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1 Introduction

Before diving into defining non-convex optimization, let us have a look at linear dynamical systems,

which will be helpful in understanding problems in non-convex optimization.

1.1 Linear Dynamical Systems

A linear dynamical system (LDS) can be described by the following iterative equation:

xt+1 = Axt (1)

for all t = 0, 1, 2, . . .. Here, xt is the n-dimensional state vector and A is the linear operator (a

n× n constant matrix).

Now, one can simplify this evolution with respect to the initial condition x0 as follows:

xt+1 = Axt =⇒ xt = Atx0 (2)

Hence, the properties of the state vector in the limit as t → ∞ is completely characterized by x0

and the eigenvalues of A.

Definition 1.1 Let A be a symmetric n× n matrix with eigenvalues λ1, ..., λn. The spectral norm

of A is denoted as ‖A‖2 = sup‖x‖2=1‖Ax‖2. Moreover, it holds that ‖A‖2 =
√
λmax(ATA).

We start with the following claim:

Lemma 1.1 Let A be a symmetric matrix of size n × n and assume ‖A‖2 < 1. Then for all

x0 ∈ IRn.

lim
t→∞

xt = 0 (3)

Proof: Since A is n×n real symmetric matrix, it will have n linearly independent eigenvectors

(not neccessary n distinct eigenvalues). Hence, the eigenvectors span the whole IRn. Let v1, v2, ..., vn
are these eigenvectors with eigenvalues λ1, ..., λn. We can express-

x0 =

n∑
k=1

ckvk (4)
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i.e., a linear combination of the eigenvectors. Thus state vector after t steps can be written as-

xt = Atx0 =
n∑
k=1

ckλ
t
kvk (5)

Since ‖A‖2 < 1, largest eigenvalue of (ATA) or (A2) (as A is symmetric) is < 1. It follows that

|λk| < 1 for all k, that is lim
t→∞

λtk = 0. Hence

lim
t→∞

xt = lim
t→∞

Atx0 = lim
t→∞

n∑
k=1

ckλ
t
kvk =

n∑
k=1

ck lim
t→∞

λtkvk = 0 (6)

Remark 1.2 The same holds for a non-symmetric matrix.

Let spectral radius ρ(A) := max{|λ1|, . . . , |λn|} and this is bounded by ‖A‖2. The power sequence

(in eq. (3)) will converge to zero if ρ(A) < 1. We can use Jordan normal form decomposition, such

that A = V JV −1, where V is non-singular and J is a block diagonal matrix. Then Ak = V JkV −1.

Finally, to analyze Jk as k tends to infinity, we use the fact the spectral radius of A is < 1. 1

Remark 1.3 If A has some eigenvalues greater than one then the behavior of xt will depend on

x0.

Lemma 1.2 Let A be a symmetric matrix of size n×n and assume v1, ..., vk are eigenvectors with

respective eigenvalues λ1, ..., λk where |λi| < 1. Assume x0 ∈ span(v1, ..., vk). Then

lim
t→∞

xt = 0 (7)

Proof: The components in x0 corresponding to the indices with eigenvalues greater than 1 is

zero. Then the analysis reduces to the previous case.

Remark 1.4 What if x0⊥vj 6= 0 (x0 has a component in direction of vj), where vj has corre-

sponding eigenvalue |λj | > 1. This implies a non-zero coefficient of vj in expressing x0 in terms of

v1, ..., vk. The trajectory of state vector xt will diverge as t increases.

2 Why do we care?

This section is about how to use theory of LDS in optimization. We start by considering a quadratic

function.

Definition 2.1 Let A be a square matrix of size n× n. A function f has quadratic form if

f(x) = xTAx (8)

1https://en.wikipedia.org/wiki/Spectral_radius#Power_sequence
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Remark 2.2 Observe xTAx = xTATx = 1
2x

T (A + AT )x. This shows we can rewrite f(x) =
1
2x

T (A+AT )x, where A+AT is symmetric. This helps us in further analysis as we can formulate

the problem considering A as a symmetric matrix i.e. A := 1
2(A+AT ).

Gradient of f(x) with the symmetric matrix A can be written as Ax. Hence Gradient decent

for quadratic functions is a linear dynamical system possessing the state transition-

xt+1 = xt − εAxt
= (I − εA)xt

(9)

2.1 Building intuition through Quadratic

Let’s study gradient descent (GD) for quadratic in more details.

Lemma 2.1 Let A be a symmetric matrix of size n × n and L be the maximum eigenvalue of A

(in absolute value). Set ε < 1
L . Suppose x = 0 is a strict local minimum, then GD converges to it

for all x0.

Proof: Since 0 is a strict local minimum, the quadratic form equation-(8) is always positive for

any value of x > 0.

Claim-1: First, we observe that A is positive definite.

Av = λv (v is a non-zero eigenvector) (10)

vTAv = λvT v (11)

⇒λ||v||2 > 0 (L.H.S is non-negative) (12)

⇒ λ > 0 (||v||2 > 0) (13)

where ||v||2 is length or L2 norm of the vector. A has all eigenvalues greater than zero and thus

positive definite.

Claim-2: The matrix εA has eigenvalues in the interval (0, 1) (as εAv = [ελ]v, and 0 < ελ < 1

which is an eigenvalue for εA).

Claim-3: (I − εA) has eigenvalues in the interval (0, 1). Consider v satisfies Av = λv. (I − εA)v =

(1− ελ)v. Hence, an eigenvalue of (I − εA) is (1− ελ) ∈ (0, 1).

Therefore, using claim-1,2,3 and Lemma-1.2, we can show-

lim
t→∞

xt = lim
t→∞

(I − εA)tx0 = 0 (14)

Remark 2.3 If A has negative eigenvalues, it means x = 0 is a saddle point and not local mini-

mum!

Definition 2.4 Critical points and Saddle points:
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Maxima is also a strict saddle Flat surface in one direction, maxima in other

Flat surface in all the directions

A B

C D

Figure 1: An illustration of possible saddle points. (A) Shows local maxima as strict saddle points;

(B) Shows a strict saddle point as λ1 < 0 and λ2 > 0; (C) shows local minima; (D) Shows non-strict

saddle point as λ1 = 0 and λ2 = 0.3

1. A point x∗ is a critical point of f if ∇f(x∗) = 0.

2. A critical point x∗ of f is a saddle point if for all neighborhoods U around x∗ there are y, z ∈ U
such that f(z) ≤ f(x∗) ≤ f(y).

3. A critical point x∗ of f is a strict saddle if λmin(∇2f(x∗) < 0) (minimum eigenvalue of

Hessian is negative).

Therefore if a matrix A has negative eigenvalues, then x = 0 is a strict saddle point. Refer to

Figure 1

Note on Hessians-Hessian of an equation is symmetric, its eigenvalues are real numbers. If the

Hessian at a given point has all positive eignenvalues, is is known to be positive-definite matrix

(concave up). If all of them are negative, it is negative-definite matrix (concave down). If either

eigenvalue is 0, then more analysis is needed. If eigenvalues are mixed of positive and negative, it

is a saddle point.

Remark 2.5 When do we converge to a saddle point? Only if x0 belongs to the span of the

eigenvalues that are less than one of (I − εA).

Claim 2.2 (GD for Quadratic) Let A be an invertible symmetric matrix of size n × n and L be

the maximum eignenvalue of A (in absolute value). Set ε < 1
L . Let v1, ..., vk are eigenvectors that

3The figure is edited, the original can be found at:- https://www.offconvex.org/2018/11/07/

optimization-beyond-landscape/
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correspond to eigenvalues greater than zero and vk+1, ..., vn be the eigenvectors that correspond to

eigenvalues smaller than zero. Then-

lim
t→∞

xt = 0 iff x0 ∈ span(v1, ..., vk) (15)

Proof: The eigenvectors that correspond to negative eigenvalues for A are eigenvectors greater

than one for (I − εA). Denote Es = span(v1, ..., vk) and Eu = span(vk+1, ..., vn). GD converges to

x = 0 only if x0 ∈ Es by Lemma-2.1.

Remark 2.6 How likely it is that x0 ∈ Es if k < n? We will see that in the following section.

3 Gradient Descent Avoids Strict Saddles

Theorem 3.1 Let f : IRn → IR be a twice differentiable function, L-smooth and 0 be a strict

saddle point ε < 1
L . For any continuous distribution D, if we sample initialization x0 from D, GD

converges to 0 with probability zero.

Proof: Since GD is a non-linear dynamical system-

xt+1 = xt − ε∇f(xt) (16)

If we linearize it, we get-

xt+1 = (I − ε∇2f(0))xt + error(t) (17)

with error(t) = O(‖xt‖22), so if we start close to zero, it should be negligible.

Let g: X → X is optimization algorithm where xk = g(xk−1) = gk(x0), where k-fold composition

is gk. Let expression g(x) = x− α∇f(x) is gradient decent with step size α. A fixed point x∗ ∈ X
if g(x∗) = x∗. Note that all critical points of f are fixed points of gradient descent g and vice-versa.

Theorem 3.2 (Stable Manifold Theorem) Let x∗ be a fixed point of a local diffeomorphism g.

Let Es be the span of the eigenvectors of Dg(x∗) corresponding to eigenvalues of magnitude less

than or equal to one. Then there is an embedded disk W cs
loc tangent to Es at x∗ called local stable

center manifold. Moreover, there is a neighborhood B of x∗, such that g(W cs
loc) ∩B (W cs

loc

Unfolding the theorem: Before getting into the proof, we will define some terms. A function is

a diffeomorphism A function is diffeomorphism if it has an inverse f−1 and both f and f−1 are

smooth. A slight weaker term is local diffeomorphism if f−1 can be identified in small area around

all x ∈ X , however, one single f−1 can not be identified for the whole space.

Essentially, if g is diffeomorphism, we can trace back initial iterate x0 using g. However, in

local diffeomorphism, we can trace back in small region around xk.

Let, xt+1 = φ(xt).

• Locally in the neighborhood of 0, it suffices to analyze the first derivative of φ,Dφ.
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• All the trajectories that converge to 0 (reach a neighborhood of 0 and remain there forever,

must lie in some set W cs
loc of dimension as Es.

(We encourage reader to refer article4 for detailed explanation.)

Proof of Theorem-3.1: A sufficient condition for diffeomorphism is when the Jacobian is

invertible. Jacobian of GD is just

I − ε∇2f(x) (18)

the eigenvalues of which are greater than zero with choice of ε and L-smoothness.

Now since 0 is a strict saddle, ∇2f(0) has a negative eigenvalue, hence Eu has dimension greater

than one or equivalently Es has dimension less than n.

Hence W cs
loc has dimension less than n (measure zero set!).

The set of initial points x0 so that GD converges to 0 is (assume φ is the update rule of GD).

∪∞t=0 φ
−1(W cs

loc) (19)

Claim 3.3 (Measure zero to measure zero). Let g be a diffeomorphism and S is a measure zero

set . Then g(S) is also measure zero.

Therefore each φ−t(W cs
loc) is measure zero and thus the union.

Since the set of initial conditions that converge to 0 is of measure zero, any continuous

distribution will not start from that set with probability one.

Remark 3.1 Note that Theorem-3.1 is generally true for the unconstrained setting as we have an

example for the constrained setting where GD converges to a saddle point with positive probability.

Constrained GD-Convergence to Saddle point This example appeared in [2].

Consider the following optimization problem:

min
x,y

f(x, y) =∆ −xy exp(−(x2 + y2)) +
y2

2
s.t x+ y ≤ 0 (20)

Note that (0, 0) is a saddle point for the above function f , since ∇f(0, 0) = (0, 0) and the Hessian

∇2f(0, 0) =

(
0 −1

−1 1

)
. Suppose the initial condition starts in the box shown in Figure 2, if one

does gradient descent, as the vector field of the negative gradient may eventually take the point

outside the feasible set and then one has to project it onto the line x+y = 0. With a small constant

step size and continuing this projected gradient descent, we can see from Figure 2 that this leads

to the saddle point (0, 0).

4http://noahgolmant.com/avoiding-saddle-points.html for detailed version.
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Figure 2: Negative gradient flow for f(.) [2]

GD with Vanishing Step Sizes Going back to the unconstrained setting, it is known that GD

even with vanishing step sizes avoids (strict) saddle points and we can state the following theorem

due to [4].

Theorem 3.4 Let f : Rn → R be a twice differentiable function which is L−smooth and x∗ be a

strict saddle point and εt is of the order Ω(1
t ) ( vanishing). For any continuous distribution D, if

we sample the initial condition x0 from D, GD converges to x∗ with probability zero.

The “proof” below is mainly shown for the quadratic case to build intuition. Readers can refer

to [4] for the full proof.

Proof of Theorem-3.4: Let f(x) = 1
2x

TAx be the quadratic function where the matrix A is

symmetric. Now GD update boils down to:

xt+1 = xt − εtAxt = (I − εtA)xt (21)

By recursively applying the above update, we get the following equation:

xt+1 = Πt
z=0(I − εzA)x0 (22)

Since A is symmetric, we can write A = P T∆P , where ∆ is a diagonal matrix with real entries and

P TP = I , where P is an orthogonal matrix.

Therefore by re-writing I − εzA = P T (I − εz∆)P and then applying telescopic multiplication

and using the fact that P TP = I, we get the following:

xt+1 = P TΠt
z=0(I − εz∆)Px0 (23)

Note that Πt
z=0(I−εz∆) = ∆

′
where ∆

′
is a diagonal matrix with the ith entry being Πt

z=0(1−εzλi).
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Thus, the eigenvalues as t tends to infinity can be written as: exp(
∑∞

z=0 ln (1− εzλi)) ≈
exp(−λi

∑∞
z=0 εz), as εz is very small.

Now assume that, there exists λi < 0 and as long as
∑∞

z=0 εz = ∞ for gradient descent to

converge to the saddle point, we require Px0 ⊥ ei (i.e, the Px0 should not have any component

along ei) and this means that these starting points which converge to the saddle point form a

measure zero set in Rn.

4 Gradient Descent Efficiently Avoids Strict Saddle Points

So far we have seen qualitative results about convergence of GD to it’s stationary points and that

unconstrained GD avoids strict saddle points. However, to obtain some convergence guarantees we

require some weaker notions such as an approximate first order stationary points and approximate

second order stationary points. We introduce some of these definitions below.

However, we require an additional assumption on Hessian smoothness as shown below:

Assumption 4.1 We assume that the twice differentiable functions have ρ-Hessian Lipschitzness,

formally:

‖∇2f(x)−∇2f(y)‖2 ≤ ρ‖x− y‖2 ∀x, y (24)

Definition 4.1 Approximate first/second order stationary points:

1. A point x∗ is an ε-first order stationary point (or critical point) of f if ‖∇f(x∗)‖2 ≤ ε.

2. A point x∗ is an ε-strict saddle point of f if it is an ε- first order stationary point and

λmin(∇2f(x∗)) ≤ −√ρε.

3. The ε-first order points that are not ε-strict saddles are ε- second order stationary points.

4.1 Convergence to First Order Stationarity

First we look at convergence rates for ε-first order stationary points.

Theorem 4.2 For any ε > 0, assume that the differentiable function f is L-smooth and let α = 1
L .

Moreover, let f(x∗) be the global minimum of f . Then the gradient descent algorithm

xt+1 = xt − α∇f(xt) (25)

will visit an ε-first order stationary point at least once in T := 2L(f(x0)−f(x∗))
ε2

iterations.

Proof: We begin with a property of GD on L-smooth functions. Recall that:

f(x− 1

L
∇f(x))− f(x) ≤ − 1

2L
‖∇f(x)‖22 (26)

Now assume that ‖∇f(xt)‖2 > ε for t = 1, 2, . . . , T and we will try to arrive at a contradiction.
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We get that:

f(xT )− f(xT−1) + f(xT−1)− f(xT−2) + . . .+ f(x1)− f(x0) < −ε
2T

2L
(27)

Then,

f(x∗)− f(x0) ≤ f(xT )− f(x0) < −ε
2T

2L
= f(x∗)− f(x0) (28)

Hence, there is a contradiction.

We end by introducing a variant of Gradient Descent by introducing controlled perturbation in

order to efficiently escape saddle points.

4.2 Perturbed Gradient Descent

Definition 4.2 (Perturbed Gradient Descent (PGD)) Let f : Rd → R, be a twice differen-

tiable function, then PGD is defined by the following algorithm:

Initialization x0, stepsize η, perturbation radius r;

for t = 1, 2, 3, . . . , T do

xt+1 = xt − η (∇f(xt) + ξt) with ξt ∼ N
(

0, r
2

d I
)

;

end
Algorithm 1: Perturbed Gradient Descent

Now we can state the following theorem about PGD:

Theorem 4.3 Let f be a twice differentiable L-smooth function with Hessian ρ-Lipschitz. For any

ε, δ > 0, set η = Θ( 1
L) and r = Θ

 ε

log4 d

δε

. PGD will visit an ε-second order stationary point at

least once with probability at least 1− δ in at most T = O
(
L(f(x0)− f(x∗))

ε2
log4 d

ρεδ

)
iterations.

Remark 4.3 Firstly, not that the radius is strictly less than ε. Moreover, this can work for any

noise (or perturbation) which is spherical, non-degenerate and has exponential tails (Gaussian-like).

Proof Outline:

1. When the current iterate is not an ε-second order stationary point, it must either have a

large gradient (case 1) or the Hessian has a strictly negative eigenvalue (case 2).

2. We can show that both cases yield a significant decrease in the function value in a controlled

number of iterations.

3. Since the decrease cannot be more than f(x0)− f(x∗) (the global minimum is bounded), we

reach a contradiction.

First we show a lemma which deals with case 1, when the current iterate has a large gradient.
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Lemma 4.4 Assume that f is twice differentiable, L-smooth function with η = 1
L . Then it holds

with probability 1− δ

f(xt+1)− f(xt) ≤ −
‖∇f(xt)‖22

2L
+O

(
r2

d
log

(
1

δ

))
(29)

Proof: Using L-smoothness we have:

f(xt+1)− f(xt) ≤ ∇f(xt)
T (xt+1 − xt) +

L

2
‖xt+1 − xt‖22

= − 1

L
∇f(xt)

T∇f(xt)−
1

L
ξTt ∇f(xt) +

L

2

1

L2
‖∇f(xt) + ξt‖22

= − 1

2L
‖∇f(xt)‖22 +

1

2L
‖ξt‖22

(30)

In the final step, we know that with probability 1 − δ, the norm squared of the Gaussian noise

vector is bounded by: O
(
r2

d
log

(
1

δ

))
. Also by the choice of r (the noise term is strictly less than

ε2) and the fact the the gradient is large, we have that the whole term is of the order Θ(ε2), as the

magnitude of the gradient dominates the magnitude of the noise term.

Finally, we end with giving the intuition behind case 2 and it can be shown that the following

lemma holds:

Lemma 4.5 Assume f is twice differentiable, L-smooth and ρ-Hessian Lipschitz. Moreover, as-

sume that ‖∇f2(x0)‖2 ≤ ε and also λmin

(
‖∇f2(x0)‖

)
≤ −√ρε. Assume that we run PGD from

x0, then

Pr[f(xt)− f(x0) ≤ − t
′

2
] ≥ 1− L

√
d

√
ρε

exp

(
−Θ

(
log4

(
d

ρε

)))
(31)

for t =
L
√
ρε

Θ

(
log4

(
d

ρε

))
and t

′
=

ε2
√
ρε

Θ

(
log4

(
d

ρε

))
Proof Outline: The proof looks at characterizing the region around a strict saddle point [3].

Suppose, we are not at an ε-second order stationary point, then we have to worry about the case

when the Hessian has a strictly negative eigenvalue.

The idea is to try and characterize the volume of the region which does not lead to a significant

decrease in the function value (called the stuck region) and show that this volume is tiny and

a random perturbation due to PGD will take us out of the stuck region after some number of

iterations with high probability. Let us suppose we are at the point x0 and we run PGD. Now,

let x be the result of the PGD. If e1 be the component of the negative eigenvalue and suppose the

remaining eigenvalues are positive then the stuck region is characterized when x−x0 has a small

component along e1 (since moving along e1 will lead to a decrease in function value). This small

band around x0 can be seen in Figure 3.

By bounding the above volume, one can show the probability that the function value decreases

after t steps by − t
′

2
is given in the statement.

Finally, since f(x0)−f(x∗) is bounded and t is of the order Θ
(
t
′
ε2
)

, after Θ

(
f(x0)− f(x∗)

ε2

)
,

we have to visit an ε-second order stationary point, as we reach a contradiction otherwise.
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Figure 3: The green band enclosed in the sphere (which represents the perturbation ball) captures

the stuck region. [3]
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