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* Single agent RL



The framework

A finite Markov Decision Process (MDP) is defined as follows:
— A finite state space S.
— A finite action space A.

— A transition model P where P(s’|s,a) is the probability of transitioning
into state s’ upon taking action a in state s. [P is a matrix of size (S-A)x S.

— Reward function r : § x A — [—1,1].
— A discounted factor v € [0,1).

— p € A(S), an initial state distribution.



Definitions

Definition (Markovian stationary policy). Policy is called a function

m:S — A.

Definition (Value function). Given a policy 7t the value function is given by

Vi(p) =Enp | Y v r(st,a)|s0 ~ p
=0

The goal is to solve
max V™ (p).

™



Definitions

Definition (Markovian stationary policy). Policy is called a function

m:S — A.

Definition (Value function). Given a policy 7t the value function is given by

Vi(p) =Enp | Y v r(st,a)|s0 ~ p
=0

The goal is to solve
max V™ (p).

™

Remarks
* The max operator is over all (possibly non-stationary and randomized) policies.

* |t suffices to focus on deterministic.
e Vs notconcave in 1.



Example

Example (Navigation). Suppose you are given a grid map. The state of the agent
is their current location. The four actions might be moving 1 step along each of east,
west, north or south. The transitions in the simplest setting are deterministic. There
is a goal g that is trying to reach. Reward is one if the agent reaches the goal and zero
otherwise.

0.590 0.656  0.729 0.81

Remark
e Whatisl/?
* Whatisyin the example?



Bellman operator

Definition (Bellman Operator). Let’s define the following operator T :
T W(s) = me%{r(s, a) +v Y P(s'|s,a)W(s")}
ac g/

Set V*(s) := max V" (s).

T

Claim (Bellman Operator). V* is the unique fixed point of the operator.
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Definition (Bellman Operator). Let’s define the following operator T :
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Bellman operator
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Bellman operator
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Bellman operator

[[AX]lco < ||A]loo|]X]]oo

|7V -TV|, = max{r(s a)+ Y _ P(s'|a,s)V(s')} — max{r(s a')+ ) P(s'|a’,s)V'(s')}
< max{r(s a)+ Y P(s'a,s)V(s') —r(s,a) fyZ]P(s a,s)V'(s")}
=7 maax{]Pa(V— V’)}Hoo
<y||lV-V. since ||IP,||, = 1.
Remarks

* Bellman operator is contracting for infinity norm.
* Applying the operator does not give a polynomial time algorithm. Why?
e Linear programming can give optimal policies in polynomial time.



* Definition of Markov games and
solution concepts



n-player Markov game: Formal definition

Markov games or stochastic games are established as a framework for multi-
agent reinforcement learning [Littman, 1994]
— 8, a finite state space,
— N, a finite set of agents with n := [N/,
— Ay, a finite action space each player k, and A = x7_; Ax
—rp: S x A—[—1,1], a reward function for each agent £k,
— P:S x A— S a transition probability function,
— ~v €[0,1), a discount factor,

— p € A(S), an initial state distribution.



Solution Concept

e Every agent k picks a policy m, : S — A(Ag) (do not share randomness)

e The goal of each agent k is to maximize their own value function:

Vi (p) = B p [0 7 1(s0,00) | 50~ p]
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Solution Concept

e Every agent k picks a policy m, : S — A(Ag) (do not share randomness)

e The goal of each agent k is to maximize their own value function:

Vi (p) = B p [0 7 1(s0,00) | 50~ p]

An e-approximate Nash equilibrium (NE) 7 = (7¥,...,m)) means that no agent
can unilaterally increase their expected value more than e,

Vi (p) 2 VT (p) — €, Wk € N,V

Remarks

* Fixing all agents but i, induces a classic MDP. Every agent aims at
(approximate) best response.

* Generalizes notion of Nash Equilibrium.

* Nash (stationary, Markovian) policy always exist (Fink 64).

* Policies are defined to be Markovian and stationary.



Policy Gradient Iteration

Definition (Direct Parametrization). Every agent uses the following:

77:k(‘c‘! | S) — Xk,s,a

with xgs, > 0and } ,ca, Xgsa = 1.




Policy Gradient Iteration

Definition (Direct Parametrization). Every agent uses the following:

k(A | ) = Xg 4

with xgs, > 0and } ,ca, Xgsa = 1.

Definition (Policy Gradient Ascent). PGA is defined iteratively:

(t)
x;EtH) = HA(Ak)S(x}(ct) + vakaXt (0),

where I1 denotes projection on product of simplices.




 Two-player zero sum
Markov games



2-player zero-sum Markov games
- N ={1,2},ie,n=2,
- ./4, B, the ﬁnite action space Of players 1, 2 respectively.
- Tro = —T,

— rest the same.

Conventions

* We call player 2 the maximizer and player 1 the minimizer.
* The value of maximizer is V ™172) (p).



2-player zero-sum Markov games
- N ={1,2},ie,n=2,
— A, B, the finite action space of players 1, 2 respectively.
- T2 = —Ty,

— rest the same.

Conventions

* We call player 2 the maximizer and player 1 the minimizer.
* The value of maximizer is V ™172) (p).

T
=)
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2-player zero-sum Markov games

A crucial property:

Theorem (Shapley 53). In any two-player zero-sum Markov game
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2-player zero-sum Markov games

A crucial property:

Theorem (Shapley 53). In any two-player zero-sum Markov game

i 71,712 — i 701,712
minmax V172 (p) = maxmin V772(p)

Remark

 The game has a unique value V" (recall Von Neumann for normal
form two player zero-sum games).

 The theorem implies it does not matter who plays first.

e The function is not convex-concave!

 The proof of Shapley uses a contraction argument.

The complexity of finding a Nash equilibrium is unknown.



2-player zero-sum Markov games

Proof. Similar to Bellman, different operator.

Let val(.) be the operator applied to a payoff matrix that returns the value of
the corresponding zero-sum game.

—1,1 B
e.g., Val( L’_J ) = 0.



2-player zero-sum Markov games

Proof. Similar to Bellman, different operator.

Let val(.) be the operator applied to a payoff matrix that returns the value of
the corresponding zero-sum game.

-1,1 B
e.g., Val( {1’_1} ) = 0.

Fact: [val(4)- val(B)| < max;;|A;j —

Given a value vector V(s), we define the operator T

TV(s) :=val(r(s,.,.) + f)/z,]P(s’|s, L)V ().



2-player zero-sum Markov games

|7V —TV|_ = |[val{r(s,.,.) + ‘)rZIP(s’|s, L)V(sH Yy —val{r(s,.,.) + ’yz,IP(s'|s, L)V}

I

rr;’%x{r(s, a,b) + 7Y P(s'|s,a,b)V(s') —r(s,a,b) — ’yZ’IP(s’|S,a, b)V'(s')}

S.’

— 7 [max(p, (v - v
a, 0o

<v[lv-vi




2-player zero-sum Markov games
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I
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Remarks
* Bellman operator is contracting for infinity norm.
* Applying the operator does not give a polynomial time algorithm. Why?




Some facts about Policy Gradient

Definition (Policy Gradient Ascent). PGA is defined iteratively:
(t+1) . x(t)
X = Ty a8 () + 1V VE (p),

where I1 denotes projection on product of simplices.

Theorem (Policy Gradient Ascent [Agarwal et al 2020]). It can be shown for one
agent that after O(1/€?) iterations, an e-optimal policy can be reached.

Theorem (Policy Gradient Descent/Ascent [Daskalakis et al 2020]). It can be
shown a two-time scale Policy Gradient Descent/Ascent can give an e-Nash equilib-

rium in poly(1/€) time.

Remarks

* No guarantees for more than two players (only very specific settings).

e Can we find other classes of Markov games that PGA converges?

* |n general, approximating even stationary CCE is PPAD-complete [Daskalakis et al 2022].




* Potential Markov games



Markov Potential Games

Definition (Markov Potential Game). A Markov Decision Process (MDP) is called
a Markov Potential Game (MPG) if there exists a (state-dependent) function s :
IT = R for s € S so that

q)(ﬂtk,n_k)(s) . (D(rr]’c,n_k)(s) _ Vk(Trk,TT_k)(s) . Vk(m’crﬂ_k)(s),

for all agents k € N, all states s € S and all policies rty,, 1. € Py, 1_ € P_y.

Remarks

* This notion generalizes the Potential Games in Game Theory.

e Potential Games capture routing (congestion games), important class.
e Deterministic Nash policies always exist!

* Each state a potential game does not imply MPG. Might have also zero
sum game states!




An example of a MPG




An example of a MPG

H ST N O I En IS R (Eééﬁ 223)

Subgames can be zero sum!



An example of an almost” MPG

Otherwi
If (al, CL2) = (—I—l, —I—]_) @ erwise

+1 —1
(R}, R2) = +1< ;2 _1’_2) (Ri, R7) = (0,0)

1\ -5-4 1,4



An example of an almost” MPG

therwi
If (al,a,z) = (—|—1,+1) @ Otherwise

+1 —1
= (22, 1)@m=

Ordinal MPG!



Not Markov Potential Game
a) ®al =0 ay ®ap =0

. otherwise .
0 1 0 1

otherwise

0/2,0 2,0 00,2 0,2
12,0 2,0 10,2 0,2




Not Markov Potential Game

a’ ®a% =0 ay ®ag =0

0 1 otherwise 0 1

2,0 2,0 0/0,2 0,2
2.0 2,0 1\0,2 0,2

Transitions can create competition!



Main Result

Theorem (PGA for Markov Potential Games). Suppose all agents run policy gra-
dient iteration independently and update simultaneously. It can be shown that after
O(1/€?) iterations, an e-Nash policy can be reached.

Remarks
e This result can be generalized (different rates, i.e., O (616)) if agents do

not have access to exact gradients. Stochastic variant + greedy
parametrization.

* |t matches the result for single-agent.

* The running time depends polynomially on the sum of cardinalities of
the players’ actions spaces and not on the product.



Proof Steps |

Lemma (Key Lemma 1). Policy gradient on values of agents is equivalent to pro-
jected gradient ascent on ®. Formally it holds

vxk(p = ka Vk.

Remarks
* This is true by definition of ®. Note that we do not know ®!
e Policy gradient is Projected Gradient Ascent on @




Proof Steps |

Lemma (Key Lemma 1). Policy gradient on values of agents is equivalent to pro-
jected gradient ascent on ®. Formally it holds

vxk(p = ka Vk.

Remarks
* This is true by definition of ®. Note that we do not know P!

* Policy gradient is Projected Gradient Ascent on @

Lemma (Key Lemma 2). Stationary points for ® are exactly Nash policies!

Remarks
e This is a technical lemma, it uses the gradient domination property.

Gradient domination (PL condition) f(x*) — f(x) = 0(G(x)) where
G(x) is a scalar notion of first-order stationarity (e.g. ||Vf]|).
* |t holds for approximate stationary points too.




Proof Steps Il

Lemma (Theorem (e.g., [Ghadimi et al 2013])). Gradient descent reaches an e-
stationary point after O( 61—2) steps for functions f with Lipschitz gradient.

Intuition: A standard descent lemma gives:

£ (3= VI = F0) < ~CUVF@IR)




Proof Steps Il

Lemma (Theorem (e.g., [Ghadimi et al 2013])). Gradient descent reaches an e-
stationary point after O( 61—2) steps for functions f with Lipschitz gradient.

Intuition: A standard descent lemma gives:

f(xes1) — f(xe) < —C(|VF(xe)[[3).

Assume that ||V f(x¢)||, > € fort =1,..., T. We get that
f(ZET) — f(ZBT_l) + f(ZCT_l) — f(iUT_Q) + ...+ f(ﬂi‘l) — f($0)< — CEQT.




Proof Steps Il

Lemma (Theorem (e.g., [Ghadimi et al 2013])). Gradient descent reaches an e-
stationary point after O( elz) steps for functions f with Lipschitz gradient.

Intuition: A standard descent lemma gives:

fxrsn) = f(xe) < =C(IVF(x)[I2)-

Assume that ||V f(x¢)||, > € fort =1,..., T. We get that

flar) = (gl + F2) = 1)+t S = (o)< — 0T

If f(x) > fminthenT =0 (l)

€2




Proof Steps Il

Lemma (Theorem (e.g., [Ghadimi et al 2013])). Gradient descent reaches an e-
stationary point after O( 61—2) steps for functions f with Lipschitz gradient.

Remarks

* We can follow the same analysis if ® has Lipschitz gradient.

* We show that V,, Vj is Lipschitz (constant depends on number of
agents, number of actions and discount factor y).

 For the stochastic variant, we need an unbiased estimator with
bounded variance.




e Adversarial team
Markov games



Adversarial team Markov games

- N={1,...,n}U{n+ 1}, i.e., n agents and one adversary agent,
— A, denotes the finite action space of player k,

— B denotes the action space of the adversary,

— r; =1, for i, j € [n],

— letting r,qv be the adversary’s reward; the game is team zero-sum, z.e.,

T

Z ri(s,a,b) + raav(s,a,b) =0,
k=1

— rest the same.



Adversarial team Markov games

- N={1,...,n}U{n+ 1}, i.e., n agents and one adversary agent,
— A, denotes the finite action space of player k,

— B denotes the action space of the adversary,

— r; =1, for i, j € [n],

— letting r,qv be the adversary’s reward; the game is team zero-sum, z.e.,

T

Zrk(s, a,b) + riav(s,a,b) =0,
k=1

— rest the same.

Can we compute an approximate NE ?




Main result

Definition (IPGMAX). The independent policy gradient on the max function is as
follows, for T steps do:

The adversary best-responds to x: (1)
* ¢« arg max V,(x, 2
Yy gyGA(B)S o(%, ) (2)
Every agent k independently updates their strategy: 3)
i = Ty as {20 = 1V Vo (1, 97) } (4)

Get a point £ which is approximate stationary for max,g)s Vp (x,y), solve a con-
strained linear program to get a 1ij.



Main result

Definition (IPGMAX). The independent policy gradient on the max function is as
follows, for T steps do:

The adversary best-responds to x: (1)
* ¢« arg max V,(x, 2
Yy gyGA(B)S o(%, ) (2)
Every agent k independently updates their strategy: 3)
i = Ty as {20 = 1V Vo (1, 97) } (4)

Get a point £ which is approximate stationary for max,g)s Vp (x,y), solve a con-
strained linear program to get a 1ij.

Remark
 Thought experiment on RPS. What would this algorithm return? We
need to do extra work to find a NE.



Main result

Theorem (IPGMAX + LP). Running IPlGMAX for O (P‘”y@k LB ')) iterations
and in the end a LP, yields an e-NE.

Remarks
1. o 1

* We need —; iterations instead of —. Why?
€ €
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and in the end a LP, yields an e-NE.

Remarks
1, : . 1 L
 We need = iterations instead of = Why? max function is non-smooth.

* We show that an approximate stationary X point of max,, V' (x, y) can
always be extended to a (X, ¥) which is an approximate NE.

This includes proving existence of Lagrange multipliers for some non-
convex program.



Main result

Theorem (IPGMAX + LP). Running IPGMAX for O (P oly (L L“ka'BD) iterations
and in the end a LP, yields an e-NE.

Remarks
1, : . 1 L
 We need = iterations instead of = Why? max function is non-smooth.

* We show that an approximate stationary X point of max,, V' (x, y) can
always be extended to a (X, ¥) which is an approximate NE.
This includes proving existence of Lagrange multipliers for some non-

convex program.
* To get y, we somehow create the dual which is linear.



* Polymatrix Markov games



(normal form) Polymatrix games

A polymatrix game is defined using a graph G(V, &), where
— every agent ¢ coincides with a vertex v; € V,

— for every agent i, there is a finite action-space A;,

— every agent i has a utility function u; : x?*_;A; — [—1,1],

— every edge (¢,7) € € stands for a two-player (general-sum) game (u;;, u;;).
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— every agent ¢ coincides with a vertex v; € V,

— for every agent i, there is a finite action-space A;,

— every agent i has a utility function u; : x?*_;A; — [—1,1],

— every edge (¢,7) € € stands for a two-player (general-sum) game (u;;, u;;).

In a polymatriz game the utility of every agent i is separable as a sum of pair-
wise interactions dictated by the graph,

ui(a) = Z uz’j(&i,aj);
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where a = (a1,...,0;,a;,...,a,) € X1 A,.



(normal form) Polymatrix games

A polymatrix game is defined using a graph G(V, &), where

— every agent ¢ coincides with a vertex v; € V,

— for every agent i, there is a finite action-space A;,

— every agent i has a utility function u; : x?*_;A; — [—1,1],

— every edge (¢,7) € € stands for a two-player (general-sum) game (u;;, u;;).

In a polymatriz game the utility of every agent i is separable as a sum of pair-
wise interactions dictated by the graph,

ui(a) = Z uz’j(&i,aj);
j€E€neighb(7)

where a = (a1,...,0;,a;,...,a,) € X1 A,.

Finally it is called zero-sum if ) . u; =0



(normal form) Polymatrix games

Computing NE is easy (in P).

The solutions of the following linear program are Nash equilibria.

minimize Z w; (1a)
i=1
subject to  w; > u;(a;, x_;), Vi € [n],Va; € A;, (1b)

x; € A(A;), Vi € [n]. (1c)



(normal form) Polymatrix games

Computing NE is easy (in P).
The solutions of the following linear program are Nash equilibria.

mn
minimize E w;
i=1

subject to  w; > u;(a;, x_;), Vi € [n],Va; € A;,
x; € A(A;), Vi€ [n].

Remarks
* There is more. The above coincides (slightly) with LP for CCE.



(normal form) Polymatrix games

Computing NE is easy (in P).
The solutions of the following linear program are Nash equilibria.

mn
minimize E W;
i=1

subject to  w; > u;(a;, x_;), Vi € [n],Va; € A;,
x; € A(A;), Vi€ [n].

Remarks
e There is more. The above coincides (slightly) with LP for CCE.

Equilibrium collapse. Marginals of

CCEs are NE!!!!




Polymatrix Markov games

A Markov game s.t for every state s, there exists a graph G4(Vs, Es) such that,
— the vertices V, coincide with the agents,

— the reward function of each agent depends on pair-wise interactions with
each neighbors,

ri(s,a) = Z rii(s,ai,a;).

j€Eneighbors()

— the sum of rewards at each state is 0,

Zn: ri(s,a) =0,
i=1



Polymatrix Markov games

A Markov game s.t for every state s, there exists a graph G4(Vs, Es) such that,
— the vertices V, coincide with the agents,

— the reward function of each agent depends on pair-wise interactions with
each neighbors,

ri(s,a) = E rii(s,ai,a;).
j€E€neighbors()
— the sum of rewards at each state is 0,

mn

Z ri(s,a) =0,

1=1

— Assumption of Switching control: at every state there is a single player
that controls the probability of transtion to a new state.



Main result

Unfortunately we do not have a LP as before but we have equilibrium collapse.

Theorem (Equilibrium collapse). Let a coarse correlated equilibrium of the switch-
ing control, polymatrix zero-sum Markov game, o. Then the marginal product strat-

egy profile, x7,
xirs(ai) = Z os(ai, a_;)

is a Nash equilibrium of the game.



Main result

Unfortunately we do not have a LP as before but we have equilibrium collapse.

The corresponding program looks as follows:

minimize Z Z p(s)w;(s) (1a)
1=1 s€S8S
subject to w;(s) > 7i(s,ai, T 5) +7 Z P(s'[s,ai,x—; s )w;(s") Vi € [n],Vs € S,Va; € A;,
s'esS
(1b)
z; s € A(A;), Vi€ [n|,VseS. (1c)

Remarks
* Any algorithm that gives approximate Markovian CCEs, gives
approximate Markovian NE!
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