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Non-convex Optimization: GD + 
noise converges to second order 
stationarity
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Analysis of Perturbed Gradient 
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• High level proof strategy:

1) When the current iterate is not an 𝜖-second order stationary point, 
it must either (a) have a large gradient or (b) have a strictly negative eigenvalue the Hessian.

2) We can show in both cases that yield a significant decrease in function value 
in a controlled number of iterations.

3) Since the decrease cannot be more that f x0 − 𝑓(𝑥∗) (global minimum is bounded) 
we can reach contradiction.
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Conclusion

• Introduction to Non-convex Optimization.

– Perturbed Gradient Descent avoids strict saddles!

– Same is true for Perturbed SGD.

• Next lecture we will talk about more about 
accelerated methods. 

• Week 8 we are going to talk about min-max 
optimization (GANs).
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