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Outline

• Basics on single agent RL and policy gradient

• Definitions and basics on two-player zero-sum games  

• Potential Markov games

• Adversarial Markov team games

• Polymatrix Markov games

• Open Questions/Future projects



• Single agent RL



The framework
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Definitions

Remarks
• The max operator is over all (possibly non-stationary and randomized) policies.
• It suffices to focus on deterministic.
• 𝑉 is not concave in 𝜋.



Example

Remark
• What is 𝑉?
• What is γ in the example?
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Bellman operator
|𝒙 − 𝒚| ∞ ≥ | |𝒙| ∞– |𝒚| ∞|



Bellman operator



Bellman operator

Remarks
• Bellman operator is contracting for infinity norm.
• Applying the operator does not give a polynomial time algorithm. Why?
• Linear programming can give optimal policies in polynomial time.

|𝑨𝒙| ∞ ≤ |𝑨| ∞ |𝒙| ∞



• Definition of Markov games and 
solution concepts



𝑛-player Markov game: Formal definition

Markov games or stochastic games are established as a framework for multi-
agent reinforcement learning [Littman,  1994]



Solution Concept



Solution Concept



Solution Concept

Remarks
• Fixing all agents but 𝑖, induces a classic MDP. Every agent aims at  

(approximate) best response.
• Generalizes notion of Nash Equilibrium.  
• Nash (stationary, Markovian) policy always exist (Fink 64).
• Policies are defined to be Markovian and stationary.



Policy Gradient Iteration



Policy Gradient Iteration



• Two-player zero sum 
Markov games



2-player zero-sum Markov games

Conventions
• We call player 2 the maximizer and player 1 the minimizer.

• The value of maximizer is 𝑉 𝜋1,𝜋2 𝜌 .
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2-player zero-sum Markov games

Remark
• The game has a unique value 𝑉∗ (recall Von Neumann for normal 

form two player zero-sum games).
• The theorem implies it does not matter who plays first.
• The function is not convex-concave! 
• The proof of Shapley uses a contraction argument.
• The complexity of finding a Nash equilibrium is unknown.



2-player zero-sum Markov games



2-player zero-sum Markov games

Fact: 𝒗𝒂𝒍 𝑨 – 𝒗𝒂𝒍 𝑩 ≤ 𝒎𝒂𝒙𝒊,𝒋|𝑨𝒊𝒋 − 𝑩𝒊𝒋|



2-player zero-sum Markov games



2-player zero-sum Markov games

Remarks
• Bellman operator is contracting for infinity norm.
• Applying the operator does not give a polynomial time algorithm. Why?



Some facts about Policy Gradient

Remarks
• No guarantees for more than two players (only very specific settings).
• Can we find other classes of Markov games that PGA converges?
• In general, approximating even stationary CCE is PPAD-complete [Daskalakis et al 2022].



• Potential Markov games



Markov Potential Games

Remarks
• This notion generalizes the Potential Games in Game Theory. 
• Potential Games capture routing (congestion games), important class.
• Deterministic Nash policies always exist!
• Each state a potential game does not imply MPG. Might have also zero 

sum game states!



An example of a MPG



An example of a MPG

Subgames can be zero sum!



An example of an ``almost” MPG



An example of an ``almost” MPG

Ordinal MPG!



Not Markov Potential Game



Not Markov Potential Game

Transitions can create competition!



Main Result

Remarks

• This result can be generalized (different rates, i.e., 𝑂
1

𝜖6
) if agents do 

not have access to exact gradients. Stochastic variant + greedy 
parametrization.

• It matches the result for single-agent.
• The running time depends polynomially on the sum of cardinalities of 

the players’ actions spaces and not on the product.



Proof Steps I

Remarks
• This is true by definition of Φ. Note that we do not know Φ!
• Policy gradient is Projected Gradient Ascent on Φ



Proof Steps I

Remarks
• This is true by definition of Φ. Note that we do not know Φ!
• Policy gradient is Projected Gradient Ascent on Φ

Remarks
• This is a technical lemma, it uses the gradient domination property.
Gradient domination (PL condition) 𝑓 𝑥∗ − 𝑓 𝑥 = 𝑂(𝐺(𝑥)) where 
G(x) is a scalar notion of first-order stationarity (e.g. ||∇𝑓||).
• It holds for approximate stationary points too.



Proof Steps II

Intuition: A standard descent lemma gives:
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Proof Steps II

Intuition: A standard descent lemma gives:

If 𝒇 𝒙 ≥ 𝒇min then 𝑻 = 𝑶
𝟏

𝝐𝟐



Proof Steps II

Remarks
• We can follow the same analysis if Φ has Lipschitz gradient.
• We show that ∇𝑥𝑘𝑉𝑘 is Lipschitz (constant depends on number of 

agents, number of actions and discount factor 𝛾).
• For the stochastic variant, we need an unbiased estimator with 

bounded variance.



• Adversarial team 
Markov games



Adversarial team Markov games



Adversarial team Markov games

Can we compute an approximate NE ?



Main result



Main result

Remark
• Thought experiment on RPS. What would this algorithm return? We 

need to do extra work to find a NE.



Main result

Remarks

• We need 
1

𝜖4
iterations instead of 

1

𝜖2
. Why?
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Remarks

• We need 
1

𝜖4
iterations instead of 

1

𝜖2
. Why? max function is non-smooth.

• We show that an approximate stationary ො𝑥 point of max𝑦𝑉(𝑥, 𝑦) can

always be extended to a (ො𝑥, ො𝑦) which is an approximate NE. 
This includes proving existence of Lagrange multipliers for some non-
convex program.



Main result

Remarks

• We need 
1

𝜖4
iterations instead of 

1

𝜖2
. Why? max function is non-smooth.

• We show that an approximate stationary ො𝑥 point of max𝑦𝑉(𝑥, 𝑦) can

always be extended to a (ො𝑥, ො𝑦) which is an approximate NE. 
This includes proving existence of Lagrange multipliers for some non-
convex program.
• To get ො𝑦, we somehow create the dual which is linear.  



• Polymatrix Markov games



(normal form) Polymatrix games
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(normal form) Polymatrix games



(normal form) Polymatrix games

Remarks
• There is more. The above coincides (slightly) with LP for CCE.



(normal form) Polymatrix games

Remarks
• There is more. The above coincides (slightly) with LP for CCE.

Equilibrium collapse. Marginals of 
CCEs are NE!!!!



Polymatrix Markov games



Polymatrix Markov games



Main result



Main result

Remarks
• Any algorithm that gives approximate Markovian CCEs, gives 

approximate Markovian NE! 
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