L04 (partb) Intro to Non-convex Optimization: GD avoids saddle points

50.579 Optimization for Machine Learning Ioannis Panageas ISTD, SUTD

Definition (Linear Dynamical Systems). Let A be a symmetric matrix of size $n \times n$.

$$x_{t+1} = Ax_t.$$

One can show that

$$x_t = A^t x_0.$$

• Vector 0 is a fixed point. Does x_t converge to 0?

Definition (Linear Dynamical Systems). Let A be a symmetric matrix of size $n \times n$.

$$x_{t+1} = Ax_t.$$

One can show that

$$x_t = A^t x_0.$$

• Vector 0 is a fixed point. Does x_t converge to 0?

Depends on the eigenvalues of A!

Lemma (Linear Dynamical Systems). Let A be a symmetric matrix of size $n \times n$ and assume that $||A||_2 < 1$. Then for all $x_0 \in \mathbb{R}^n$

$$\lim_{t\to\infty} x_t = 0.$$

Proof. Since A is symmetric, it has eigenvalues whose eigenvectors span the whole \mathbb{R}^n . Let $v_1, ..., v_n$ these eigenvectors with eigenvalues $\lambda_1, ..., \lambda_n$

Lemma (Linear Dynamical Systems). Let A be a symmetric matrix of size $n \times n$ and assume that $||A||_2 < 1$. Then for all $x_0 \in \mathbb{R}^n$

$$\lim_{t\to\infty} x_t = 0.$$

Proof. Since A is symmetric, it has eigenvalues whose eigenvectors span the whole \mathbb{R}^n . Let $v_1, ..., v_n$ these eigenvectors with eigenvalues $\lambda_1, ..., \lambda_n$

Express $x_0 = \sum_{k=1}^{n} c_k v_k$ (as a linear combination of the eigenvectors).

Therefore
$$A^t x_0 = \sum_{k=1}^n c_k \lambda_k^t v_k$$
.

Lemma (Linear Dynamical Systems). Let A be a symmetric matrix of size $n \times n$ and assume that $||A||_2 < 1$. Then for all $x_0 \in \mathbb{R}^n$

$$\lim_{t\to\infty} x_t = 0.$$

Proof. Since A is symmetric, it has eigenvalues whose eigenvectors span the whole \mathbb{R}^n . Let $v_1, ..., v_n$ these eigenvectors with eigenvalues $\lambda_1, ..., \lambda_n$

Express $x_0 = \sum_{k=1}^{n} c_k v_k$ (as a linear combination of the eigenvectors).

Therefore
$$A^t x_0 = \sum_{k=1}^n c_k \lambda_k^t v_k$$
.

Since $||A||_2 < 1$, it follows that $\lambda_k < 1$ for all k, that is $\lim_{t\to\infty} \lambda_k^t = 0$.

Optimization for Machine Learning

Lemma (Linear Dynamical Systems). Let A be a symmetric matrix of size $n \times n$ and assume that $||A||_2 < 1$. Then for all $x_0 \in \mathbb{R}^n$

$$\lim_{t\to\infty} x_t = 0.$$

Proof. Since A is symmetric, it has eigenvalues whose eigenvectors span the whole \mathbb{R}^n . Let $v_1, ..., v_n$ these eigenvectors with eigenvalues $\lambda_1, ..., \lambda_n$

Express $x_0 =$ Same holds if A not symmetric (use spectral radius and Jordan decomposition)! Therefore $A^t x_0 = \sum_{k=1}^n c_k \lambda_k^t v_k$.

Since $||A||_2 < 1$, it follows that $\lambda_k < 1$ for all k, that is $\lim_{t\to\infty} \lambda_k^t = 0$.

Optimization for Machine Learning

• What if *A* has eigenvalues greater than one as well?

The behavior of x_t depends on x_0 !

• What if *A* has eigenvalues greater than one as well?

The behavior of x_t depends on x_0 !

Lemma (Linear Dynamical Systems). Let A be a symmetric matrix of size $n \times n$ and assume that $v_1, ..., v_k$ are eigenvectors with eigenvalues less than one. Assume that $x_0 \in span(v_1, ..., v_k)$. Then

$$\lim_{t\to\infty}x_t=0.$$

• Remark: Proof exactly the same as before. What if $x_0 \perp v_j \neq 0$ with v_j an eigenvector with eigenvalue greater than one?

• What if *A* has eigenvalues greater than one as well?

The behavior of x_t depends on x_0 !

Lemma (Linear Dynamical Systems). Let A be a symmetric matrix of size $n \times n$ and assume that $v_1, ..., v_k$ are eigenvectors with eigenvalues less than one. Assume that $x_0 \in span(v_1, ..., v_k)$. Then

$$\lim_{t\to\infty}x_t=0.$$

• Remark: Proof exactly the same as before. What if $x_0 \perp v_j \neq 0$ with v_j an eigenvector with eigenvalue greater than one? **Trajectory diverges!**

Definition (Quadratic Functions). Let A be a square matrix of size $n \times n$. A function f has quadratic form if

$$f(x) = x^T A x.$$

• Remark: We may assume that *A* is symmetric. Why?

Definition (Quadratic Functions). Let A be a square matrix of size $n \times n$. A function f has quadratic form if

$$f(x) = x^T A x.$$

• Remark: We may assume that *A* is symmetric. Why?

Observe that $f(x) = \frac{1}{2}x^{T}Ax + \frac{1}{2}x^{T}A^{T}x = \frac{1}{2}x^{T}(A + A^{T})x$.

Definition (Quadratic Functions). Let A be a square matrix of size $n \times n$. A function f has quadratic form if

$$f(x) = x^T A x.$$

• Remark: We may assume that *A* is symmetric. Why?

Observe that
$$f(x) = \frac{1}{2}x^{T}Ax + \frac{1}{2}x^{T}A^{T}x = \frac{1}{2}x^{T}(A + A^{T})x$$
.

 $A + A^T$ is symmetric!

Definition (Quadratic Functions). Let A be a square matrix of size $n \times n$. A function f has quadratic form if

$$f(x) = x^T A x.$$

• Remark: We may assume that *A* is symmetric. Why?

Observe that
$$f(x) = \frac{1}{2}x^{T}Ax + \frac{1}{2}x^{T}A^{T}x = \frac{1}{2}x^{T}(A + A^{T})x$$
.

Fact (GD for Quadratic). Let $f(x) = \frac{1}{2}x^T Ax$. GD boils down to:

$$x_{t+1} = x_t - \epsilon A x_t = (I - \epsilon A) x_t.$$

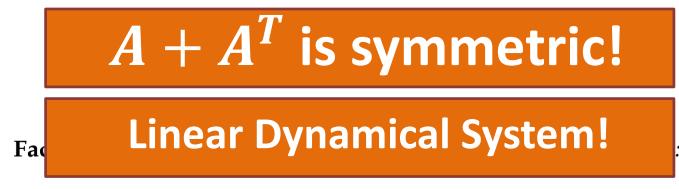
Optimization for Machine Learning

Definition (Quadratic Functions). Let A be a square matrix of size $n \times n$. A function f has quadratic form if

$$f(x) = x^T A x.$$

• Remark: We may assume that *A* is symmetric. Why?

Observe that
$$f(x) = \frac{1}{2}x^{T}Ax + \frac{1}{2}x^{T}A^{T}x = \frac{1}{2}x^{T}(A + A^{T})x.$$



$$x_{t+1} = x_t - \epsilon A x_t = (I - \epsilon A) x_t.$$

Optimization for Machine Learning

Lemma (GD for Quadratic). Let A be a symmetric matrix of size $n \times n$ and L be the maximum eigenvalue of A (in absolute value). Set $\epsilon < \frac{1}{L}$. Suppose x = 0 is a strict local minimum, then GD converges to it for all x_0 .

Lemma (GD for Quadratic). Let A be a symmetric matrix of size $n \times n$ and L be the maximum eigenvalue of A (in absolute value). Set $\epsilon < \frac{1}{L}$. Suppose x = 0 is a strict local minimum, then GD converges to it for all x_0 .

Proof. Since 0 is a strict local minimum, we have that A is positive definite.

Lemma (GD for Quadratic). Let A be a symmetric matrix of size $n \times n$ and L be the maximum eigenvalue of A (in absolute value). Set $\epsilon < \frac{1}{L}$. Suppose x = 0 is a strict local minimum, then GD converges to it for all x_0 .

Proof. Since 0 is a strict local minimum, we have that A is positive definite.

- ϵA has eigenvalues in the interval (0, 1).
- $\Rightarrow I \epsilon A$ has eigenvalues in the interval (0, 1).

Lemma (GD for Quadratic). Let A be a symmetric matrix of size $n \times n$ and L be the maximum eigenvalue of A (in absolute value). Set $\epsilon < \frac{1}{L}$. Suppose x = 0 is a strict local minimum, then GD converges to it for all x_0 .

Proof. Since 0 is a strict local minimum, we have that A is positive definite.

- ϵA has eigenvalues in the interval (0, 1).
- $\Rightarrow I \epsilon A$ has eigenvalues in the interval (0, 1).

Therefore $\lim_{t \to t} x_t = \lim_{t \to t} (I - \epsilon A)^t x_0 = 0.$

• Remark: What if *A* has negative eigenvalues?

Lemma (GD for Quadratic). Let A be a symmetric matrix of size $n \times n$ and L be the maximum eigenvalue of A (in absolute value). Set $\epsilon < \frac{1}{L}$. Suppose x = 0 is a strict local minimum, then GD converges to it for all x_0 .

Proof. Since 0 is a strict local minimum, we have that A is positive definite.

- ϵA has eigenvalues in the interval (0, 1).
- $\Rightarrow I \epsilon A$ has eigenvalues in the interval (0, 1).

Therefore
$$\lim_{t \to t} x_t = \lim_{t \to t} (I - \epsilon A)^t x_0 = 0.$$

• Remark: What if *A* has negative eigenvalues?

Then x = 0 is not a local minimum! It is a saddle point!

Definitions

Definition (Critical and Saddle points). We provide the following definitions:

- A point x^* is a critical point of f if $\nabla f(x^*) = 0$.
- A critical point x^* of f is a saddle point if for all neighborhoods U around x^* there are $y, z \in U$ such that $f(z) \leq f(x^*) \leq f(y)$.
- A critical point x^* of f is a strict saddle if $\lambda_{\min}(\nabla^2 f(x^*)) < 0$ (minimum eigenvalue of Hessian is negative).

Definitions

Definition (Critical and Saddle points). We provide the following definitions:

- A point x^* is a critical point of f if $\nabla f(x^*) = 0$.
- A critical point x^* of f is a saddle point if for all neighborhoods U around x^* there are $y, z \in U$ such that $f(z) \leq f(x^*) \leq f(y)$.
- A critical point x^* of f is a strict saddle if $\lambda_{\min}(\nabla^2 f(x^*)) < 0$ (minimum eigenvalue of Hessian is negative).

Therefore in the previous question, if A has negative eigenvalues, then x = 0 is a strict saddle point.

• Question: But if it is a saddle point, when do we converge to it?

- Question: But if it is a saddle point, when do we converge to it?
- Answer: Only if x_0 belongs to the span of the eigenvalues that are less than one of $I \epsilon A$.

Claim (GD for Quadratic). Let A be an invertible symmetric matrix of size $n \times n$ and L be the maximum eigenvalue of A (in absolute value). Set $\epsilon < \frac{1}{L}$. Let $v_1, ..., v_k$ are eigenvectors that correspond to eigenvalues greater than zero and $v_{k+1}, ..., v_n$ be the eigenvectors that correspond to eigenvalues smaller than zero. Then

$$\lim_{t} x_t = 0 \text{ iff } x_0 \in span(v_1, ..., v_k).$$

- Question: But if it is a saddle point, when do we converge to it?
- Answer: Only if x_0 belongs to the span of the eigenvalues that are less than one of $I \epsilon A$.

Claim (GD for Quadratic). Let A be an invertible symmetric matrix of size $n \times n$ and L be the maximum eigenvalue of A (in absolute value). Set $\epsilon < \frac{1}{L}$. Let $v_1, ..., v_k$ are eigenvectors that correspond to eigenvalues greater than zero and $v_{k+1}, ..., v_n$ be the eigenvectors that correspond to eigenvalues smaller than zero. Then

$$\lim_{t} x_t = 0 \text{ iff } x_0 \in span(v_1, ..., v_k).$$

Proof. The eigenvectors that correspond to negative eigenvalues for A, are eigenvectors with eigenvalues greater than one for $I - \epsilon A$...

- Conclusion: GD converges to x = 0 only if $x_0 \in E^s$.
- But how likely it is that $x_0 \in E^s$ if k < n?

- Conclusion: GD converges to x = 0 only if $x_0 \in E^s$.
- But how likely it is that $x_0 \in E^s$ if k < n?

Lemma (GD for Quadratic). Let A be a symmetric invertible matrix of maximum eigenvalue in absolute value L such that E^s has dimension k < n (i.e., x = 0 is a strict saddle for function $f(x) = \frac{1}{2}x^T Ax$). We set $\epsilon < 1/L$. For any continuous distribution D, if we sample initialization x_0 from D, GD converges to x = 0 with probability zero.

Theorem (GD avoids strict saddles). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a twice differentiable function, L-smooth and 0 be a strict saddle point and $\epsilon < 1/L$. For any continuous distribution D, if we sample initialization x_0 from D, GD converges to 0 with probability zero.

Proof. GD is a dynamical system (but not linear).

$$x_{t+1} = x_t - \epsilon \nabla f(x_t).$$

Theorem (GD avoids strict saddles). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a twice differentiable function, L-smooth and 0 be a strict saddle point and $\epsilon < 1/L$. For any continuous distribution D, if we sample initialization x_0 from D, GD converges to 0 with probability zero.

Proof. GD is a dynamical system (but not linear).

$$x_{t+1} = x_t - \epsilon \nabla f(x_t).$$

If you linearize it you get

$$x_{t+1} = (I - \epsilon \nabla^2 f(0)) x_t + \operatorname{error}(t).$$

with error(*t*) = $O(||x_t||_2^2)$ so if you start close to zero, it should be negligible...

Theorem (GD avoids strict saddles). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a twice differentiable function, L-smooth and 0 be a strict saddle point and $\epsilon < 1/L$. For any continuous distribution D, if we sample initialization x_0 from D, GD converges to 0 with probability zero.

Proof. GD is a dynamical system (but not linear).

$$x_{t+1} = x_t - \epsilon \nabla f(x_t).$$

If you linearize it you get

$$x_{t+1} = (I - \epsilon \nabla^2 f(0)) x_t + \operatorname{error}(t).$$

with error(t) = $O(||x_t||_2^2)$ so if you start close to zero, it should be negligible...

Assume you are given a dynamical system $x_{t+1} = \phi(x_t)$.

Theorem (Stable Manifold Theorem). Let 0 be a fixed point for the C^r local diffeomorphism $\phi : U \to E$, where U is a neighborhood of 0 in the Banach space E. Suppose that $E = E_s \oplus E_u$, where E_s is the span of the eigenvectors corresponding to eigenvalues less than or equal to 1 of $D\phi(0)$, and E_u is the span of the eigenvectors corresponding to eigenvalues greater than 1 of $D\phi(0)$. Then there exists a C^r embedded disk W_{loc}^{cs} that is tangent to E_s at 0 called the local stable center manifold. Moreover, there exists a neighborhood of 0, B, such that $\phi(W_{loc}^{cs}) \cap B \subset W_{loc}^{cs}$, and $\bigcap_{k=0}^{\infty} \phi^{-k}(B) \subset W_{loc}^{cs}$.

Everybody please remain calm. The theorem above just says:

- Locally in the neighborhood of 0, it suffices to analyze the first derivative of ϕ , $D\phi$.
- All the trajectories that converge to 0 (reach a neighborhood of 0 and remain there forever, must lie in some set W_{loc}^{cs} of dimension as E^{s} .

Theorem (GD avoids strict saddles). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a twice differentiable function, L-smooth and 0 be a strict saddle point and $\epsilon < 1/L$. For any continuous distribution D, if we sample initialization x_0 from D, GD converges to 0 with probability zero.

Proof cont. A sufficient condition for diffeomorphism is when the Jacobian derivative is invertible. Jacobian of GD is just

$$I - \epsilon \nabla^2 f(x)$$

the eigenvalues of which are greater than zero (*L*-smoothness and choice of ϵ).

Theorem (GD avoids strict saddles). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a twice differentiable function, L-smooth and 0 be a strict saddle point and $\epsilon < 1/L$. For any continuous distribution D, if we sample initialization x_0 from D, GD converges to 0 with probability zero.

Proof cont. A sufficient condition for diffeomorphism is when the Jacobian derivative is invertible. Jacobian of GD is just

$$I - \epsilon \nabla^2 f(x)$$

the eigenvalues of which are greater than zero (*L*-smoothness and choice of ϵ).

Now since 0 is a strict saddle, $\nabla^2 f(0)$ has a negative eigenvalue, hence E^u has dimension greater than one or equivalently E^s has dimension less than n.

Theorem (GD avoids strict saddles). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a twice differentiable function, L-smooth and 0 be a strict saddle point and $\epsilon < 1/L$. For any continuous distribution D, if we sample initialization x_0 from D, GD converges to 0 with probability zero.

Proof cont. A sufficient condition for diffeomorphism is when the Jacobian derivative is invertible. Jacobian of GD is just

$$I - \epsilon \nabla^2 f(x)$$

the eigenvalues of which are greater than zero (*L*-smoothness and choice of ϵ).

Now since 0 is a strict saddle, $\nabla^2 f(0)$ has a negative eigenvalue, hence E^u has dimension greater than one or equivalently E^s has dimension less than n.

Hence W_{loc}^{cs} has dimension less than n (measure zero set!).

Proof cont. So if x_t converges to 0, there exists a time T such that $x_T \in W_{loc}^{cs}$ which is a measure zero set.

The set of initial points x_0 so that GD converges to zero 0 is (assume ϕ is the update rule of GD)

 $\cup_{t=0}^{\infty} \phi^{-t}(W_{loc}^{cs}).$

Proof cont. So if x_t converges to 0, there exists a time T such that $x_T \in W_{loc}^{cs}$ which is a measure zero set.

The set of initial points x_0 so that GD converges to zero 0 is (assume ϕ is the update rule of GD)

 $\cup_{t=0}^{\infty} \phi^{-t}(W_{loc}^{cs}).$

Claim (Measure zero to measure zero). Let g be a diffeomorphism and S is a measure zero set. Then g(S) is also measure zero.

Proof cont. So if x_t converges to 0, there exists a time T such that $x_T \in W_{loc}^{cs}$ which is a measure zero set.

The set of initial points x_0 so that GD converges to zero 0 is (assume ϕ is the update rule of GD)

 $\cup_{t=0}^{\infty} \phi^{-t}(W_{loc}^{cs}).$

Claim (Measure zero to measure zero). Let g be a diffeomorphism and S is a measure zero set. Then g(S) is also measure zero.

Therefore each $\phi^{-t}(W_{loc}^{cs})$ is measure zero and thus the union.

Proof cont. So if x_t converges to 0, there exists a time T such that $x_T \in W_{loc}^{cs}$ which is a measure zero set.

The set of initial points x_0 so that GD converges to zero 0 is (assume ϕ is the update rule of GD)

 $\cup_{t=0}^{\infty} \phi^{-t}(W_{loc}^{cs}).$

Claim (Measure zero to measure zero). Let g be a diffeomorphism and S is a measure zero set. Then g(S) is also measure zero.

Therefore each $\phi^{-t}(W_{loc}^{cs})$ is measure zero and thus the union.

Since the set of initial conditions that converge to 0 is of measure zero, any continous distribution will not start from that set with probability one.

Conclusion

- Introduction to Non-convex Optimization.
 Gradient Descent avoids strict saddles!
- Next lecture we will talk about more about non-convex optimization.