  $\epsilon$ , we need  $T = \Theta\left(\frac{L^2D^2}{\epsilon^2}\right)$  iterations (same as GD for L-Lipschitz).

**Theorem** (Minimax by John von Neumann). Let  $\mathcal{X} \subset \mathbb{R}^n$  and  $\mathcal{Y} \subset \mathbb{R}^m$  be *compact convex sets. If f is a continuous function that is convex-concave it holds* 

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} f(x, y) = \max_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} f(x, y)$$

*Proof.* Let's use no-regret learning for both "players"!

Let  $x_1, ..., x_T$  and  $y_1, ..., y_T$  be the iterates as advised by some no-regret algorithm and define  $\hat{x} = \frac{1}{T} \sum_{i=1}^{T} x_i$  and  $\hat{y} = \frac{1}{T} \sum_{i=1}^{T} y_i$  and  $T = \Theta(\frac{1}{\epsilon^2})$ .

Choose any x, then from the **no-regret** property for x we get that

$$\frac{1}{T}\sum_{t} f(x_t, y_t) \le \frac{1}{T}\sum_{t} f(x, y_t) + \epsilon$$

**Theorem** (Minimax by John von Neumann). Let  $\mathcal{X} \subset \mathbb{R}^n$  and  $\mathcal{Y} \subset \mathbb{R}^m$  be *compact convex sets. If f is a continuous function that is convex-concave it holds* 

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} f(x, y) = \max_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} f(x, y)$$

*Proof.* Let's use no-regret learning for both "players"!

Let  $x_1, ..., x_T$  and  $y_1, ..., y_T$  be the iterates as advised by some no-regret algorithm and define  $\hat{x} = \frac{1}{T} \sum_{i=1}^{T} x_i$  and  $\hat{y} = \frac{1}{T} \sum_{i=1}^{T} y_i$  and  $T = \Theta(\frac{1}{\epsilon^2})$ .

Choose any x, then from the **no-regret** property for x we get that

$$\frac{1}{T} \sum_{t} f(x_t, y_t) \leq \frac{1}{T} \sum_{t} f(x, y_t) + \epsilon$$
$$\leq f(x, \hat{y}) + \epsilon \text{ by concavity.}$$

Proof cont.

Choose any y, then from the no-regret property for y we get that

$$\frac{1}{T} \sum_{t} f(x_t, y_t) \ge \frac{1}{T} \sum_{t} f(x_t, y) - \epsilon$$
$$\ge f(\hat{x}, y) - \epsilon \text{ by convexity.}$$

Proof cont.

Choose any y, then from the no-regret property for y we get that

$$\frac{1}{T} \sum_{t} f(x_t, y_t) \ge \frac{1}{T} \sum_{t} f(x_t, y) - \epsilon$$
$$\ge f(\hat{x}, y) - \epsilon \text{ by convexity.}$$

We conclude that for all x, y we have

$$f(\hat{x}, y) - 2\epsilon \le f(x, \hat{y}).$$

Proof cont.

Choose any y, then from the no-regret property for y we get that

$$\frac{1}{T} \sum_{t} f(x_t, y_t) \ge \frac{1}{T} \sum_{t} f(x_t, y) - \epsilon$$
$$\ge f(\hat{x}, y) - \epsilon \text{ by convexity}.$$

We conclude that for all x, y we have

 $\max_{y} f(\hat{x}, y) - 2\epsilon \le \min_{x} f(x, \hat{y}).$ 

Finally we get  $\max_{y} \min_{x} f(x, y) \ge \min_{x} f(x, \hat{y})$ 

Proof cont.

Choose any y, then from the no-regret property for y we get that

$$\frac{1}{T} \sum_{t} f(x_t, y_t) \ge \frac{1}{T} \sum_{t} f(x_t, y) - \epsilon$$
$$\ge f(\hat{x}, y) - \epsilon \text{ by convexity}.$$

We conclude that for all x, y we have

 $\max_{y} f(\hat{x}, y) - 2\epsilon \le \min_{x} f(x, \hat{y}).$ 

Finally we get  $\max_{y} \min_{x} f(x, y) \ge \min_{x} f(x, \hat{y})$  $\ge \max_{y} f(\hat{x}, y) - 2\epsilon$ 

Proof cont.

Choose any y, then from the no-regret property for y we get that

$$\frac{1}{T} \sum_{t} f(x_t, y_t) \ge \frac{1}{T} \sum_{t} f(x_t, y) - \epsilon$$
$$\ge f(\hat{x}, y) - \epsilon \text{ by convexity}$$

We conclude that for all x, y we have

 $\max_{y} f(\hat{x}, y) - 2\epsilon \le \min_{x} f(x, \hat{y}).$ 

Finally we get  $\max_{y} \min_{x} f(x, y) \ge \min_{x} f(x, \hat{y})$  $\ge \max_{y} f(\hat{x}, y) - 2\epsilon$   $\ge \min_{x} \max_{y} f(x, y) - 2\epsilon$ 



We conclude that for all x, y we have

 $\max_{y} f(\hat{x}, y) - 2\epsilon \le \min_{x} f(x, \hat{y}).$ 

Finally we get  $\max_{y} \min_{x} f(x, y) \ge \min_{x} f(x, \hat{y})$  $\ge \max_{y} f(\hat{x}, y) - 2\epsilon$   $\ge \min_{x} \max_{y} f(x, y) - 2\epsilon$ 

Convex-concave settings (with compact domains) are easy. Nevertheless in GANs

- Functions are not necessarily convex-concave.
- Time averaging does not help (Jensen's ineq not applicable).
- Motivation to care about last iterate convergence!

For the rest of the lecture let's focus on

 $\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} x^T A y.$ 

Can we guarantee last iterate convergence using GD or MWUA?

Convex-concave settings (with compact domains) are easy. Nevertheless in GANs

- Functions are not necessarily convex-concave.
- Time averaging does not help (Jensen's ineq not applicable).
- Motivation to care about last iterate convergence!

For the rest of the lecture let's focus on

 $\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} x^T A y.$ 

Can we guarantee last iterate convergence using GD or MWUA?



Consider Gradient Descent/Ascent that is

$$x_{t+1} = x_t - \eta \nabla_x f(x_t, y_t),$$
  
$$y_{t+1} = y_t + \eta \nabla_y f(x_t, y_t).$$

Consider the simplest case f(x, y) = xy. GDA boils down to:

$$x_{t+1} = x_t - \eta y_t,$$
  
$$y_{t+1} = y_t + \eta x_t.$$

Consider Gradient Descent/Ascent that is

$$x_{t+1} = x_t - \eta \nabla_x f(x_t, y_t),$$
  
$$y_{t+1} = y_t + \eta \nabla_y f(x_t, y_t).$$

Consider the simplest case f(x, y) = xy. GDA boils down to:

 $x_{t+1} = x_t - \eta y_t,$  $y_{t+1} = y_t + \eta x_t.$ 

**Claim** (Divergence). It holds that  $x_t^2 + y_t^2$  is increasing in t.

Consider Gradient Descent/Ascent that is

$$x_{t+1} = x_t - \eta \nabla_x f(x_t, y_t),$$
  
$$y_{t+1} = y_t + \eta \nabla_y f(x_t, y_t).$$

Consider the simplest case f(x, y) = xy. GDA boils down to:

 $x_{t+1} = x_t - \eta y_t,$  $y_{t+1} = y_t + \eta x_t.$ 

**Claim** (Divergence). It holds that  $x_t^2 + y_t^2$  is increasing in t.

Proof.

$$x_{t+1}^2 + y_{t+1}^2 = (\eta^2 + 1)(x_t^2 + y_t^2).$$

Consider MWUA that is

$$x_{i}^{t+1} = \frac{x_{i}^{t} e^{-\eta(Ay^{t})_{i}}}{Z_{x}},$$
$$y_{j}^{t+1} = \frac{y_{j}^{t} e^{\eta(A^{T}x^{t})_{j}}}{Z_{y}}.$$

**Theorem (Divergence).** Assume there exists a unique fully mixed Nash  $(x^*, y^*)$  equilibrium (full support). It holds that the KL divergence between a player strategies the fully mixed Nash goes to infinity, i.e,

$$\lim_{t} \operatorname{KL}(x^* || x^t) = \infty \text{ and } \lim_{t} \operatorname{KL}(y^* || y^t) = \infty.$$

# Conclusion

- Introduction to min-max optimization.
  - GANs.
  - Minimax Theorem
  - Last iterate convergence?
- Next lecture we will talk more about min-max optimization and optimism.