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Solution concepts

Nash Equilibrium (NE)

• No incentive to unilaterally deviate
• Each agent throws her own coins.

(decentralized).

E.g., (1/3, 1/3, 1/3). 

• No incentive to unilaterally deviate
• All agents use same coins.

(centralized)

E.g., (R,P), (R,S), (P,R), (P,S), (S,R), (S,P) 
with probability 1/6.

Coarse Correlated Equilibrium (CCE)

0, 0 -1, 1 1,-1

1,-1 0, 0 -1, 1

-1, 1 1, -1 0, 0



Playing Rock-Paper-Scissors

0, 0 -1, 1 1,-1

1,-1 0, 0 -1, 1

-1, 1 1, -1 0, 0

Let’s repeat the game multiple times



Players use learning dynamics



Players use learning dynamics

Players’ choices induce a process (dynamics). 
Behaviors include:



Players use learning dynamics

close to solution of interest.

• Convergence of time average 
([Robinson51], [Freund-Schapire99], … a lot of works)

Players’ choices induce a process (dynamics). 
Behaviors include:



Players use learning dynamics

Players’ choices induce a process (dynamics). 
Behaviors include:

•  Best iterate or Last iterate convergence 
([Daskalakis-Ilyas-Syrgkanis-Zeng17], [Daskalakis-Panageas19],  [Mertikopoulos-
Lecouat-Zenati-Foo-Chandrasekhar-Piliouras19], [Anagnostides-Panageas-Farina-
Sandholm22], …)

close to solution of interest.



Players use learning dynamics

Players’ choices induce a process (dynamics). 
Behaviors include:
•  Cycling or recurrent behavior 
([Bailey-Piliouras18], [Mertikopoulos-Papadimitriou-Piliouras18], [Mai-Mihail-
Panageas-Ratcliff-Vazirani-Yunker18], …)

•  Even chaotic ([Palaiopanos-Panageas-Piliouras17], …)

From [PP16]          From [SFG18] 



Players use learning dynamics

Many applications in Game Theory, Optimization, Machine 
Learning (GANs), even in evolution.

Behaviors appear in two player zero-sum or identical payoff.

Players’ choices induce a process (dynamics). 
Behaviors include:



No-regret learning dynamics

• Aim at minimizing regret.



No-regret learning dynamics

• Aim at minimizing regret.



2-player zero-sum games
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2-player zero-sum games

Why?



2-player zero-sum games (cont.)

•  No-regret learning algorithms converge to CCEs in general games.



2-player zero-sum games (cont.)

•  No-regret learning algorithms converge to CCEs in general games.

•  Phenomenon of equilibrium collapse . Marginals of CCEs are NE 
in 2-player zero-sum games.

Recall CCE: (R,P), (R,S), (P,R), (P,S), (S,R), (S,P) 
with probability 1/6. Marginalizing yields NE.

0, 0 -1, 1 1,-1

1,-1 0, 0 -1, 1

-1, 1 1, -1 0, 0



2-player zero-sum games (cont.)

•  No-regret learning algorithms converge to CCEs in general games.

•  Phenomenon of equilibrium collapse . Marginals of CCEs are NE 
in 2-player zero-sum games.

Do we need to take averages though? 
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For MWUA and more generally FTRL dynamics YES. 
[Mertikopoulos-Papadimitriou-Piliouras18] 



2-player zero-sum games (cont.)

•  No-regret learning algorithms converge to CCEs in general games.

•  Phenomenon of equilibrium collapse . Marginals of CCEs are NE 
in 2-player zero-sum games.

Do we need to take averages though? 

For MWUA and more generally FTRL dynamics YES. 
[Mertikopoulos-Papadimitriou-Piliouras18]

If 𝑨 changes with time, cycles persist? 

In [Mai-Mihail-Panageas-Ratcliff-Vazirani-Yunker18] we show recurrent behavior 
for a biological model in which the species update according to replicator 
dynamics.



2-player zero-sum games (cont.)

If 𝑨 changes with time, cycles persist? 

In [Mai-Mihail-Panageas-Ratcliff-Vazirani-Yunker18] we show recurrent behavior 
for a biological model in which the species update according to replicator 
dynamics.



Toy example 

Can (𝟎, 𝟎) be reached?
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Optimism avoids cycles

Can (𝟎, 𝟎) be reached?

𝑥𝑡+1 = 𝑥𝑡 − 𝜂 ⋅ 𝛻𝑥𝑓 𝑥𝑡, 𝑦𝑡

                                      

𝑦𝑡+1 = 𝑦𝑡 + 𝜂 ⋅ 𝛻𝑦𝑓 𝑥𝑡, 𝑦𝑡

                                       

We can use “optimism” (negative momentum). 

Can fix this behavior?

𝑥𝑡+1 = 𝑥𝑡 − 𝜂 ⋅ 𝛻𝑥𝑓 𝑥𝑡, 𝑦𝑡

                                      + 𝜼/𝟐 ⋅ 𝛁𝒙𝒇(𝒙𝒕−𝟏, 𝒚𝒕−𝟏)

𝑦𝑡+1 = 𝑦𝑡 + 𝜂 ⋅ 𝛻𝑦𝑓 𝑥𝑡, 𝑦𝑡

                                       − 𝜼/𝟐 ⋅ 𝛁𝒚𝒇(𝒙𝒕−𝟏, 𝒚𝒕−𝟏)



Optimism avoids cycles (cont.)

Can (𝟎, 𝟎) be reached?

𝑥𝑡+1 = 𝑥𝑡 − 𝜂 ⋅ 𝛻𝑥𝑓 𝑥𝑡, 𝑦𝑡  + 𝜼/𝟐 ⋅ 𝛁𝒙𝒇(𝒙𝒕−𝟏, 𝒚𝒕−𝟏)
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Optimism avoids cycles (cont.)

Can (𝟎, 𝟎) be reached?

𝑥𝑡+1 = 𝑥𝑡 − 𝜂 ⋅ 𝛻𝑥𝑓 𝑥𝑡, 𝑦𝑡  + 𝜼/𝟐 ⋅ 𝛁𝒙𝒇(𝒙𝒕−𝟏, 𝒚𝒕−𝟏)

𝑦𝑡+1 = 𝑦𝑡 + 𝜂 ⋅ 𝛻𝑦𝑓 𝑥𝑡, 𝑦𝑡   − 𝜼/𝟐 ⋅ 𝛁𝒚𝒇(𝒙𝒕−𝟏, 𝒚𝒕−𝟏)

[Daskalakis-Ilyas-Syrgkanis-Zeng17], [Daskalakis-Panageas19], [Mertikopoulos-Lecouat-
Zenati-Foo-Chandrasekhar-Piliouras19], [Wei-Lee-Zhang-Luo21], [Golowich-Pattathil-
Daskalakis21], [Anagnostides-Panageas-Farina-Sandholm22], [Cai-Oikonomou-Zheng22], 
[Diakonikolas-Daskalakis-Jordan22], and many more.



Use optimism for 
convergence to NE in 
general-sum games?



General Sum Bimatrix Games



General Sum Bimatrix Games

Equilibrium collapse does not hold! Avoid cycles? 



General Sum Bimatrix Games

Let’s add some structure then…
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Learning in rank-k games

• Rank-0 are zero-sum games.

• Induces an hierarchy of games. 
• Rank-1 games are in P [Adsul, Garg, Mehta, Sohoni, von Stengel18].
• Finding approximate NE for constant 𝑘 is tractable [Kannan-Theobald05]  

but exact is PPAD-hard even for 𝑘 = 3 [Mehta14] .
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(similar to [Adsul, Garg, Mehta, Sohoni, von Stengel18]) 
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Learning in rank-1 games

(similar to [Adsul, Garg, Mehta, Sohoni, von Stengel18]) 



Learning in constant rank games



Learning in constant rank games

Remark: 

• We focus on rank games because the computation is tractable. 

• Looking for computationally tractable settings.

• We have convergence for potential and strategically zero-sum 

games (Anagnostides-Panageas-Farina-Sandhold22).



General sum Bimatrix Games (cont.)

Is cycling that bad? Not necessarily…
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General sum Bimatrix Games (cont.)

Is cycling that bad? Not necessarily…

The techniques for the above show an interesting interplay between regret and 
convergence.



General sum Bimatrix Games (cont.)

Is cycling that bad? Not necessarily…

The techniques for the above show an interesting interplay between regret and 
convergence.

If sum of regrets is non-negative => Optimistic Gradient exhibits best iterate
Sum of regrets is negative => strong-CCE.



Take away messages and future 
directions

Learning dynamics can have all kinds of behaviors.

•  Cycling even for 2player zero-sum which is fixable

•  However not much is known if one wants to go beyond zero-sum.

•  Learning in rank-1 games.

•  If one is happy with cycles, will get an exact CCE in constant steps.

Can we go beyond two players? E.g., team games. 

Lower bounds on rates of convergence? For Fictitious Play we have for 
both zero-sum and potential games (Daskalakis, Pan14) and 
(Panageas, Patris, Skoulakis, Cevher23).
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