The Complexity of Symmetric Equilibria in Min-Max Optimization and Team Zero-Sum Games

> Ioannis Panageas (UC Irvine & Archimedes AI)

Based on joint work with I. Anagnostides, T. Sandholm, J. Yan

Playing Rock-Paper-Scissors 0,0 -1, 1 1,-1 1,-1 0,0 -1, 1 0,0 -1, 1 1, -1

Two-player zero-sum. Player y gets payoff $x^{\top}Ay$ and x gets $-x^{\top}Ay$. A Nash equilibrium (x^*, y^*) satisfies the Variational Inequalities

 $\langle \mathbf{x}^*, A\mathbf{y}^* \rangle \leq \langle \mathbf{x}', A\mathbf{y}^* \rangle$ and $\langle \mathbf{x}^*, A\mathbf{y}^* \rangle \geq \langle \mathbf{x}^*, A\mathbf{y}' \rangle$.

Playing Rock-Paper-Scissors 0,0 -1, 1 1,-1 0,0 1,-1 -1, 1 1, -1 0,0 -1, 1

Two-player zero-sum. Player y gets payoff $x^{\top}Ay$ and x gets $-x^{\top}Ay$. A Nash equilibrium is a solution to

 $\min_{\boldsymbol{x}\in\Delta_n\boldsymbol{y}\in\Delta_m}\boldsymbol{x}^\top A\boldsymbol{y}.$

From Z.S games to min-max

Min-max optimization. Let $f : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ be a *G*-Lipschitz, L-smooth function. Player *y* gets payoff f(x, y) and *x* gets -f(x, y).

 $\min_{\boldsymbol{x}\in\mathcal{X}} \max_{\boldsymbol{y}\in\mathcal{Y}} f(\boldsymbol{x},\boldsymbol{y}).$

From Z.S games to min-max

Min-max optimization. Let $f : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ be a G-Lipschitz, L-smooth function. Player y gets payoff f(x, y) and x gets -f(x, y).

 $\min_{\boldsymbol{x}\in\mathcal{X}} \max_{\boldsymbol{y}\in\mathcal{Y}} f(\boldsymbol{x},\boldsymbol{y}).$

- When $f(x, y) = \langle x, Ay \rangle$, NE exists, can be computed exactly in poly-time.
- When f(x, y) convex-concave, NE exists, can be computed in poly(1/ ε).

Remark: NE (x^*, y^*) satisfies

 $f(\mathbf{x}^*, \mathbf{y}^*) \le f(\mathbf{x}', \mathbf{y}^*)$ and $f(\mathbf{x}^*, \mathbf{y}^*) \ge f(\mathbf{x}^*, \mathbf{y}')$.

• NE not guaranteed to exist for other cases.

Solution concepts

• First-order NE aka fixed points of GDA:

$$\langle \mathbf{x}' - \mathbf{x}^*, \nabla_{\mathbf{x}} f(\mathbf{x}^*, \mathbf{y}^*) \rangle \geq -\epsilon \text{ and } \langle \mathbf{y}' - \mathbf{y}^*, \nabla_{\mathbf{y}} f(\mathbf{x}^*, \mathbf{y}^*) \rangle \leq \epsilon$$

The Variational inequalities (VI) always have a solution. (Hartman-Stampacchia).

Remarks:

- GDA cycles, even for bilinear functions.
- When *f* convex, non-concave or non-convex, concave ε -FONE in poly(1/ ε)
- When **f** non-convex, non-concave we do not know...

Solution concepts

• First-order NE aka fixed points of GDA:

$$\langle \mathbf{x}' - \mathbf{x}^*, \nabla_{\mathbf{x}} f(\mathbf{x}^*, \mathbf{y}^*) \rangle \geq -\epsilon \text{ and } \langle \mathbf{y}' - \mathbf{y}^*, \nabla_{\mathbf{y}} f(\mathbf{x}^*, \mathbf{y}^*) \rangle \leq \epsilon$$

The Variational inequalities (VI) always have a solution. (Hartman-Stampacchia).

Remarks:

- GDA cycles, even for bilinear functions.
- When *f* convex, non-concave or non-convex, concave ε -FONE in poly(1/ ε)
- When **f** non-convex, non-concave we do not know...
- Local NE: Relaxed notion of NE, inequalities hold in a neighborhood. Not guaranteed to exist!
- Local Stackelberg: x in a neighborhood of x*

 $f(\mathbf{x}^*, \mathbf{y}') \le f(\mathbf{x}^*, \mathbf{y}^*) \le \max_{\mathbf{y}': \|\mathbf{y}' - \mathbf{y}^*\|_2} f(\mathbf{x}, \mathbf{y}').$

Team ZS Games

Main focus: Team ZS Games

Team A VS Team B

- *N*, *M* players in teams **A**, **B**.
- Strategy sets P_1, \ldots, P_N and Q_1, \ldots, Q_M .
- U(x, y) utility of each player from **B**, cost of each player from **A**.

NE in team zs games. *Nash equilibrium are FONE of the min-max*

 $\min_{\boldsymbol{x}\in\Delta(P_1)\times\ldots\times\Delta(P_N)\boldsymbol{y}\in\Delta(Q_1)\times\ldots\times\Delta(Q_M)} \max_{\boldsymbol{u}(\boldsymbol{x},\boldsymbol{y}).$

Other examples: Adversarial training, GANs, robust optimization. Use GDA and hope to stabilize...

An example – Generalized MP

- **2** vs **2** players. Each player has two actions {**H**, **T**}.
- All vanilla methods you might have heard cycle. You can get coarse correlated eq.
- NE is the uniform.

What is known so far

- For *coupled domains*, ε-FONE is **PPAD**-complete [Daskalakis, Skoulakis, Zampetakis 21]
 Limitation: The construction of [DSZ21] works for *non-convex linear*.
- For *Adversarial* team games (|B| = 1) with N players, ε -NE is **CLS**-complete [Anagnostides et al 23].
- In *Polymatrix* two team zs with independent adversaries, ε-NE is CLS-complete. [Hollender, Maystre, Nagarajan 25]
- When *f* convex, non-concave or non-convex, concave ε -FONE in poly(1/ ε).

What is known so far

- For *coupled domains*, ε-FONE is **PPAD**-complete [Daskalakis, Skoulakis, Zampetakis 21]
 Limitation: The construction of [DSZ21] works for *non-convex linear*.
- For *Adversarial* team games (|B| = 1) with N players, ε-NE is CLS-complete [Anagnostides et al 23].
- In *Polymatrix* two team zs with independent adversaries, ε-NE is CLS-complete. [Hollender, Maystre, Nagarajan 25]
- When *f* convex, non-concave or non-convex, concave ε -FONE in poly(1/ ε).

Main questions:

- What is the complexity of min-max for **product** domains.
 - Maybe [DSZ21] hardness is because of the constraints [Bernasconi et al 25]?
- What is the complexity of 2 vs 1 in adversarial team games (constant no of players)?
- What is the complexity of **2 vs 2** or maybe **3 vs 3**?

Our main results (min-max)

Def. Symmetric min-max. *f is called anti-symmetric if*

 $f(\boldsymbol{x},\boldsymbol{y}) = -f(\boldsymbol{y},\boldsymbol{x}).$

If *f* is anti-symmetric, min-max problem is called symmetric.

Theorem (PPAD-completeness for symmetric). *Computing a symmetric* $\frac{1}{n^c}$ -approximate first-order Nash equilibrium in symmetric n-dimensional min-max optimization is PPAD-complete for any constant c > 0.

Remark. Theorem holds even for quadratic functions.

Our main results (min-max)

Def. Symmetric min-max. *f is called anti-symmetric if*

 $f(\boldsymbol{x},\boldsymbol{y}) = -f(\boldsymbol{y},\boldsymbol{x}).$

If *f* is anti-symmetric, min-max problem is called symmetric.

Theorem (PPAD-completeness for symmetric). *Computing a symmetric* $\frac{1}{n^c}$ -approximate first-order Nash equilibrium in symmetric n-dimensional min-max optimization is PPAD-complete for any constant c > 0.

Remark. Theorem holds even for quadratic functions.

Theorem (FNP-hardness for nonsymmetric). *Computing a nonsymmetric approximate first-order Nash equilibrium in symmetric n-dimensional min-max optimization is FNP-hard.*

Remark. Our results do not imply hardness for min-max. It is an indication that the problem is hard though.

Our main results (team games)

Theorem (CLS-completeness for 2 vs 1). *Computing an* ϵ -Nash equilibrium in 3-player (that is, 2 vs. 1) adversarial team games is CLS-complete.

Remark. Theorem holds even when one restricts to polymatrix, 3-player adversarial team games.

Theorem (PPAD-completeness for 3 vs 3). *Computing a symmetric* $\frac{1}{n^c}$ -Nash equilibrium in symmetric, 6-player (3 vs. 3) team zero-sum polymatrix games is PPADcomplete for some constant c > 0.

 $1/n^c$ -symmetric NE of (R, R^{\top}) is PPAD-complete [Chen, Deng, Teng 09]

 $1/n^{c}$ -symmetric NE of (R, R^{\top}) is PPAD-complete [Chen, Deng, Teng 09]

$$A := \frac{R + R^{\top}}{2} \text{ (symmetric matrix)}$$
$$A = A^{\top}$$

$$C := rac{R - R^{ op}}{2}$$
 (skew symmetric matrix)
 $C = -C^{ op}$

$$f(\mathbf{x}, \mathbf{y}) := \langle \mathbf{y}, A\mathbf{y} \rangle - \langle \mathbf{x}, A\mathbf{x} \rangle + \langle \mathbf{y}, C\mathbf{x} \rangle$$
$$\mathcal{X} \times \mathcal{Y} = \Delta_n \times \Delta_n$$

 $1/n^{c}$ -symmetric NE of (R, R^{\top}) is PPAD-complete [Chen, Deng, Teng 09]

$$A := \frac{R + R^{\top}}{2} \text{ (symmetric matrix)} \qquad C := \frac{R}{2}$$
$$A = A^{\top}$$

$$C := rac{R - R^{ op}}{2}$$
 (skew symmetric matrix)
 $C = -C^{ op}$

$$f(\mathbf{x}, \mathbf{y}) := \langle \mathbf{y}, A\mathbf{y} \rangle - \langle \mathbf{x}, A\mathbf{x} \rangle + \langle \mathbf{y}, C\mathbf{x} \rangle$$
$$\mathcal{X} \times \mathcal{Y} = \Delta_n \times \Delta_n$$

Claim. Any symmetric $(\mathbf{x}^*, \mathbf{x}^*) \in$ -FONE of f is an ϵ -NE of (R, R^{\top}) .

 $1/n^{c}$ -symmetric NE of (R, R^{\top}) is PPAD-complete [Chen, Deng, Teng 09]

$$A := \frac{R + R^{\top}}{2} \text{ (symmetric matrix)} \\ A = A^{\top}$$

$$C := rac{R - R^{ op}}{2}$$
 (skew symmetric matrix)
 $C = -C^{ op}$

P-time

$$f(\mathbf{x}, \mathbf{y}) := \langle \mathbf{y}, A\mathbf{y} \rangle - \langle \mathbf{x}, A\mathbf{x} \rangle + \langle \mathbf{y}, C\mathbf{x} \rangle$$
$$\mathcal{X} \times \mathcal{Y} = \Delta_n \times \Delta_n$$

Claim. Any symmetric $(\mathbf{x}^*, \mathbf{x}^*) \in$ -FONE of f is an ϵ -NE of (R, R^{\top}) .

 ϵ -symmetic NE in 2-player symmetric games

 ϵ -symmetric FONE in symmetric min-max

Remarks

• The idea was to reduce from the VI problem (which is *PPAD-hard*)

$$\langle x - x^*, F(x^*) \rangle \leq \epsilon$$

• Can reprove [DSZ21] if one considers constraints of the form idea

$$-\delta \leq x_i - y_i \leq \delta$$
 for appropriate δ .

• In the same spirit, [Bernasconi et al 25] shows for *box* constraints.

Graph
$$G([n], E)$$
, we construct $A_{i,j} = \begin{cases} 1/2 & \text{if } i = j, \\ 1 & \text{if } \{i, j\} \in E, \\ 0 & \text{otherwise.} \end{cases}$

Claim A. Optimal NE in (A, A) is uniform with support on a max-clique.

Value is
$$\frac{k}{2k^2} + \frac{k(k-1)}{k^2} = 1 - \frac{1}{2k}$$

Best NE has value $1 - \frac{1}{2k}$ iff *G* has a max clique of size *k*.

Graph
$$G([n], E)$$
, we construct $A_{i,j} = \begin{cases} 1/2 & \text{if } i = j, \\ 1 & \text{if } \{i, j\} \in E, \\ 0 & \text{otherwise.} \end{cases}$

Claim A. Optimal NE in (A, A) is uniform with support on a max-clique.

Value is
$$\frac{k}{2k^2} + \frac{k(k-1)}{k^2} = 1 - \frac{1}{2k}$$
.

Best NE has value $1 - \frac{1}{2k}$ iff *G* has a max clique of size *k*.

Claim B. Any ϵ -NE that does not have value ϵ -close to optimal, has value at most $1 - \frac{1}{2k} - \frac{1}{n^2k^4} + O(\epsilon)$ for some $\epsilon = 1/poly(n)$.

Every
$$\epsilon$$
-NE has value either at least $1 - \frac{1}{2k} - O(\epsilon)$
at most $1 - \frac{1}{2k} - \frac{1}{n^2k^4} + O(\epsilon)$.

Symmetric identical payoff game (**B**, **B**)
•
$$V = 1 - \frac{1}{2k}$$

• $r = 1 - \frac{1}{2k} - \frac{1}{2n^2k^4} + O(\varepsilon)$

$$B = \begin{bmatrix} A_{1,1} & \cdots & A_{1,n} & r \\ \vdots & \ddots & \vdots & \vdots \\ A_{n,1} & \cdots & A_{n,n} & r \\ r & \cdots & r & V \end{bmatrix}$$

Claim. It is FNP-hard to find an ϵ -NE that does not have most of the mass on $B_{n+1,n+1}$.

Finding two approximate NE with distance > 1/poly(n) is FNP-hard

Theorem. *Finding a non-symmetric approximate FONE is FNP-hard.*

Separable min-max:

$$f(\mathbf{x}, \mathbf{y}) := \langle \mathbf{y}, B\mathbf{y} \rangle - \langle \mathbf{x}, B\mathbf{x} \rangle$$
$$\mathcal{X} \times \mathcal{Y} = \Delta_n \times \Delta_n$$

Non-symmetric FONE of f

Two NE in (B, B)

Theorem. Finding a non-symmetric approximate FONE is FNP-hard.

Separable min-max: $f(\mathbf{x}, \mathbf{y}) := \langle \mathbf{y}, B\mathbf{y} \rangle - \langle \mathbf{x}, B\mathbf{x} \rangle$ $\mathcal{X} \times \mathcal{Y} = \Delta_n \times \Delta_n$ Non-symmetric FONE of f Two NE in (B, B)P-timee-non-symmetric FONEMax-clique

• Remark: Proof in the same spirit as in [McLennan and Tourky 10']

2 vs 1 is CLS-complete

2 vs 1 is CLS-complete

Main idea. Consider a two player symmetric identical payoff (A, A) and add a third player that forces symmetry.

$$u(\mathbf{x}, \mathbf{y}, \mathbf{z}) := \langle \mathbf{x}, A\mathbf{y} \rangle + \frac{1}{\epsilon} \sum_{i=1}^{n} (z_i(x_i - y_i) + z_{n+i}(y_i - x_i)) + z_{2n+1}.$$

x, **y** maximizers, **z** minimizer.

Take away messages and future directions

- We provide strong indication that min-max is hard.
- Complexity of adversarial team games is resolved.
- The complexity of min-max is *still open*.

- Positive results for low degree polynomials and well-behaved domains?
- Prove unconditional lower bounds.